

MLFM FITTING OUTDOOR MATRICES : pr_dc(G, t_mod) Fit data non-weighted or "weighted by occurrence"

[Gantner #78 c-Si] normalised efficiency pr_

MLFM FITTING v_oc, v_mp, pr_dc : INDOOR vs. OUTDOOR **Outdoor: Gantner Tempe AZ, 1year** Indoor: CFV IEC61853

IMPROVING ANALYSIS METHODS FOR IEC 61853 MATRIX MEASUREMENTS Steve Ransome¹ (SRCL) and Juergen Sutterlueti (Gantner Instruments)

DEFINITIONS

Fitting good indoor vs good outdoor data :

> Weight outdoor data by occurrence

Outdoor weighted v_mp and v_oc fits can be as good as indoor!

Higher pr_dc variability outdoors (soiling, aoi, beam fraction and spectrum affect i_sc)

MLFM fits matrices well

MLFM COEFFICIENTS ARE INDEPENDENT FOR UNIQUE MATRIX FITS

Alter each of the mlfm4+ coefficients (c_c, c_t, c_lg, c_g) separately

- Changes are independent meaning there's a unique best fit

simply and accurately derived using c_t from mlfm matrix fits without needing extra measurements and trend fits as used in IEC 61853

SUMMARY

- measurements well

References : <u>www.steveransome.com</u> email : <u>steve@steveransome.com</u> [PVSC 49] <u>http://www.steveransome.com/pubs/2206_PVSC49_philadelphia_4_presented.pdf</u> PVPMC/PVLIB : <u>https://pvpmc.sandia.gov/ https://github.com/pvlib/pvlib-python</u>

Acknowledgements : Gantner Instruments and CFV for measurement data https://pvpmc.sandia.gov/download/7701/

¹ steve@steveransome.com : www.steveransome.com

# GLOSSARY : nomenclature and definitions		[unit
# $g = measured poa irradiance ~(0.1 - 1.1)$		[kW/n
<pre># t_mod = measured module temperature ~(15,25,50,75)</pre>		[C]
$g_{stc} = 1$	#	[kW/r
t_stc = 25	#	[C]
$dt = t_{mod} - 25$	#	[C]
$t_k = t_mod + 273.15$	#	[K]
t_stc_k = 298.15	#	[K]
<pre># normalise data for easier fitting and understanding)</pre>		
<pre># NAMING PREFIXES meas(ured) norm(alised) fit(ted), stc,</pre>	1	.ic, r
norm_i_sc = meas_i_sc / stc_i_sc / g	#	[%]
norm_v_oc = meas_v_oc / stc_v_oc	#	[%]
norm_pr_dc = meas_p_mp / stc_p_mp / g	#	[%]
norm_i_mp = meas_i_mp / stc_i_mp / g	#	[%]
norm v mp = meas v mp / stc v mp	#	[%]
norm_v_mp = meas_v_mp / stc_v_mp	#	[8]

# MLFM4+:	4	meaning	Jfu	l, normalised	cc	effic	ients	
#	1	const	<mark>2</mark>	temp coeff		3 low	light	improveme
norm_param	n	= c_c +	- <mark>c</mark>	_t*(t_mod-25)	+	c_lg	* log1	L0(g)*(t_k/t_sto

Show sensitivity : shape and magnitude of apparent performance change (red arrows)

• MLFM is better than SAPM or PVGIS fitting matrices for all parameters with only 50% of their rmse (they don't model r_series) [see PVSC49]

• MLFM has optimised fits to indoor measurements and fits good outdoor

• Weighting outdoor measurements by occurrence mean infrequent extreme or transient data don't affect the fits

• The MLFM matrix fit c_t parameter is <u>an accurate temperature coefficient</u> (without needing extra measurements at 1000W/m²)

