

19074 PAN File Report: Jinko Solar JKM260P-60 Module

	5800 MS1484 / Albuquerque, NM 87185-1484
Customer:	Joshua Stein / Sandia National Laboratories / PO Box
Project ID:	19074 (CFV), 2109144 (Customer PO)
Test Period:	2019-11-04 to 2019-12-05
Report Date:	2019-12-20
Report Number:	19074-PR-E-004

Report Prepared by:	Report Reviewed by:
Colin Sillerud – Project Engineer	Jim Crimmins – General Manager

1 Project Summary

CFV Solar conducted PAN file testing on one **JKM260P-60** module produced by **Jinko Solar.** I-V curves at multiple irradiance and temperature conditions were obtained on one sample per IEC 61853-1:2011. The PVsyst 6 single-diode model coefficients were derived with PANOpt[®], a software developed at CFV.

2 Executive Summary of Results

The performance matrix data were scaled to prepare PAN file source data for the 260 W power class of the JKM260P-60 type. The "Measured STC" scaling method (explained in Procedures section) was used. Optimized PAN files were created for the specified module type and power class with PANOpt[®], CFV's proprietary software.

TESTING - CERTIFICATION - INNOVATION

Table of Contents

1	Pro	ject Summary	1
2	Exe	cutive Summary of Results	1
D	isclain	ner and Conditions of Report Reproduction	2
3	San	nple Information	3
4	Pro	cedures	5
	4.1	Electroluminescence Imaging	5
	4.2	Preconditioning	5
	4.3	MQT 06.1 Performance at STC	5
	4.4	Performance Matrix	6
	4.5	MQT 04 Temperature Coefficients	8
	4.6	Performance Data Scaling	8
	4.7	PAN file Generation and Optimization	8
5	Res	ults	9
	5.1	Electroluminescence Imaging	9
	5.2	Preconditioning	9
	5.3	MQT 06.1 Performance at STC	.10
	5.4	MQT 04 Temperature Coefficients	.10
	5.5	Performance Matrix	.12
	5.6	Performance Matrix Data Scaling	.13
	5.7	PAN file Generation and Optimization	.14

Disclaimer and Conditions of Report Reproduction

The results in this report relate only to the items tested. This report contains no opinions, interpretations, or failure analysis. This report may not be reproduced except in full, without the written consent of the testing laboratory.

3 Sample Information

Other samples were also tested as part of project 19074. For full information on all samples, refer to reports 19074-PR-E-001 through 19074-PR-E-009.

Labeling

Module ID	SNL ID	Manufacturer	Module Type	Serial Number
19074-004	00003562	Jinko Solar	JKM260P-60	19054150712110033352715

Constructional Details

Module Type	Length [m]	Width [m]	Thickness [mm]
JKM260P-60	1.650	0.992	40

Nameplate Values

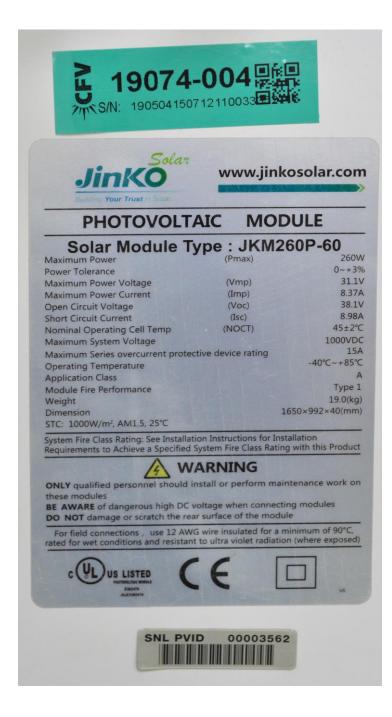
Module Type	Isc [A]	Voc [V]	Imp [A]	Vmp [V]	Pmp [W]	Max Sys Volt [V]	Fuse Rating [A]
JKM260P-60	8.98	38.1	8.37	31.1	260	1000	15

Photographs

Front

Back

Connectors



Junction Box

Nameplate(s)

Sampling

A single fielded sample of the type, JKM260P-60, was tested for this project and used in the PAN file creation.

4 Procedures

There were other tests included in project 19074. This report includes only the procedures relevant to the PAN file generation and Electroluminescence Imaging.

4.1 Electroluminescence Imaging

Electroluminescence (EL) images were taken with a Peltier-cooled CCD camera that has a resolution of 8.3 MPixels. A long pass filter blocked incoming light with wavelength below 850 nm. A constant DC bias was applied to the modules while the imaging was performed in the dark.

A relevant IEC document (IEC TS 60904-13:2018) has been published recently. The EL imaging was carried out at 1.0x Isc per a procedure in this document, but this test is not yet included in CFV's scope of ISO 17025 accreditation.

4.2 Preconditioning

The sample was installed outdoors on a fixed rack in open circuit to receive a minimum of 40 kWh/m² of irradiation. The plane-of-array irradiance was measured with a calibrated pyranometer. CFV is ISO 17025-accredited to carry out Preconditioning per IEC 61215:2005. The preconditioning carried out for this project deviated from IEC 61215:2005 in that a higher irradiation dose was received (IEC 61215:2005 specifies a dose of 5.0 to 5.5 kWh/m²).

4.3 MQT 06.1 Performance at STC

Performance at STC test was carried out in conformity with IEC 61215-2:2016 MQT 06.1. CFV is ISO 17025-accredited to carry out the test. This test also qualifies as MQT 02 Maximum Power Determination.

We used a pulse-type solar simulator (Halm moduleTest 3; Fig. 4.3.1), classified as class AAA per IEC 60904-9:2007. The irradiance of the Xenon arc lamp flash at the module plane was measured with a co-planar reference cell (Fraunhofer WPVS type, manufactured by Czibula & Grundmann GmbH) that meets the requirements of IEC 60904-2:2015. The reference cell was calibrated at PTB of Germany. The solar simulator was in a room constantly maintained at $25 \pm 1^{\circ}$ C, and prior to the tests we waited for the modules to thermally stabilize to the room temperature. During the test, the module backside temperature was measured at four points with calibrated RTDs with accuracy better than $\pm 0.2^{\circ}$ C.

The reported I-V characteristics show the average of three consecutive measurements. Each measurement was carried out in conformity with IEC 60904-1:2006. One measurement involved a forward sweep (Isc to Voc) and a reverse sweep (Voc to Isc), whose I-V data were averaged to calculate the Isc, Voc, Imp, and Vmp values. The irradiance was controlled to be within $1000 \pm 3 \text{ W/m}^2$ for the measurements. The minimal differences between the STC and the actual test conditions were further corrected per IEC 60891:2009.

Prior to measurements, testing was carried out to check for I-V curve hysteresis between the forward and reverse sweeps. It was found that the JKM260P-60 module type needed only one section for both the forward and reverse sweeps. The effective sweep time for the measurements on the JKM260P-60 module type was 25 ms forward and 25 ms reverse. A spectral mismatch factor of 1.0 was used as no EQE data was available for this module type.

Fig. 4.3.1 Class AAA solar simulator from h.a.l.m. used at CFV

Table 4.3.1 shows the uncertainty and repeatability of CFV's STC performance data. The values take in to account all the major sources of error, including the reference cell calibration, spectrum of the flasher, non-uniformity of the irradiance in the test plane, etc. CFV maintains a rigorous daily, weekly, and quarterly quality control program to guarantee top-tier flash measurement accuracy. The quarterly control modules are also measured annually at Fraunhofer ISE CalLab of Germany.

4.4 Performance Matrix

Multi-irradiance and multi-temperature Performance Matrix test was conducted in conformity with IEC 61853-1:2011 § 8.1. CFV is ISO 17025-accredited to carry out this test.

The test points cover irradiances from 100 to 1100 W/m^2 , and temperatures from 15 to 75°C. In addition to the test points defined in IEC 61853-1:2011 § 8.1, measurements were obtained at five additional points, as shown in Table 4.4.1. The irradiance was varied by adjusting the voltage applied to the Xenon arc lamp. The spectral match remains class A or better for all irradiances. An integrated thermal chamber varied the module temperature

with a laminar air flow, and the module temperature was monitored at 4 points with calibrated RTDs having uncertainties of \pm 0.13°C. For each measurement, the max-min temperature spread was less than 1.5°C.

The monitor cell was mounted at a location outside the thermal chamber and was not coplanar with the test module. The monitor cell sensitivity was adjusted to reproduce the Pmp measured at STC on the test module. Other than the irradiance and temperature controls, the measurement procedure was identical to the Performance at STC test.

Irradiance		Temperature					
(W/m²)	15°C	25°C	50°C	75°C			
1100		Θ	\odot	\odot			
1000	\odot	Ο	Ο	\odot			
800	\odot	Ο	Ο	\odot			
600	\odot	Θ	\odot	\odot			
400	\odot	Θ	\odot	\otimes			
200	$\overline{\odot}$	Ο	\otimes	\otimes			
100	$\overline{\odot}$	Ο	\otimes	\otimes			

Table 4.4.1: Test points for the performance matrix. 5 additional test points are indicated.

⊙ Measured and required by the IEC 61853-1 standard

& Additional test points; Measured but not required by the IEC 61853-1 standard

4.5 MQT 04 Temperature Coefficients

Temperature Coefficients test was conducted in conformity with IEC 61215-2:2016 MQT 04 and IEC 60891:2009 § 4. CFV Solar is ISO 17025-accredited to carry out the test.

The test was carried out along with the Performance Matrix test. In addition to the 15, 25, 50, and 75°C temperatures required for the matrix, the modules were flashed with 1000 W/m^2 irradiance at additional intermediate temperatures. The temperature coefficients for Isc, Voc, Imp, Vmp, and Pmp were determined by linear regression over the 15-75°C temperature range.

4.6 Performance Data Scaling

When creating PAN files for PVsyst, one requirement is that the Pmp at STC needs to match the nameplate power. This requirement translates into the technical issues of (1) how to scale the Pmp values at the various temperature and irradiance points and (2) how to scale the STC Isc, Voc, Imp, and Vmp values, if the measured values at STC do not match the nameplate values.

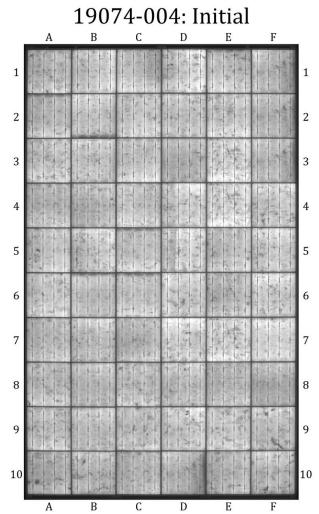
In this project, we scaled the performance matrix data for use with PANOpt®, by the following approach:

Pmp	A constant gain factor was applied to the Pmp values in the matrix, to obtain the nameplate rating at STC. The gain factor used was: [Pmp Gain] = [NP Pmp]/[Measured STC Pmp]
Isc, Voc, Imp, Vmp	A constant gain factor equal to the square root of [Pmp Gain] was applied to the Isc, Voc, Imp, and Vmp values. [Isc Gain] = [Voc Gain] = [Imp Gain] = [Vmp Gain] = [Pmp Gain] ^{1/2}

Measured STC Approach

4.7 PAN file Generation and Optimization

Optimized PAN files were prepared using PANOpt®, an in-house-developed software for deriving from the test data optimum solutions for the PVsyst 6 single-diode performance model. Starting with the measured values of Isc, Voc, Imp, Vmp, muIsc, and an Rs value calculated from the I-V curves with the Swanson method, the PANOpt® solver iterated over a given parameter space for Rs, Rsh, RshG0 (and di²/ μ t_{eff} for thin-film technologies) until the PVsyst 6 model-predicted Pmp values over the Performance Matrix points matched the measured values (average of three samples) with minimum error.


The IAM profile of the test module was not experimentally determined. The default PVsyst IAM profile for normal glass was adopted.

5 Results

5.1 Electroluminescence Imaging

The module was imaged in the dark while a constant DC bias current of 8.98 A (Isc) was applied to the module.

5.2 Preconditioning

The module received 41.33 kWh/m2 of outdoor preconditioning prior to indoor performance testing. The preconditioning was performed with the module in open circuit.

5.3 MQT 06.1 Performance at STC

The following values were measured after preconditioning and prior to the Performance Matrix test.

Module ID	Isc [A]	Voc [V]	Imp [V]	Vmp [V]	Pmp [W]	FF [%]
19074-004	8.988	37.70	8.436	30.64	258.52	76.29

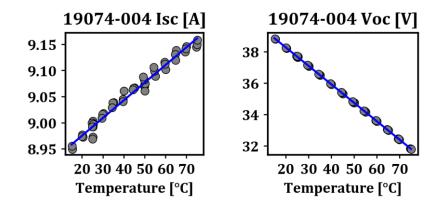
Table 5.3.1 Uncertainty and repeatability of flash measurements on Si modules

	Isc	Voc	Imp	Vmp	Pmp
Uncertainty	± 1.8 %	± 0.7 %	± 2.2 %	± 1.3 %	± 2.2 %
Repeatability	± 0.20 %	± 0.20 %	± 0.30 %	± 0.40 %	± 0.45 %

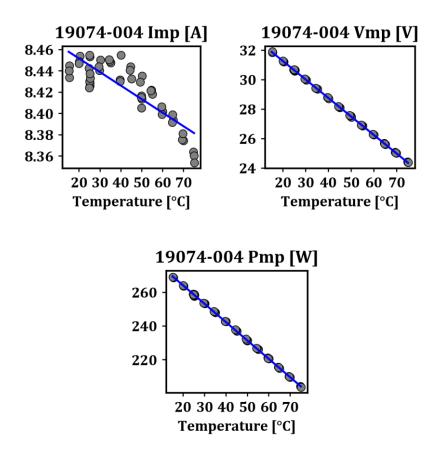
5.4 MQT 04 Temperature Coefficients

Relative Units

Module ID	α Isc [%/°C]	β Voc [%/°C]	α Imp [%/°C]	β Vmp [%/°C]	δ Pmp [%/°C]
19074-004	+0.0377	-0.3119	-0.0151	-0.4098	-0.4220


Absolute Units

Module ID	α Isc [A/°C]	β Voc [V/°C]	α Imp [A/°C]	β Vmp [V/°C]	δ Pmp [W/°C]
19074-004	+0.00339	-0.1176	-0.00127	-0.1255	-1.0916


Table 5.4.1 Estimated uncertainty of temperature coefficients (relative)

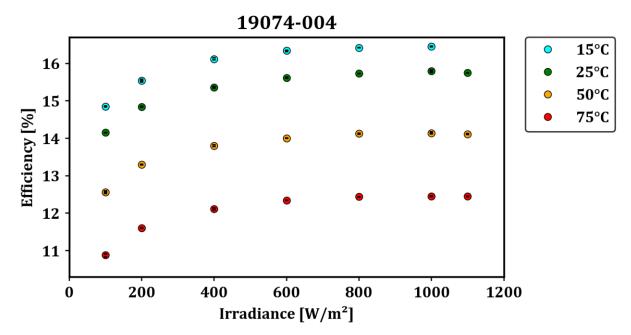
	α Isc	βVoc	α Imp	βVmp	y Pmp
Uncertainty (k = 2)	± 10 %	±5%	N/A	N/A	± 5 %

Plots

CFV Labs

Measured Data

The following table shows the I-V values measured on the tested sample.


Module ID	T (°C)	G (W/m2)	Isc (A)	Voc (V)	Imp (A)	Vmp (V)	Pmp (W)
19074-004	15.33	1000	8.952	38.82	8.440	31.87	268.98
19074-004	20.15	1000	8.975	38.26	8.450	31.24	263.94
19074-004	25.07	1000	8.989	37.69	8.437	30.64	258.47
19074-004	29.84	1000	9.014	37.12	8.445	30.02	253.51
19074-004	34.71	1000	9.036	36.55	8.449	29.40	248.38
19074-004	39.75	1000	9.049	35.96	8.439	28.77	242.76
19074-004	44.71	1000	9.066	35.38	8.439	28.14	237.51
19074-004	49.77	1000	9.075	34.78	8.419	27.51	231.59
19074-004	54.67	1000	9.099	34.22	8.420	26.90	226.51
19074-004	59.73	1000	9.110	33.62	8.402	26.28	220.82
19074-004	64.72	1000	9.130	33.03	8.395	25.65	215.32
19074-004	69.63	1000	9.141	32.44	8.377	25.04	209.80
19074-004	74.91	1000	9.151	31.82	8.359	24.39	203.91

5.5 Performance Matrix

Efficiency Curves

In the following plot, circles indicate the average of three measurements at each irradiance and temperature test condition. Bars inside the circles indicate the values from each of the three measurements.

Measured Data

The following table shows the Performance Matrix data measured on the tested sample.

Module ID	T (°C)	G (W/m2)	Isc (A)	Voc (V)	Imp (A)	Vmp (V)	Pmp (W)
19074-004	15	100	0.882	34.88	0.819	29.67	24.31
19074-004	15	200	1.767	36.08	1.657	30.69	50.87
19074-004	15	400	3.540	37.28	3.348	31.52	105.52
19074-004	15	600	5.341	37.98	5.043	31.82	160.46
19074-004	15	800	7.139	38.47	6.737	31.91	214.99
19074-004	15	1000	8.951	38.87	8.439	31.90	269.22
19074-004	25	100	0.885	33.54	0.820	28.26	23.17
19074-004	25	200	1.770	34.79	1.654	29.36	48.58
19074-004	25	400	3.550	36.03	3.332	30.18	100.56
19074-004	25	600	5.351	36.75	5.031	30.48	153.37
19074-004	25	800	7.160	37.27	6.728	30.61	205.98
19074-004	25	1000	8.988	37.70	8.436	30.64	258.52
19074-004	25	1100	9.876	37.85	9.272	30.58	283.57
19074-004	50	100	0.897	30.33	0.821	25.03	20.56

Module ID	T (°C)	G (W/m2)	Isc (A)	Voc (V)	Imp (A)	Vmp (V)	Pmp (W)
19074-004	50	200	1.792	31.66	1.665	26.15	43.53
19074-004	50	400	3.595	32.99	3.343	27.02	90.34
19074-004	50	600	5.412	33.77	5.031	27.33	137.51
19074-004	50	800	7.237	34.33	6.732	27.47	184.94
19074-004	50	1000	9.076	34.76	8.420	27.49	231.45
19074-004	50	1100	9.976	34.94	9.251	27.47	254.08
19074-004	75	100	0.908	27.00	0.819	21.76	17.82
19074-004	75	200	1.814	28.44	1.658	22.91	37.98
19074-004	75	400	3.632	29.89	3.330	23.82	79.33
19074-004	75	600	5.465	30.74	5.008	24.20	121.21
19074-004	75	800	7.305	31.34	6.691	24.35	162.90
19074-004	75	1000	9.151	31.81	8.360	24.39	203.86
19074-004	75	1100	10.069	32.01	9.197	24.37	224.11

5.6 Performance Matrix Data Scaling

The gain factors were calculated as explained in the procedures section.

Measured STC values of the single test module

Measured Power Class	Measured STC Isc (A)	Measured STC Voc (V)	Measured STC Imp (A)	Measured STC Vmp (V)	Measured STC Pmp (W)
260	8.988	37.70	8.436	30.64	258.52

Applied gain factors for PAN file STC values by power class

PAN File Power Class	Isc Gain	Voc Gain	Imp Gain	Vmp Gain	Pmp Gain
260	1.0029	1.0029	1.0029	1.0029	1.0057

PAN file STC values by power class

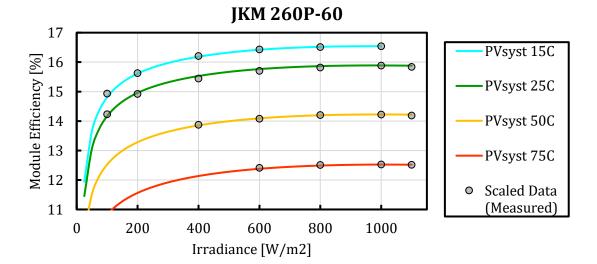
| PAN File |
|-------------|-------------|-------------|-------------|-------------|
| Power Class | STC Isc (A) | STC Voc (V) | STC Imp (A) | STC Vmp (V) |
| 260 | 9.014 | 37.81 | 8.461 | 30.73 |

5.7 PAN file Generation and Optimization

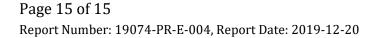
PAN File Parameters for 260 W Class

Tab	Parameter	260 W		
Basic data	Model	JKM260P-60		
	Manufacturer	Jinko Solar		
	File name	Jinko Solar_JKM260P-60_Dec2019_CFV.PAN		
	Data source	CFV Solar Test Lab - Tested Class		
	Nom. Power (Wp)	260		
	Tol (%)	0		
	Tol. + (%)	3		
	Technology	Si-poly		
	GRef (W/m2)	1000		
	TRef (°C)	25		
	Isc (A)	9.014		
	Voc (V)	37.81		
	Impp (A)	8.461		
	Vmpp (V)	30.73		
	mulsc (%/°C)	0.038		
Sizes and	Length (mm)	1650		
Technology	Width (mm)	992		
	Thickness (mm)	40		
	Cells in series	60		
	Maximum voltage IEC (V)	1000		
	Maximum voltage UL (V)	1000		
	Nb. of sub-modules	3		
	Sub-module partition	Full Cells		
Model	Rsh (Ohm)	268		
parameters	Rs (Ohm)			
/		0.248		
Rshunt -		0.240		
Rserie				
Model	Rshunt at Ginc = 0 (Ohm)	744		
parameters	Exponential parameter			
/ RShunt		5.5		
expon.				
Model	Apply Temperature Correction	Checked		
parameters	on Gamma			
/ Temper. coeff	Pmpp temper. Coeff ¹	-0.418		
Additional data /	Special IAM defined for this module	Unchecked		

¹ The Pmp temperature coefficient in PVsyst is different from the definition in IEC 60891:2009. In PVsyst, the Pmp temperature coefficient is calculated from the Pmp values at 25°C and 45°C. Per IEC 60891:2009, the Pmp temperature coefficient is to be calculated by a linear fit through Pmp values measured over a temperature range greater than or equal to 30°C. There is in fact some nonlinearity in the Pmp dependence on temperature, which is why the Pmp temperature coefficient value for the PAN file is different from the value reported in Section 04.


Tab	Paramete	r	260 W
Customized	Front Surf	ace	Normal Glass
IAM	Point 1	0°	1.000
	Point 2	30°	0.998
	Point 3	50°	0.981
	Point 4	60°	0.948
	Point 5	70°	0.862
	Point 6	75°	0.776
	Point 7	80°	0.636
	Point 8	85°	0.403
	Point 9	90°	0.000

PAN File Model Accuracy


PVsyst 6 model output was compared with the scaled data used as the PANOpt® input.

Power	RMS Error of Pmp (Error = PVsyst 6 model Pmp – Measured Pmp) [W]					
Class	15-75°C	15°C	25°C	50°C	75°C	
260 W	0.32	0.12	0.48	0.25	0.20	

Module	RMS Error of Eff. (Error = PVsyst 6 model Eff Measured Eff.) [%p]						
Туре	15-75°C	15°C	25°C	50°C	75°C		
260 W	0.043	0.053	0.054	0.018	0.018		

--END OF REPORT--

CFV Labs