Sandia National Laboratories Bifacial Performance Optimization Studies using Bifacial Radiance and High Performance Computing

Joshua S. Stein¹, Matthew Prilliman¹, Cameron Stark¹, John Nagyvary², Silvana Ayala Pelaez³, and Chris Deline³ ¹Sandia National Laboratories, ²Array Technologies, ³National Renewable Energy Laboratory

Problem Statement

- What is the best system design for bifacial PV on Single axis trackers?
- Bifacial performance is more sensitive to certain parameters not considered that important for monofacial PV performance:
 - Albedo
 - Hub height
 - Tube gap, etc...

Models

- **<u>BIFACIAL</u>** RADIANCE: NREL Python wrapper predicts incident irradiance using Radiance ray-tracing tools
 - Hourly cell-level incident irradiance calculations for bifacial arrays

Approach											
Model inputs:											
 Standard 60-cell model 1Up Portrait configure 25 modules per row 5 rows 	odule Inputs aration GCR	Description Collector width/row- to-row distance	Type Float	Range .38	Units meters/met ers						
collector width	Albedo	Ratio of light reflected by ground	Float	1.[.1080]2-3.[.1525]4.[.7585]	None						
3. Hub height	Hub height	Height of tracker from ground	Float	1-2	meters						
	Tube gap	distance of module from torque tube in Z	Float	1-10	centimeters						
4. Albedo	Backtrack	True= backtracking False="true" tracking	Boolea	True False	nono						
5. Tube shape: [Round, Octagonal, Square, Hexagonal]	Tube shape	Shane of torque tube		Round, Oct,	none						
 Tube gap: Distance between torque tube and back of mod 	ule Tube shape		String	Square, Hex	none						

- Fixed tilt and horizontal single-axis tracker systems available
- Solar position calculations from pvlib-python

- **DAKOTA:** Sandia developed optimization software
 - Automatic parameter sampling (Latin Hypercube Sampling) for robust sensitivity, optimization studies
 - Parallel processing suited for multi-core HPC environment

Results

• Results of albedo range .15-.25 study show that GCR and albedo have the most influence on the variability of both the front and rear irradiance received, particularly in the center row where row-to-row shading due to GCR has greater effect.

- **Stepwise Regression** results show that the insolation variability for edge modules is most explained by albedo when values are low, while the center modules behavior is dominated by changes in GCR.
- Comparison of the Annual and 36-day results shows that nearly identical dependencies, validates the use of 36-day representative samples for future studies.

Code (user's simulation)

HPC cluster: 71 Teraflop peak cluster with 168 dual socket, 8-core 2.7 GHz Intel Sandy Bridge processors with 64 GB of RAM per node.

Approach

- Latin Hypercube Sampling (LHS): Random sampling from uniform probability bins with reordering to minimize cross correlation
- 100 realizations: annual simulations for 3 HSAT test cases:
 - 1. 36-day annual sample with wide albedo range
 - 2. 36-day annual sample with albedo range .15-.25 (typical ground conditions)
 - 3. 365-day annual approximation with .15-.25 albedo range
 - 4. 36-day annual sample with albedo range .75-.85 (snow conditions)
- 36 day annual samples include max, min, median daily insolation for each month
- Outputs analyzed with Stepwise Regression where variables are sequentially added to regression until ~95% of the variability is accounted for.
- Model outputs:

Albedo Range .75-.85

Albedo Range .75-.85

 Bifacial_radiance allows for cell-level irradiance scans; these scans show that the torque tube can limit the irradiance received in the center cells of a module

 $Dev = 13.3 W/m^2$

117

Sumr	ner: S	2	Winter: Sto						
397	398	397	395	402	402		123	123	
379	378	377	373	372	372		115	115	
360	359	361	361	359	359		110	109	
353	354	347	347	354	354		102	102	
347	347	346	347	345	344		98	98	
348	348	346	347	352	352		94	94	
359	359	361	361	356	356		88	88	
376	375	371	371	376	376		87	87	
395	395	396	396	395	398		85	85	

Albedo Range .15-.25

S	um	mer:	Std D	ev =	5.5 V	V/m ²	١	Wint	er: S	td De	ev = 1	.7 W	/m ²
	84	85	85	85	84	84		34	34	34	34	34	34
	81	81	81	80	80	80	-	33	33	33	33	33	33
	77	77	77	77	77	77		31	31	31	31	31	32
	74	74	75	75	75	75		31	31	31	31	30	30
	73	73	74	74	72	72		30	30	30	30	30	30
	73	73	73	73	73	73		30	30	30	29	29	29
	76	76	77	77	77	77		29	29	29	29	29	29
	79	79	80	80	79	79		29	29	29	29	29	29
	85	84	84	84	85	86		29	29	29	29	29	30

Albedo Range .15-.25 (36 days)

• Irradiance on front and back of each cell

424 424 424 426 426 426 85 85 85 83 83 83 83 91 91 90 90 90 90 90 30 30 30 30 30 30 30 30

Higher albedo results in a larger Stdev, meaning that these conditions could result in more electrical mismatch.

Findings

- Albedo and GCR are the most influential parameters
 - Finding high albedo sites or enhancing albedo may be justified.
- Hub height and backtracking are of secondary importance.
- Tube gap and tube shape appear to not be very influential parameters.

Acknowledgements

- Bifacial_Radiance developed at NREL:
 - (https://github.com/NREL/bifacial_radiance)
- Dakota developed at Sandia National Laboratories:
 - (https://dakota.sandia.gov)

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract

DE-NA0003525. SAND No. _____ SAND2019-9944 C

