
SAND2017-12257 C

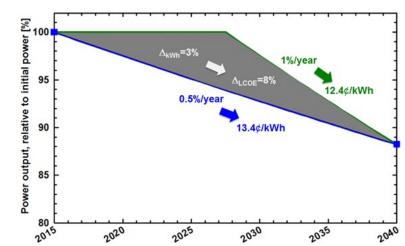
Exceptional service in the national interest

Challenges of PV Degradation Analysis: PVLIB and Performance Data Analysis Joshua S Stein

Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

PV Degradation and Performance Modeling


- In order to reach DuraMAT goals of a levelized cost of electricity for PV of less than 3 cents per kilowatt-hour it is necessary to understand and measure PV degradation rates.
- Several of the DuraMAT capabilities are focused on data collection and analysis.
 - DataHub
 - Data Management and Analytics
 - Field Deployment
- Analyzing PV degradation is not really routine or straightforward, especially with outdoor performance data
- This talk will present a current case study underway to measure PV degradation and then introduce an open source toolbox, PVLIB, and show how it can help analyze measured PV performance data.
- Analyses shown here are preliminary and are shown only to better describe general methods used measure degradation.

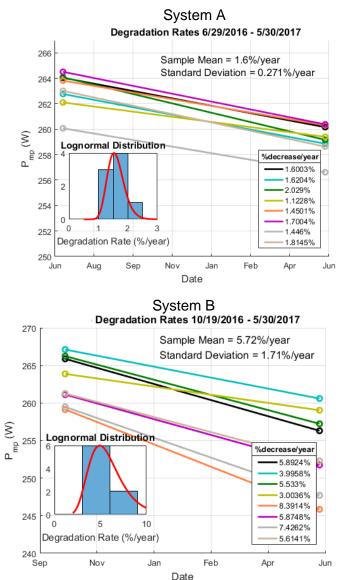
3

Case Study – PV Lifetime Project

- PV degradation is likely neither linear nor constant.
- This fact affects the LCOE.
- PV Lifetime project was started in 2016 to carefully track PV module degradation to better understand its progression over time.
- Common and representative PV modules are purchased on the open market and sent to Sandia, NREL, and FSEC.
- Initial indoor characterization is performed (STC flash testing)
- String-level IV curves are automatically and periodically measured
- Annual re-characterization is performed on sample of modules.
- 605 Modules are currently included in the program. More on the way

Test Systems in NM

- System A (4 strings)
- System B (4 strings)
- Plane of array irradiance is measured
- IV curves are measured with a Pordis 140A Series II
 8-32 Channel In-Line String-level I-V Tracer.
 - Curves taken every 30 min
 - Can be triggered on irradiance, temperature, or other signals (speaks MODBUS)
- DC &AC Current and Voltage measured from inverter every 15 min
- Other nearby systems being monitored for comparison.

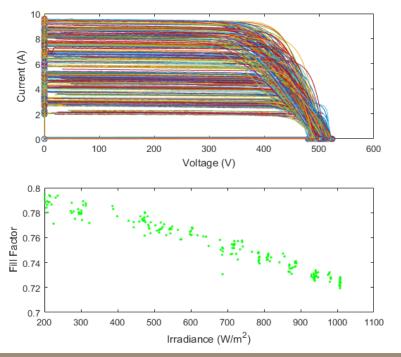


5

Example Flash Test Results (NM)

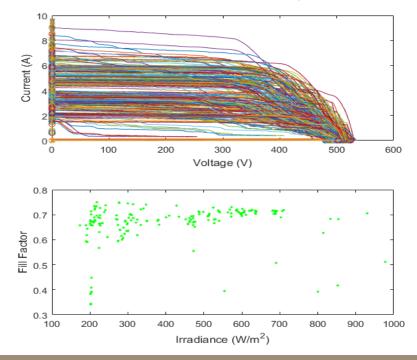
- All modules were flash tested at the beginning of the project (after ~20kWh/m² of light exposure).
- A sample of 8 modules were reflashed after 7-12 months in the field.
 - System A: P_{mp} went down ~1.6% in 1 yr
 - System B: P_{mp} went down an average of 3.3% from initial flash. If this degradation is constant it would equal ~5.7%/yr.
- System degradation should be higher than module degradation due to mismatch
 - Lowest performing modules in each string drag others down.

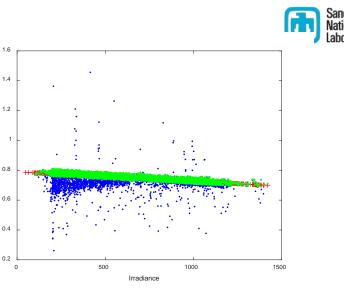
Outdoor IV Curve Analysis (NM)



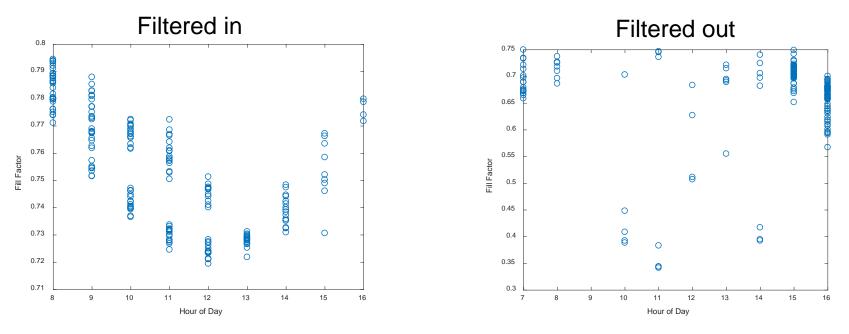
- IV curve measurements began several months after systems were connected.
- IV curves are easy to measure but hard to interpret.
 - They take several seconds to measure and irradiance can vary in that time
 - Capacitive tracers do not go to 0 V or Isc. There can be noise at low voltage values
 - Isc and Voc should be calculated by extrapolating the curve (avoiding any noise).
- Shading or soiling can have large effects.
- "Bad" IV curves must be filtered
 - *Fill Factor* is a fairly reliable data quality filter.

Fill Factor Filter


- Fill factor tends to decrease with irradiance.
 - Filtering on this trend helps to remove spurious measurements
 - Shading, irradiance variability


200 IV curves filtered in by FF

200 IV curves filtered out by FF


Æ

Cause of Fill Factor Deviations?

- Most of the curves that are filtered out are from the start and end of the day
 - This is a time when the arrays are partially shaded.
- A few curves are filtered out in the middle of the day
 - Variable irradiance during trace or human caused shade

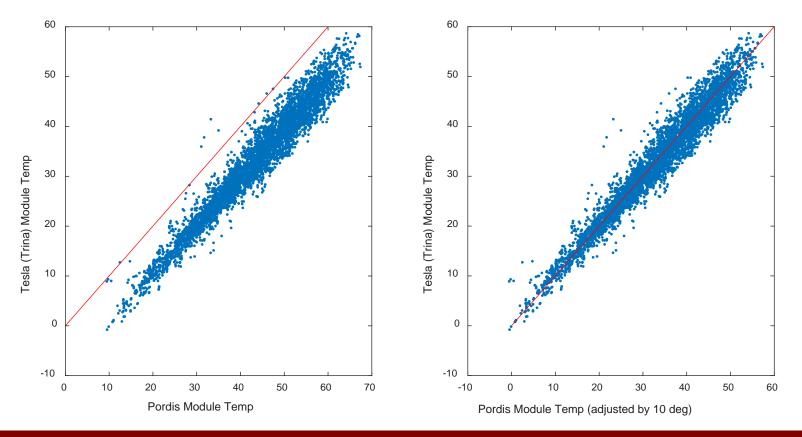
Example Degradation Calculation

- P_{mp} is calculated for each curve (filtered in)
- Module temperature is used to correct P_{mp} to 25 deg C

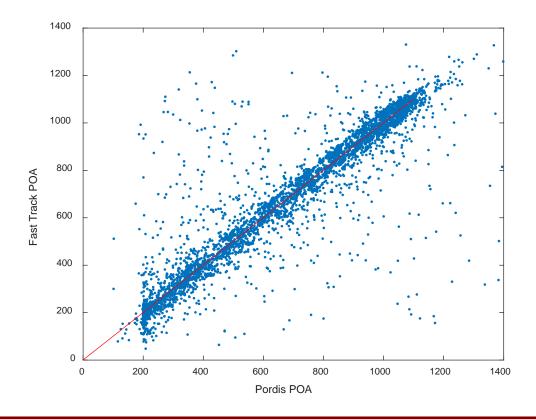
•
$$P_{mp,25C} = \frac{P_{mp,meas}}{1 + \frac{\gamma_{Pmp}}{100}(T_m - 25)}$$
, where γ_{Pmp} is from spec sheet.

- *P_{mp,25C}* vs. POA irradiance is fit with a line for a given period (e.g., month)
 - Intercept at 1,000 W/m² is taken as "string rated power"
- This rated power is plotted over time
- Similar analyses of Isc, Voc, Rs, Rsh are helpful for identifying the source of the degradation (Not covered in this talk).

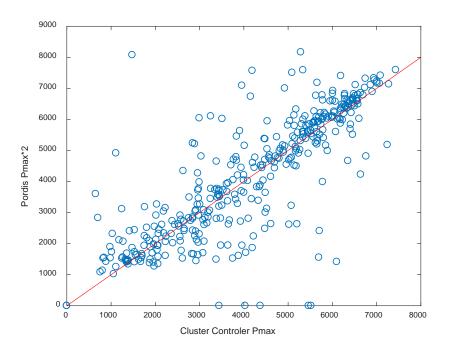
Preliminary Monthly String Degradation Results


- Monthly string degradation appears to have proceeded until May 2017 when it stops.
 - Systems A and B appear to degrade in a similar pattern.
 - This is suspicious! We must validate this data in case we are observing IV tracer or other input data degradation!

Check Module Temperatures


- Module temperature data is actually from an uncalibrated reference cell.
 - 10° C offset is apparent. This correction was used in the Pmp temp correction.

Check POA Irradiance


- POA irradiance was compared with a calibrated reference cell at same orientation located about 200 m away.
 - Nice match! Little to no bias error.
 - Scatter is commonly observed and due to discrete cloud shadows

Check Power Readings

- DC current and voltage are measured by the inverter every 15 min by an SMA cluster controller.
- I matched Pordis times with cluster controller times and compared Pmp values
 - Cluster controller may report time averaged values, which would cause scatter.
 - No bias error is evident!

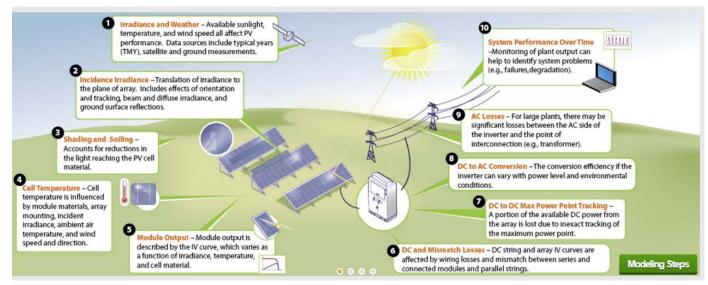
Preliminary Conclusion

 IV Data appears to be legitimate. Additional checks will be performed before these results will be released publically.

Alternate Methods of Measuring Degradation

PVUSA Model fits PV AC output to a function of POA irradiance, ambient temperature (T), and windspeed (WS)

• $P_{AC} = POA(a + b * POA + c * WS + d * T)$


"MPM" Model [1] based on knowledge of "sensible behaviours" of PV cells and modules.

•	• $PR_{DC} = c_1 + c_2(T_{mod} - 25) + c_3 log(POA) + c_4 POA + c_5 WS + \frac{c_6}{POA}$		
	Dependency	Comments	
	1. $I_{MAX} \propto POA$	neglecting Spectral, AOI	
	2. V _{MAX} ∝ log(POA)	from single diode model	
	3. Т _{МОD} ~ Т _{АМВ} – fn(WS)	due to NOCT/NMOT	
	4. P _{MAX} ∝ (1+γ*(T _{MOD} -25))	P _{max} temp. coefficient	
	5. $\Delta P_{MAX} \propto I_{MAX2} * R_{SERIES}$	Eff falls with GI2	
	6. Rsнимт ∝ 1/exp(G,)	varies by technology	

These can be "calibrated" each month and then run for "reference conditions" to track degradation.

Performance Modeling Methods

- Read inputs:
 - Array design (module, string, inverter, mounting, tracking, ground cover, etc.)
 - Weather (irradiance, temperature, wind speed, etc.)
- Translate irradiance to plane-of-array (POA) (or measure directly)
 - Sun position calculation, irradiance model
- Evaluate 'effective' irradiance
 - Angle on incidence effects
 - Spectral effects (air mass correlations or physics models)
- Determine cell temperature (or measure directly)
- Calculate I_{mp}, V_{mp}, and P_{mp}
- Estimate and apply derates (soiling, DC loses, mismatch, array utilization, etc.)
- Model inverter performance (P_{ac})
- Compare with measured data.

PV Performance Modeling Collaborative (IPVPMC)

- Model agnostic, focus on algorithms, methods, data, etc.
- Three Pillars of Communication and Collaboration
 - 1. Website (*PVPMC.sandia.gov*) (>10,000 visits per month)
 - Detailed Modeling Steps (~150 technical webpages)
 - Past workshop presentations (over 300 available for download)
 - Document library, datasets, blog, events, ...

2. Open Source Software

- PVLIB Modeling function libraries for Matlab and Python (50+ functions), BSD 3-clause licenses
- Wavelet Variability Model calculates geographic smoothing of PV plant power.
- **GridPV** Matlab code for analysis of distribution systems with PV

3. Workshops

Planning for the 9th and 10th Workshops in China and US is underway

PVLIB for Matlab : Irradiance and Weather

- **pvl_readtmy3, pvl_readtmy2** Reads TMY formatted weather files
- pvl_getISDdata, pvl_readISH Reads data from the Integrated Surface Database (source of global weather data)
- **pvl_ephemeris, pvl_spa** Calculates Sun position
- **pvl_extraradiation** Calculates extraterrestrial radiation
- **pvl_alt2pres, pvl_pres2alt** Converts between altitude and air pressure
- pvl_relativeairmass, pvl_absoluteairmass Calculates air mass both relative and absolute
- pvl_disc, pvl_dirint, pvl_erbs, pvl_louche, pvl_orgill_Hollands, pvl_reindl_1, pvl_reindl_2 –
 Estimates DNI from GHI
- pvl_clearsky_haurwitz, pvl_clearsky_ineichen Calculates clear sky irradiance
- pvl_calcPwat Estimates precipitable water in the atmosphere from air temperature and relative humidity

Download PVLIB for Matlab (1.3.2) at

- https://pvpmc.sandia.gov/applications/pv_lib-toolbox/
- https://github.com/sandialabs/MATLAB_PV_LIB

Report issues, submit code, etc. via github

PVLIB for Matlab : Incident Irradiance (POA)

- **pvl_grounddiffuse** Calculates ground reflected irradiance
- **pvl_isotropicsky** Isotropic model for sky diffuse irradiance on POA
- pvl_perez, pvl_reindl1990, pvl_kingdiffuse, pvl_klucher1979, pvl_haydavies1980 - models for sky diffuse irradiance on POA
- pvl_getaoi Calculates to the angle of incidence on a tilted plane.
- **pvl_detect_clear_times** Identify clear periods in irradiance time series
- pvl_detect_shadows Detect the effect of shadows in measured irradiance data (e.g., overhead wires, trees, poles, etc.)

Download PVLIB for Matlab (1.3.2) at

https://pvpmc.sandia.gov/applications/pv_lib-toolbox/

https://github.com/sandialabs/MATLAB_PV_LIB

Report issues, submit code, etc. via github

PVLIB for Matlab : PV Models

- pvl_sapmmoduledb, pvl_SAMLibraryReader_CECModules,
 pvl_SAMLibraryReader_SNLInverters Reads in PV module coefficients
- pvl_physicaliam, pvl_martinruiziam, pvl_ashraeiam Models for estimating incident angle modifiers
- **pvl_Fsspeccorr** First Solar model for spectral corrections
- pvl_calcparams_Desoto & pvl_calcparams_CEC & pvl_calcparams_Pvsyst Calculates PV module parameters for the single diode model
- **pvl_singlediode** Implements the single diode model
- **pvl_sapm** implements the Sandia PV Array Performance Model
- **pvl_huld** Implements the Huld performance model
- **pvl_snlinverter**, **pvl_adrinverter** inverter performance models
- **pvl_singleaxis** Calculates single axis tracker positions and angles
- **pvl_sapmcelltemp** Calculates PV cell temperatures from air temp, irradiance, and wind speed.

Download PVLIB for Matlab (1.3.2) at

- https://pvpmc.sandia.gov/applications/pv_lib-toolbox/
- https://github.com/sandialabs/MATLAB_PV_LIB

Report issues, submit code, etc. via github

pvlib-python

- Object-oriented implementation of PV modeling functions
- Location class:
 - Container for latitude, longitude, altitude, timezone data
 - Methods for solar position, clear sky models, air mass models, TMY readers
- PVSystem class:
 - Container for system description data, e.g.: tilt, azimuth, albedo, module and inverter, system topology
 - Methods for POA irradiance, module and inverter performance models
- ModelChain class:
 - Container for a Location and a PVSystem object
 - Specify choice of models using keywords, e.g., clearsky_model='ineichen'
 - Methods for power and energy simulations, e.g., 'prepare_inputs()', 'run_model()'

Pvlib-python v0.5.0 at
➢ https://github.com/pvlib/pvlib-python
Report issues, submit code, etc. via github

PVPMC Workshops

- 1st PVPMC Workshop (Albuquerque, NM, Sept. 2010)
- 2nd PVPMC Workshop (Santa Clara, CA, May 2013)
- 3rd PVPMC Workshop (Santa Clara, CA, May 2014)
- 4th PVPMC Workshop (Cologne, Germany Oct 2015)
- 5th PVPMC Workshop (Santa Clara, CA, May 2016)
- 6th PVPMC Workshop (Freiburg, Germany, Oct 2016)
- 7th PVPMC Workshop (Lugano, Switzerland, March 2017)
- 8th PVPMC Workshop (Albuquerque, NM, May 2017)
- > 9th PVPMC Workshop (Weihai, China, Dec 5-7, 2017)
- > 10th PVPMC Workshop (Albuquerque, NM, May 1-3 2018)

Summary and Conclusions

- Degradation rates of PV modules and components affect LCOE and the value of solar PV.
 - Degradation is unlikely to be uniform or constant
- There are many different methods to measure degradation.
 - Indoor flash testing
 - Outdoor performance monitoring (DC or AC measurements, IV curves)
- All methods rely on a stable irradiance reference
 - Regular calibration and cleaning is important.
 - Comparison with nearby measurements is very useful too.
- Filtering of data is important
 - Transient irradiance conditions or partial shading need to be removed.
 - Fill factor seems to be a reliable filter.
- Many valuable analysis functions are available from PVLIB.

Final Thoughts

- Analysis of PV data is always a challenge
 - What is measured is not always representative
 - E.g., soiling, shading, transient conditions all affect measurements
 - Stability of DUT and uncertainty in the measurement need to be understood
 - Accuracy vs. precision of flash testers
- Data analysis MUST be closely linked with the collection of the data and design of the experiment!
 - DuraMAT DataHub <u>will only work if</u> the nuances of the data are understood and transferred from the experiment designers and data collectors to the analysts.