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Abstract 

A number of PV system performance models have been developed and are in use, but little has 

been published on validation of these models or the accuracy and uncertainty of their output.  

With support from the U.S. Department of Energy‟s Solar Energy Technologies Program, Sandia 

National Laboratories organized a PV Performance Modeling Workshop in Albuquerque, New 

Mexico, September 22-23, 2010.  The workshop was intended to address the current state of PV 

system models, develop a path forward for establishing best practices on PV system performance 

modeling, and set the stage for standardization of testing and validation procedures for models 

and input parameters.  This report summarizes discussions and presentations from the workshop, 

as well as examines opportunities for collaborative efforts to develop objective comparisons 

between models and across sites and applications. 
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AOI Angle of incidence 

a-Si Amorphous silicon 

BIPV Building-integrated photovoltaics 
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c-Si Crystalline silicon 

DC or dc Direct current 
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I-V curve Current-voltage curve 
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MW Megawatt 
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MWp Megawatt-peak 
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PV Photovoltaic or photovoltaics 
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1. OVERVIEW 
 

1.1 Background 
 

During the development of a solar photovoltaic (PV) energy project, predicting expected energy 

production from a system is a key part of understanding 

system value.  System energy production is a function 

of the system design and location, the mounting 

configuration, the power conversion system, and the 

module technology, as well as the solar resource.  Even 

if all other variables are held constant, annual energy 

yield (kWh/kWp) will vary among module technologies 

because of differences in response to low-light levels 

and temperature.   

 

A number of system performance models have been 

developed and are in use, but little has been published 

on validation of these models and on the accuracy and 

uncertainty of their output. 

 

With support from the U.S. Department of Energy‟s 

(DOE‟s) Solar Energy Technologies Program, Sandia 

National Laboratories (Sandia) organized a PV 

Performance Modeling Workshop in Albuquerque, New 

Mexico, September 22-23, 2010.  The workshop had the 

following primary objectives: 

 Understanding the current state of PV system 

models and modeling tools 

 Developing a path forward for establishing best 

practices on PV system performance modeling 

 Working toward standardization of testing and 

validation procedures for 1) documenting the 

accuracy and uncertainty of model input 

parameters, and 2) evaluating and improving the 

accuracy of models and tools. 

 

There may be no single model that can suit all modeling 

purposes.  Rather, there are trade-offs among model 

attributes including accuracy, availability and cost of solar resource and component performance 

data, ease of use, and integration with related tools such as financial models and shade analysis 

tools such as Solmetric‟s SunEye.  This workshop was an opportunity for modelers and model 

users to discuss the attributes and importance of such trade-offs. 

 

In an effort to optimize the collaborative nature of the meeting and focus participation on 

modeling experts, the meeting was by invitation only.  Participants included model developers, 

PV Systems Modeling Development and 

Evaluation is performed within the Systems 

Integration sub-program area of the U.S. 

DOE Solar Energy Technologies Program.   

 

The missions of the modeling team are: 

o to provide manufacturers, system 

integrators, project developers, and the 

financial community with validated 

tools to calculate key metrics, such as 

expected system performance and 

Levelized Cost of Energy, including the 

contributions of component and system 

lifetime, durability, and availability, 

and, as a result, 

o to help reduce cost and hasten market 

development by reducing uncertainty in 

expected performance and Levelized 

Cost of Energy, thereby reducing risk 

and the cost associated with that risk 

(cost of and time to obtain financing, 

cost of warranties and service 

agreements, etc.) 

 

Sandia‟s role is to evaluate and validate PV 

performance models, including DOE and 

non-DOE models, by characterize accuracy 

and uncertainty.  A key supporting activity 

is collecting high-quality sets of weather, 

solar resource, and system performance data 

for use in model evaluation.   

 

One outcome of model evaluation is to 

identify and implement opportunities for 

model improvement.  Assessment is not 

limited to public models; it can also be 

performed for proprietary models run by 

others. 
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modelers from PV module manufacturers and systems integrators, and independent engineers 

who perform due diligence for project developers and the financial community.  Appendix A 

contains the meeting agenda and the list of participants is in Appendix B.   

 

The workshop was a significant step towards establishing a Sandia-led PV Performance 

Modeling Collaborative, which will provide a framework for partnering to conduct objective 

comparisons between models and across different sites and applications.  The collaborative will 

also research opportunities to improve models through evaluations of modeling algorithms and 

enhancements in accuracy and availability of model input data.   

 

1.2 Meeting Structure 
 

The meeting was structured to encourage interaction and discussion of industry needs, combined 

with presentations from modeling experts.   

 

Key topic areas of the meeting were as follows: 

o Overview and Needs Assessment from Integrators, Manufacturers, and Independent 

Engineers 

o Analysis of Model Accuracy 

o Recent studies of PV performance models 

o A proposed approach to model validation 

o Results of model intercomparison 

o Modeling the Module 

o Module models 

o Modeling module temperature 

o Discussion of needs, priorities, and paths forward 

o Industry perspectives: Review of system performance models and needs and 

issues in performance modeling 

o Beyond the Module – Systems Modeling 

o Modeling system losses 

o Shading, mismatch, and modeling distributed maximum power point tracking  

o Modeling large systems 

o Impact of uncertainty 

o Discussion on ensuring quality, need for standards, model validation 

o Action items and next steps 

 

A unique aspect of the meeting was the assignment of pre-work.  Participants were sent design 

descriptions of three PV systems along with measured solar resource and weather data.  They 

were asked to model system performance using the model or models of their choice and then 

return the results to Sandia for analysis before the meeting.  This activity provided a basis for 

discussion of model accuracy and inter-comparison. 

 

This report provides an overview and highlights of the workshop contents and summarizes the 

key discussion and outputs.  Presentation titles are linked to downloads of the presentation files. 
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2. PRESENTATION SUMMARIES / WORKSHOP CONTENT 
 

2.1 Day 1: Wednesday, September 22 
 

2.1.1 Overview and Needs Assessment from Integrators, Manufacturers, and 
Independent Engineers  

 

Review of System Performance Models (Bradley Hibberd and Tarn Yates, Borrego Solar) 

 

Borrego Solar is an integrated project developer specializing in grid-connected commercial and 

public sector turnkey solar systems.  The company was invited to present an overview of system 

performance modeling from the perspective of a systems integrator.  Borrego was represented by 

Bradley Hibberd, Director of Technology, and Tarn Yates, an applications engineer.  The two 

co-published, “Production Modeling for Grid-Tied PV Systems” (SolarPro, April/May 2010)
1
. 

 

Borrego emphasized several important aspects of accurate production modeling: 

o Predicted energy production drives project design and potential revenue 

o Even differences of 1% in predicted production can have significant impact on financing 

and investor confidence 

o Proposals far outweigh executed projects, so modeling needs to be efficient and reliable 

in order to help select projects with the best revenue potential and opportunity for 

success 

 

In addition, Borrego emphasized that energy production estimates need to be consistent and 

reproducible in order to satisfy investors and meet requirements of independent engineering 

reviews.  Modeling tools must be able to accurately and efficiently model numerous project 

complexities such as multiple arrays, inverters, and mounting structures; shading; soiling; 

weather; and various technologies.  Simple rectangular configurations do not represent the reality 

in PV project design and models must account for this. 

 

The company seeks several specific attributes when selecting modeling tools, including: 

o Accurate and site-specific weather data that includes typical meteorological year (TMY) 

TMY2 and TMY3 data as well as data for locations far from existing ground stations,  

i.e., satellite data  

o Verified models for calculating incident irradiance, module temperature, and energy 

production 

o Databases based on independently tested, frequently updated information about all 

commercially-available components 

o Detailed control of system loss factors, e.g. dynamically-calculated wiring losses and 

option to enter monthly soiling losses 

o Ability to handle various shading effects in both beam and diffuse components, and, 

preferably, the ability to interface with AutoCAD site drawings 

                                                 
1
 SolarPro Magazine, April/May 2010, http://solarprofessional.com/article/?file=SP3_3_pg6_TOC. 

http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/HibberdYates_Borrego.pdf
http://solarprofessional.com/article/?file=SP3_3_pg6_TOC
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o Ability to handle a variety of advanced system configurations, including single-axis and 

back-trackers, multiple arrays and inverters, and heterogeneous arrays, as shown in 

Figure 1. 

o Reports documenting model inputs and system losses, including loss diagrams  and 

hourly output reports 

o Parametric and optimization tools as well as options for time-of-use and time-of-day rates 

and various forms of financial analysis 

 

Models currently being used by Borrego include PVWatts™ 
2
, PV-DesignPro

3
, PV*SOL

4
, the 

System Advisor Model (SAM)
5
, and PVsyst

6
.  The company mostly uses PVsyst for its 

performance modeling, primarily because of the model‟s flexibility and extensive features. 

 

 
 

Figure 1. The Reality of Solar Projects. 

 

  

                                                 
2
 National Renewable Energy Laboratory, http://www.nrel.gov/rredc/pvwatts/. 

3
 Maui Solar Software, http://www.mauisolarsoftware.com/.  

4
 Valentin Software, http://valentin-software.com/xcartgold/PV-SOL.html.  

5
 National Renewable Energy Laboratory: https://www.nrel.gov/analysis/sam/.  

6
 University of Geneva, Switzerland: http://www.pvsyst.com/.  

http://www.nrel.gov/rredc/pvwatts/
http://www.mauisolarsoftware.com/
http://valentin-software.com/xcartgold/PV-SOL.html
https://www.nrel.gov/analysis/sam/
http://www.pvsyst.com/
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Needs and Issues in System Performance Modeling (Ben Bourne, SunPower) 

 

SunPower created its own proprietary simulation tool, called PVSim.  The model is generally 

built from publicly available algorithms, such as irradiance translation algorithms and the Sandia 

module and inverter performance models.  Some algorithms, such as those for shading and 

tracking, were developed by SunPower and are specific to the company‟s products.  SunPower 

has instrumented more than 650 systems and has used these data to validate and improve the 

accuracy of PVSim. This allows SunPower to provide customers with accurate estimates of 

power and energy production and gives SunPower the information they need to price their 

systems.  As shown in Figure 2, on average, annual delivery is 1.2% greater than predicted.  

 

SunPower cited soiling as the greatest source of uncertainty.  While simple soiling models work 

well most of the time, some climates and regions are more difficult because of soiling 

composition, variable rainfall, ambient conditions, the surrounding environment, and avian 

migration patterns. 

 

 
 

Figure 2. Sample of SunPower’s PVSim Output. 

 

SunPower highlighted the need for evaluation and validation of performance models, including 

reconciliation of the models and third-party field test data.  Testing standards supported by 

quality requirements and audits are needed and must account for baseline and evolving module 

ratings.  Also, there needs to be a clear definition and understanding of metrics including 

delivered AC power, annual energy, yield (in kilowatt hours/kilowatt-peak [kWh/kWp], noting 

the importance of the watt-peak [Wp] rating), and Levelized Cost of Energy. 

http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/Bourne_SunPower.pdf
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Needs and Issues in System Performance Modeling – Manufacturer/Integrator (Adie 

Kimber, First Solar) 

 

First Solar‟s team of analysts, engineers, and field technicians in the United States and Germany 

monitor more than 50 systems totaling 150 megawatts (MW).  The collected data are then fed 

into development and validation of system performance models.  First Solar primarily uses 

PVsyst for modeling, but develops its own *.PAN (module performance coefficient) files and 

system loss parameters based on measured data.  The company also utilizes its own alternating 

current (AC) model to account for losses and employs weather prospecting to evaluate 

prospective projects. 

 

First Solar agrees with other participants that meteorological data, and irradiance in particular, 

are the largest source of model uncertainty.  First Solar suggests several improvements for 

modeling software to help alleviate irradiance errors: 

 Taking advantage of advanced processing power to model multiple years (~30) of data 

when available instead of using only TMY data  

 Finding a means to allow comparisons among multiple source inputs  

 Allowing sub-hourly time-steps of input data to address energy prediction and help 

characterize variability and to estimating inverter clipping losses.  This would include 

development of a tool that could produce stochastic sub-hourly estimates from hourly 

data inputs. 

 

First Solar identified model inputs as a more significant issue than the models themselves, with 

the caveat that thin-films are difficult to model using a single-diode model and may require 

empirical models.  Improvements to model inputs include the addition of manufacturing 

tolerances and distributions so that mismatch can be explicitly included in modeling array output.  

Third-party measurements of model input parameters, especially temperature coefficients, are 

also needed and performance coefficients should be derived from testing of multiple modules. 

 

First Solar notes that module operating temperature can differ by 10 °C or more between the 

edge and the center of a large array.  Current models assume uniform temperature and irradiance 

across the array and during each hourly modeling interval.  Since modeling spatial and temporal 

variations of temperature and insolation in a large system would likely be extremely intricate and 

difficult to validate, First Solar cites the need to understand whether the additional complexity 

would be warranted relative to the inherent uncertainty of model outputs. 

 

First Solar indicated the need for more advanced modeling of inverters and inverter-grid 

interactions and included a suggestion that model developers could help address uncertainty by 

providing an option to enter values for input uncertainty.  Because the end user controls the input 

parameters, the use of “uncertainty parameters” could enhance modeling. 

 

A final key issue noted by First Solar pertains to ownership of models.  First Solar raised pros 

and cons of several approaches but did not recommend one over another. 

 

http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/Kimber_First%20Solar.pdf
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Needs and Issues in System Performance Modeling – Independent Engineer (Jeff 

Newmiller, BEW Engineering) no presentation materials 

 

As an independent engineering firm, BEW Engineering performs modeling during due diligence 

review of proposed or actual solar projects.  BEW presented an oral overview of its modeling 

needs, but did not use presentation materials.  

 

For firms like BEW and the customers they serve, it is essential that modeling capture 

performance risks and the related impact on energy production.  Ideally, modeling would capture 

all uncertainties in future simulations.  As real world operation does not have a normal 

distribution, there is a better chance of getting lower output than higher output from a PV system.  

Meeting this goal would require comprehensive uncertainty and production variability analysis. 

 

Weather uncertainty is of particular concern to engineers trying to predict and verify 

performance.  BEW stresses that all weather data sources should be examined, including 30 

individual years rather than just typical years, i.e., TMY data.  Effects from soiling and cleaning 

the modules should also be considered. 

 

BEW raised two key points that were later addressed in greater detail during the meeting: first, 

not all sources of uncertainty are mutually exclusive (independent).  Uncertainty in one attribute 

can drive uncertainty in a second; therefore, correlations need to be identified and understood 

wherever possible.  Second, variability is different from uncertainty and easier to evaluate, 

although many PV performance models do not consider variability as carefully as uncertainty. 

 

2.1.2 Analysis of Model Accuracy 
 

Recent Studies of PV Performance Models (Steve Ransome, SRCL Consulting) 

 

Independent consultant Steve Ransome performed measurements and modeling at BP Solar for 

19 years before leaving in 2008 to be an independent PV consultant.  Recently, clients have 

increasingly inquired about modeling issues, expressing concern about two primary issues:     

 

o Companies have evaluated expected energy yield of their modules and those of 

competitors through indoor and outdoor testing and are finding that simulation programs 

give estimates of relative kWh/kWp that are not consistent with internal test results. 

o Customers are designing solar plants using simulation programs and guaranteeing 

predicted kWh/kWp production to banks/financiers. 

 

In his introduction, Ransome noted that some PV manufacturers claim up to 33% higher 

kWh/kWp than (crystalline silicon) competitors due to “thermal, spectral, low light and angle of 

incidence (AOI) improvements.”  However, as module efficiency is improving, c-Si and thin-

film modules have a more constant efficiency across different weather conditions and less 

variation in kWh/kWp may be expected now than earlier measurements may have suggested.  

Ransome reported that many recent independent tests show variation in annual yield from 

modules is less than ±5% kWh/kWp, and the dominant uncertainty is actual module output 

power compared to nameplate rating. 

http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/Ransome_Perf%20Models.pdf
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Some models also predict >5% kWh/kWp differences (usually better for thin-film).  One of the 

reasons this can occur is that hourly averaging of irradiance causes the simulation to be 

performed with more energy at low light levels, where efficiency is higher, than actually occurs 

during operation (Figure 3). 

 

 
Figure 3. Hourly Averaging of Insolation Over-predicts Insolation at Low Light Levels. 

 

Ransome identified a number of factors that contribute to kWh/kWp modeling uncertainty, 

including: 

 
Table 1. Factors that Contribute to Uncertainty in Model Output. 

Factor Uncertainty 

Reference module calibration ±2.5% 

Flash tester repeatability 1% ? 

Nameplate allowance  -1 to -3% 

Light Induced Degradation/Degradation -10 to 35% 

Module Pmax bin width ±2.5% 

Insolation sensor calibration 

  Pyranometer calibration, deterioration ±2-3% 

  Reference cell calibration, deterioration ±1.7-7% 

  Satellite data, tilted plane algorithms ??? 

Yearly insolation variability  ±4%/yr 

Dirt loss ? 

kWh/kWp (lowest uncertainty possible) (2.5%)
2 

+ (1%)
2 

+ (2.5%)
2 

+
 
(2%)

2
 = 

4.2% 
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Ransome presented a number of examples of the sensitivity of models to various parameters.  

Two key examples highlight the fact that models often use different values for low-light 

efficiency change and gamma than found on manufacturer‟s data sheets: 

 

o An error in gamma, the maximum power point (MPP) temperature coefficient, of 

±0.05%/°C, as seen in some models, leads to a predicted change in energy yield of ±0.5% 

in a dull climate (Helsinki, Finland) and ±1% in a bright climate (Albuquerque, New 

Mexico) see slide 18 

o An error in LLEC (the low light efficiency change relative to STC conditions) of 30%, as 

seen in some models,  leads to a predicted change in energy yield of 15% in a dull 

climate (Helsinki, Finland) and 6% in a bright climate (Albuquerque, New Mexico) see 

slide 19 

 

Ransome explained that models should be validated against current technology modules, not 

older modules, and that every stage of performance modeling needs to be evaluated.  Hourly or 

daily outputs should be evaluated, since annual output may conceal self-canceling errors.  Also, 

one site is not sufficient for model validation. 

 

A Proposed Approach to PV Performance Model Validation (Joshua Stein, Sandia 

National Laboratories) 

 

Joshua Stein, Principal Member of Technical Staff at Sandia National Laboratories, reviewed a 

model validation approach that was first presented at IEEE‟s Photovoltaic Specialists Conference 

in June 2010
7
.  This method inputs measured weather data and system design information into a 

model and then compares the modeled output to measured output using residual analysis in a 

MATLAB platform.  This approach is preferably done as a blind test where the modeler does not 

have access to the measured results, as was done for the pre-work exercise for this workshop 

(results follow later in this report). 

 

Stein et al.‟s validation approach looks not only at annual output of AC energy, but hourly 

predictions of AC output as well as intermediate model outputs, such as plane-of-array 

irradiance, module temperature, and direct current (DC) power.  Residual values are then 

calculated (residual = modeled value – measured value) and are analyzed to evaluate model 

validity.  Residuals from a valid model will be as small as possible and randomly distributed. 

 

To illustrate this technique, one year‟s operation of a 1-kW c-Si system located at Sandia‟s 

campus in Albuquerque, New Mexico was modeled using two models within the System Advisor 

Model: the Sandia PV Array Performance Model (SAPM) and the California Energy 

Commission (CEC) 5-parameter model.  The results, shown in Figure 4, demonstrate that 

modeled vs. measured results look identical.  When the models were run, the system loss (derate) 

factors were set to zero, so it is expected that the models would over-predict array output.  There 

is a slight difference in the bias errors of the two models. 

                                                 
7
 J. S. Stein et al., “A Standardized Approach to PV Systems Performance Model Validation,” Proceedings of the 

35
th
 IEEE Photovoltaics Specialists Conference, Honolulu, Hawaii, June, 2010. 

http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/Stein_Sandia_ModelVal.pdf
http://photovoltaics.sandia.gov/Pubs_2010/workshops/IEEE/Stein_StandardizedApproach_paper.pdf
http://photovoltaics.sandia.gov/Pubs_2010/workshops/IEEE/Stein_StandardizedApproach_paper.pdf
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Figure 4. Measured vs. Modeled Results for SAPM  
and CEC 5-parameter Models. 

 

If residuals are plotted vs. time, differences between the two modules begin to appear, as shown 

in Figure 5. 

 
Figure 5. Residual Run Plots, SAPM vs. CEC 5-parameter Models. 

 

The next step in the analysis is to perform stepwise regression, which allows the variables that 

contribute to the residuals to be identified and ranked: 

 

 

 

 

Outliers 

P

j jj XbbY
10

Y = dependent variables 

X = P vectors of independent variables 

b = linear regression coefficients 



19 

 

 
Table 2. Results of Residual Analysis. 

SAPM    

Order Variable R
2
 Incremental 

R
2
 

1 Temp 0.18 0.18 

2 Incident 

Tot 

0.35 0.17 

3 Azimuth 0.37 0.02 

4 Zenith 0.39 0.02 

    
CEC 

5-Par 

   

Order Variable R
2
 Incremental 

R
2
 

1 Incident 

beam 

0.12 0.12 

2 Temp 0.22 0.10 

3 WS 0.27 0.05 

4 Azimuth 0.28 0.01 

 

 

In this example, the residual analysis shows that SAPM residuals are most correlated with air 

temperature while the CEC model residuals are most correlated with incident beam radiation. 

 

Results of Model Inter-Comparison (Joshua Stein, Sandia National Laboratories) 

 

As a pre-workshop exercise, participants were sent design descriptions of three systems along 

with recorded solar resource and weather data.  They were asked to model system performance 

using the model or models of their choice and return the results to Sandia for analysis before the 

meeting. Since recorded performance data was available for the same time period, this exercise 

provided a basis for discussion of model accuracy and inter-comparison. 

 

The three systems that were analyzed were a 1.4kW multicrystalline silicon (mc-Si) and a 1.1kW 

copper-indium-diselenide (CIS) system, both located in Golden, Colorado; and a 1kW c-Si 

system located in Albuquerque, New Mexico. All were simple south-facing, rack-mount systems 

with no significant shading. For each system, participants were provided with a design 

description, including azimuth, tilt, inverter model information, module model and data sheet; 

and a TMY-2 format solar resource and weather file. The measured performance data were not 

provided to the modelers, so this was a blind study.  

 

Seventeen individuals submitted results on one or more of the systems.  Some individuals ran 

more than one model, so 25 total contributions each representing one individual and one model
8
 

                                                 
8
 Each model run was a contribution. Some individuals ran more than one model. 

http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/Stein_Sandia_ModelIntercomp.pdf
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were received, each including information for one to three systems.  Responses came from 

integrators, consultants, academia, national labs, and state government; none of the module 

manufacturers participated.   

 

A variety of models was used and implemented through various tools.  For example, users of the 

System Advisor Model can use the CEC 5-parameter model, SAPM, or PVWatts from within the 

SAM platform, as shown in Table 3. 

 
Table 3. Model Combinations Currently Available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

Participants encountered a number of issues when running models.  Some had difficulty reading 

in the TMY-format weather files provided by Sandia.  In an attempt to remedy this, one 

participant used the TMY file for a nearby location; those results are not included in the analysis.  

Another common problem was that either the modules or the inverter were not in the databases 

provided with the modeling platforms.  Also, no guidance was given with respect to derate 

factors; modelers were left to set those based on their experience and the provided design data 

(Appendix C). Some modelers did not include derate factors. 

 

The results of the comparisons for the three systems are shown in Figures 6, 8, and 10.  Not 

every participant analyzed every system, and model n for system 1 is not necessarily the same as 

model n for system 2 in these figures. 

 

Comparisons of modeled to measured annual energy production are shown in Figures 7, 9, and 

11.  These are provided to illustrate the range of results obtained by users with varying levels of 

experience; they do not necessarily indicate modeling error within the model or in the hands of 

an experienced user.  Selection of derate factors had significant impact on these results.  Also, 

models were run in various configurations.  For example, one participant ran PVWatts in a 

version that permitted the user to change the temperature coefficient, which is not the case in 

public versions of PVWatts. 

 

Model Forms 
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Figure 6. Hourly Comparisons (System 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7. Predicted Annual Output by Model Type (System 1). 

 

Measured 
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Figure 8. Hourly Comparisons (System 2). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Predicted Annual Output by Model Type (System 2). 

 

  

Measured 
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Figure 10. Hourly Comparisons (System 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. Predicted Annual Output by Model Type (System 3). 

 

 

Measured 
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An example of the analysis of an internal value is shown in Figure 12, where the module 

temperature calculated by the models (when available in the output) is compared to the measured 

back-surface module temperature.  Most module temperature models appear to behave well.  The 

mean bias error range was -0.17 to 3.6 °C and the standard deviation range was 2.0 to 2.5 °C. 

 

The varying input requirements and output formats of the various models presented difficulties 

for both participants and the analyst.  As time permits, a formal analysis of each participant‟s 

results is being prepared and offered to them.  An example is given in Appendix D.  

 

 
Figure 12. Example Module Temperature Results (System 3). 

  



25 

 

2.1.3 Modeling the Module 
 

The next section of presentations provided an overview of several models that focus on the 

module algorithms.  Brief overviews of the presentations are included here.  The reader is 

referred to the presentations for more detail. 

 

Overview of PV*SOL and Plans for US Market (Paul DeKleermaeker, Valentin Software) 

 

Valentin Software, developer of PV*SOL, is currently supported by ~50 staff, primarily 

engineers and developers.  The modeling application has become a leading PV simulation tool in 

Europe, particularly in Germany where more than 70% of installed systems in 2009 are reported 

to have been designed using PV*SOL. The company offers two primary software packages, one 

for solar thermal (T*SOL) and PV*SOL for PV. The latter offers three levels of tools to fit users‟ 

needs as well as a free on-line calculator for 10 locations in the United States. 

 

Valentin provides both packaged software and customized design tools.  Key features of the 

various PV*SOL packaged versions include: 

 

PV*SOL Basic 

o Residential and commercial grid-connected systems up to 1,000 modules 

o Automatic inverter selection and configuration 

o Roof layout 

o Incentive rates and energy tariffs 

o Wire size calculation and losses 

PV*Sol Pro 

o Residential, commercial and power plant systems up to approx. 100MWp 

o Grid-connected and off-grid 

o 2-D shade analysis 

PV*Sol Expert 

o Capabilities and features of PV*SOL Pro plus 3-dimensional visualization 

 

Standard component databases behind PV*SOL software currently include more than 5,000 

modules and 1,200 inverters, with automatic updates integrated and distributed weekly.  Climate 

modeling is based on standardized climate data from 1,020 U.S. TMY3 locations and 8,000 

global locations.  Users can create or modify standard component and climate data as necessary.  

The software also provides users the option to define tariffs and incentives in order to model 

system financials. 

 

PV*SOL offers flexibility in array design, including capabilities for multiple and diverse 

technologies, configurations, and orientations.  Sub-models in PV*SOL include:   

 

(1) Irradiance Model - Hay and Davies model with monthly albedo 

(2) Module Model - includes options for an incident angle modifier for reflection; module 

efficiency curve for maximum-power point (MPP) calculated at all irradiance levels; 

complete current-voltage (I-V) characteristics for non-MPP operation points; efficiency 

http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/DeKleermaeker_PVSOL.pdf


26 

 

and temperature-corrected I-V curves using three temperature coefficients; and linear or 

dynamic temperature model options. 

(3) Module Technologies - provides options to model numerous technologies based on 

unique characteristics; includes standard data sets for c-Si, amorphous Silicon (a-Si), 

cadmium telluride (CdTe), CIS, heterojunction with intrinsic thin layer (HIT), mc-Si, 

ribbon 

(4) Inverter Model - includes voltage-dependent correction and ability to model multiple 

quantities and types of inverters 

(5) Configuration and Automatic Inverter Optimization – allows modeling based on one 

inverter with multiple sub-arrays using different sizes, modules, and orientations; 

multiple inverter types; and automatic selection of appropriate configurations and/or 

inverter sizing and selection 

(6) Simulation Frequency – models in hourly increments, with shade calculated in 10-minute 

intervals 

(7) Shading – Imported or user-defined horizon; or 3-D model which is area-based, models 

near and horizon shade in 10-minute intervals, and calculates impact per string of cells in 

each module 

(8) Losses & Derate Parameters – Module mismatch, diodes & module quality; wiring losses 

calculated from cable data; deviation from standard spectrum; and soiling. 

 

Report output options may be viewed in the presentation.  

 

An Overview of the Module Model in PVsyst (Andre Mermoud, Institute of the 

Environmental Sciences, University of Geneva) 

 

PVsyst was developed as a model for general simulation and is widely used in the PV industry, 

in part because of the many features built into the model.  The goal of the module model in 

PVsyst is to represent I-V behavior of PV modules of any technology, in any irradiance and 

temperature conditions.  PVsyst is based on the one-diode model and includes parameters from 

manufacturer product data sheets, plus several additional parameters as identified in Figure 13. 

 

Module parameters used can be derived from an I-V curve or from manufacturer‟s data.  Some 

module suppliers generate their own module parameters rather than using those provided in the 

database.  Additional parameters are added as follows: 

o Exponential correction to Rsh, applied for all modules 

o Recombination correction, d
2
 μτ, for amorphous silicon, μ-crystalline silicon and CdTe 

o Spectral correction for amorphous and μ-crystalline silicon 

 

Outdoor measurements are reproduced to within 1 to 1.6% root mean square deviation for all 

technologies.  However, it is noted that results are generated from one measured module, not 

from the manufacturer‟s specifications; model accuracy should not be confused with parameter 

accuracy. 

 

http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/Mermoud_PVSyst.pdf
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Where  

o I      =  module current [A] 

o V    =  module voltage [V] 

o Iph  =  Photocurrent [A], proportional 

to the irradiance 

o Io    =  Diode saturation current, dep. 

on temperature 

o Rsh =  shunt resistance 

o Rs -- series resistance  

o γ    =  Diode quality factor, normally 

between 1 and 2 

o q    =  Electron charge = 1.602 · 10-19 

Coulomb 

o k     =  Bolzmann constant = 1.381 · 10-

23 J/K 

o Ncs =  Number of cells in series 

o Tc    =  Effective cell temperature 

(Kelvin) 

o q/kT = 26 mV at 300 K 

 
Figure 13. The One-Diode Model. 

 

 

Improvements to the CEC/Wisconsin n-Parameter Model (Bill Beckman, University of 

Wisconsin) 

 

Bill Beckman is Director Emeritus of the Solar Research Laboratory at the University of 

Wisconsin and former director of the university‟s Solar Energy Laboratory, co-author of Solar 

Engineering of Thermal Processing
9
, and developer of the 5-parameter PV performance model. 

The 5-parameter model is also derived from the one-diode model, but uses a different approach 

to estimating the coefficients.  In the latest version of the model, two parameters have been 

added to the original five.   

 

                                                 
9
 J.A. Duffie, W. A. Beckman, Solar Engineering of Thermal Processes.  Third ed. John Wiley & Sons Inc., New York, 

2006.   

http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/Beckman_CECWisconsin.pdf
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In early uses of the model, conducted using CEC data from ~2,000 modules, the temperature 

coefficient of power did not always agree with experiments.  As shown in the presentation, the 

parameter δ is added to the series resistance calculation in the model and selected such that that 

the maximum power temperature coefficient calculated by the model matches the measured 

value:  

 

Rs = Rs, ref [1 + δ (Tc – Tc, ref)], with δ chosen so that  model = measured 

 

Recently, a seventh coefficient (m) has also been added by fitting the model output at 200 W/m
2
 

and 25 °C cell temperature.  The goal of the seventh coefficient is to improve modeling of thin-

film modules: 

 

 
 

The coefficient generator is not publicly available at present.  Coefficients are determined for the 

CEC from manufacturer‟s data or, more recently, independent test data and are made available in 

models such as SAM and the CECPV Calculator
10

. 

 

Overview of the Module Model in PVWatts (Bill Marion, National Renewable Energy 

Laboratory) 

 

The widely used online simulation tool, PVWatts, was developed by Bill Marion, Principal 

Scientist at the National Renewable Energy Laboratory‟s (NREL‟s) Performance and Reliability 

Research and Development Laboratory.  The tool is based on an earlier Sandia model, PVForm 

(Sandia National Laboratories, 1985). 

 

PVWatts uses a linear irradiance function corrected for cell temperature above 125 W/m
2
 and a 

quadratic function below 125 W/m
2. 

 The adjustment for conditions <125 W/m
2 

conditions is 

based on reductions in output observed by Sandia for c-Si modules in low irradiance.  The 

available online versions of PVWatts assume a maximum power point temperature coefficient of 

-0.5%/ °C.  A web-service version of the model, accessed by the California Solar Incentive CSI 

Standard PV Calculator (www.csi-epbb.com), uses the module manufacturer‟s value for the 

temperature coefficient.  An AOI correction from the Sandia PV Array Performance Model
11

 is 

also applied, but no air mass correction is included. 

 

 
 

PVWatts model irradiance >125 W/m
2 

                                                 
10

 http://www.gosolarcalifornia.org/tools/nshpcalculator/index.php  
11

 D.L. King, W.E. Boyson, and J.A. Kratochvil (2004). "Photovoltaic Array Performance Model." 41 pp.; Sandia 

Report No. 2004-3535. (http://photovoltaics.sandia.gov/docs/PDF/King%20SAND.pdf) 

 

http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/MarionModelingWorkshop10-18-10%5b1%5d.pdf
http://www.csi-epbb.com/
http://www.gosolarcalifornia.org/tools/nshpcalculator/index.php
http://photovoltaics.sandia.gov/docs/PDF/King%20SAND.pdf
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PVWatts model for irradiance <125 W/m

2
 

 

 

where E = plane-of-array irradiance, W/m
2
;  T = PV cell temperature, ºC;  γ = Pm correction 

factor for temperature, ºC
-1

;  zero subscripts denote performance at Standard Rating Condition; 

and the e subscript denotes an “effective” irradiance, which in the case of PVWatts means 

corrected for AOI but not spectrum. 

 

In the presentation, the value of adding a third parameter was examined. This parameter, k, is 

experimentally determined from testing at 200 W/m
2
, where  

 

 

 

 

k is applied as a non-linear correction below 200 W/m
2
 and as a linear correction above 200 

W/m
2
 as shown in Figure 14.  Experimentally determined values of k are 0.011 for a Mobil mc-

Si module, 0.009 for a SunPower c-Si module, and 0.030 for a Shell CIS module.  Addition of 

this module-specific parameter improved the agreement of PVWatts with the Sandia PV Array 

Performance Model.  Since a power measurement at 200 W/m
2
 is now required by the 

International Electrotechnical Commission‟s (IEC‟s) standards 61215 and 61646, this 

improvement could be made to a future version of PVWatts. 

  

0

0 2002.0
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Figure 14. Application of New PVWatts Correction Factor, k. 

 

Overview and Background on the Sandia PV Array Performance Model (Dave King, DK 

Solar Works) 

 

Dave King, retired Distinguished Member of Technical Staff at Sandia National Laboratories 

and now an independent consultant, played a pivotal role in developing the Sandia PV Array 

Performance Model.  This model was developed to address the limitations of the one-diode 

circuit model.  Though the Sandia model is based on fundamental cell performance 

characteristics, it requires only outdoor I-V measurements and meteorological data to empirically 

calculate performance coefficients. 

 

As described in the presentation, the model uses effective irradiance in its electrical calculation.  

In the model, effective irradiance is calculated from the incident beam radiation, corrected by an 

angle-of-incidence function, and combined with the incident diffuse radiation, with the sum 

corrected by an air-mass function. 

 

In the calculation of electrical output, four separate temperature coefficients are used: one each 

for Isc, Imp, Vmp and Voc.  Cell temperature is calculated from the total incident irradiance (E), 

ambient temperature (Tamb), wind speed (WS), and ΔT1000, which is the difference between the 

module back temperature and the cell temperate at an incident irradiance of 1000 W/m
2
, as 

shown in Figure 15.  The coefficients for this calculation are specific to the module structure and 

mounting configuration. 
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Figure 15. Empirical Thermal Model to Determine Cell Temperature. 

 

SAPM is used in the System Advisor Model, PV DesignPro, and in some industry internal 

models such as SunPower‟s PVSim.  Use of this model has been hampered by the limited 

number of modules in the required database of performance coefficients.  To remedy this 

situation, Sandia has partnered with TÜV Rheinland PTL, LLC in Phoenix, Arizona.  Both 

Sandia and TÜV Rheinland PTL are now able to characterize new modules.   

 

Modeling and Measuring Nominal Cell Operating Temperature (NOCT) (Matt Muller, 

National Renewable Energy Laboratory) 

 

The standard test conditions under which PV modules are rated [1,000 W/m
2
, air mass 1.5, and 

cell temperature of 25 °C] rarely occur during normal system operation.  An alternate rating 

condition, Nominal Operating Cell Temperature (NOCT), sets conditions of 800 W/m
2
, 20 °C 

ambient temperature, and 1 m/s wind speed and is used in combination with the Pmp temperature 

coefficient to estimate the effect of cell temperature on performance.   Manufacturers publish 

NOCT for modules, and some models use those stated NOCT values in calculating performance. 

 

Matt Muller, staff engineer at NREL, provided an overview of IEC 61215, the procedure used to 

determine NOCT, and discussed uncertainty in NOCT.  Heat transfer theory suggests that 

modules that are in open circuit and having the same basic package of materials should have 

similar NOCT.  However, independent laboratory test measurements such as those in the module 

database from the CEC (included in the System Advisor Model) report NOCT values for rack-

mounted standard silicon modules in a glass/Tedlar package that range from 41.6 to 52.3 °C.  At 

1000 W/m
2
, modeling a module assumed to operate at a 10 °C higher temperature with a power 

coefficient of 0.5%/°C will lead to a 5% lower estimate of output power.  The uncertainty 

associated with the NOCT procedure is ±4 °C. 

 

Over an eight-month analysis for a single module, the range of NOCT averaged over a three-day 

period ranged from 45.3 to 49.8 °C.  In reality, however, only 10 days over the eight-month 

period were actually suitable for NOCT testing.  When comparing three c-Si modules over three 

3-day periods, the range of NOCT was 1.9 to 3.2 °C, well within the expected ±4 °C.  During 

side-by-side testing these three modules were found to have average NOCT ranging from 48.6 to 

48.9 °C, but the values of NOCT determined by independent laboratories and reported in the 

CEC database were 42.4 °C, 47.9 °C, and 52.3 °C. 

http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/Muller_NREL_CellTemp.pdf
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This work is continuing, but preliminary conclusions reached were: 

o The IEC 61215 procedure does not guarantee repeatable results. 

o Eight months of NREL data result in NOCT values ranging from 45.3 to 48.9 °C. 

o A steady state heat transfer model supports that a 10 °C variation in NOCT can result 

from changing sky, ground, and ambient temperatures. 

o Three modules with previously reported NOCT values of 42.4 °C, 47.9 °C, and 52.3 °C 

show identical NOCT values in side-by-side testing. 

 

Future work will include examination of suggested changes to the IEC procedure and 

continuation of data gathering at NREL. 

 

Modeling Module Temperature in the System Environment (Ty Neises, University of 

Madison – Wisconsin) 

 

University of Wisconsin masters student Ty Neises (now on staff at NREL) is studying various 

models to predict cell temperature in both building integrated PV (BIPV) and open rack 

configurations.  The study compares predictions from numerous models, including a steady-state 

energy balance equation with conduction, convection, and ground and sky radiation components; 

the Duffie and Beckman model (2006)
12

 which includes NOCT temperature; the Skoplaki model 

(2008)
13

 which includes a parameter for mounting configuration; and the King model (2), which 

includes mounting- and panel-specific coefficients.   

 

All of the included models performed well for a rack-mounted c-Si module located at Sandia in 

Albuquerque, New Mexico.  The study found overall that cell temperature model results for open 

rack panels are consistent and accurate when compared against the 5-parameter model with 

measured backside temperature input.  The largest discrepancy of modeled to measured results 

occurred for BIPV modules tested at the National Institute of Standards and Technology in 

Gaithersburg, Maryland.   

 

The results of Neises‟ study underscore the importance of modeling modules relative to their 

mounting configuration.  In a 2010 study using the Sandia PV Array Performance Model, Sandia 

found that the difference in output of a rack-mounted system vs. a system with an insulated back 

was as much as 10% in Phoenix, Arizona
14

.  Even in an open field, First Solar reports variations 

of 10 °C in temperature between the edge and the center of large arrays (see earlier presentation). 

 

  

                                                 
12

 J.A. Duffie, W. A. Beckman, Solar Engineering of Thermal Processes.  Third ed. John Wiley & Sons Inc., New 

York, 2006.   

 
13

 E. Skoplaki, A. G. Boudouvis, and J. A. Palyvos, A simple correlation for the operating temperature of photovoltaic 

modules of arbitrary mounting, Solar Energy Materials and Solar Cells, vol. 92, no. 11, pp. 1393–1402, 2008. 
 
14

 C. P. Cameron and A. C. Goodrich, “The Levelized Cost of Energy for Distributed PV: A Parametric Study,” 
Proceedings of the 35th IEEE Photovoltaics Specialists Conference, Honolulu, Hawaii, June, 2010. 

http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/Neises_UWisconsin.pdf
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Understanding Modeling Errors Using Residual Analysis (Josh Stein, Sandia National 

Laboratories) 

 

As discussed in Stein‟s presentation on “A Proposed Approach to PV Performance Model 

Validation,” Sandia is employing residual analysis to identify potential sources of model error.   

Sandia‟s intent is to offer each participant from the pre-workshop exercise a personalized model 

validation report using residual analysis.  In this presentation, Stein reviewed residual analysis 

from participants‟ use of SAPM, PVsyst, the 5-Parameter Model, and PVWatts.   

 

As shown in Figure 16, residual analysis of these examples show that two of the models 

overpredict power at low temperatures (below 20 °C) and underpredict at high temperatures 

(above 20 °C).  No distinct trends were observed in the models prediction of module 

temperature, so this might suggest the temperature coefficients used to correct performance for 

temperature are too large. The results for the two PVWatts examples were inconsistent.  This 

illustrates the need to observe these patterns for multiple systems before conclusions may be 

reached.  

 

  

http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/Stein_Sandia_ResidualAnalysis.pdf
http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/Stein_Sandia_ModelVal.pdf
http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/Stein_Sandia_ModelVal.pdf
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Figure 16. Hourly Power Differences as a Function of Ambient Temperature. 
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2.1.4 Facilitated Discussion – Day One 
 

Facilitated discussion at the conclusion of day one focused on two primary issues: specific 

attributes needed to improve module performance testing, and the prioritization of future efforts, 

roles, and responsibilities.  Additional discussion included streamlining and standardizing 

models, and third-party verification. 

 

When the group was asked what must be done to improve module performance modeling, a 

number of suggestions were made ranging from more standardization of data to more reliance on 

systems-related approaches.  Some specific needs identified by participants include: 

 

Module testing 

 Module testing should be performed by independent third parties to improve bankability. 

 A set of standard tests should be developed that could be used to generate performance 

coefficients for all available performance models. 

 Standard tests should also include data at non-STC conditions.  

 Test data and the resulting performance coefficients should be published in a publicly-

accessible location. 

 Data should represent more than one module, perhaps a statistically significant number of 

modules rather than just one or a few.  

 Rapid development of new test protocols is needed for new products. 

 Several participants suggested that manufacturers add efficiency specifications and ISO 

audit information to product datasheets in an effort to help reduce compliance costs and 

account for differences among production runs, technologies, and degradation. 

 

Uncertainty 

 The uncertainties that most impact model output should be identified. 

 Performance coefficient databases need to include coefficient uncertainty to enable 

propagation of uncertainty through the models. 

 Risk analysis and stress testing of results that can satisfy the needs of the investment 

community and improve bankability of projects should be performed. 

 

Module Modeling 

 Better analysis and calculation should be performed around how module modeling affects 

system modeling and can drive system design, selection of inverter sizes, etc. 

 Models are needed that can calculate performance at other than maximum power point 

for modules that are mismatched due to shading or multiple orientations, or when grid 

considerations require operation away from maximum power point. 

 Rapid development of models is needed for new products. 

 

System Modeling 

 Models should be developed with a better understanding of audience needs and potential 

tailoring of output for different users: manufacturers, engineers, integrators, consumers. 

 Suitable models and third-party data should be available for all audiences. 
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 Independent engineers suggested that their efforts could be enhanced by models that are 

based on independently tested and verified data and used across the industry.  Currently, 

independent engineers are often asked to evaluate output and data from industry models, 

which are based on external assumptions and manufacturer-provided datasheets.   

 

Model Validation 

 Third-party, independent datasets for assessment of models are needed, including datasets 

for different locations and seasons, potentially using standardized test configurations and 

cleaning processes for reference cells and sensors. 

 Model evaluation processes should begin at the module level and then go through the 

system piece-by-piece to prioritize attributes in descending order of effect on the model.  

Higher-priority elements should be examined first. 

 A streamlined process for achieving model validation is needed so as not to delay 

implementation of models or have them lag technology. 

 Models should use of inputs and generate outputs that are relevant to and well-understood 

by the financial community. 

 

Standards Development for Model Validation 

 Participants stressed the importance of the modeling community‟s participation in the 

standards process, including with a new IEC standard currently in development.  
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2.2 Day 2: Thursday, September 23 
 

2.2.1 Modeling System Performance 
 

Beyond the Module - Modeling System Performance - Introduction (Chris Cameron, 

Sandia National Laboratories) 

 

This introductory presentation summarized the output of day one and set the stage for day two of 

the workshop, in which discussions moved beyond the module model to the systems model.  A 

systems model has many sub-models, as shown in the center of Figure 17.  Ideally, users would 

enter the design data shown in the left of the figure and the systems model would predict system 

output.  The reality is that users may have a choice of sub-models and associated databases for 

some calculations, such as the radiation translation and module models.  Other inputs such as 

expected soiling losses must be estimated by the user.  All of these choices affect the model 

output, as illustrated by the results of the model inter-comparison exercise reported above. 

 

Modeling Systems Losses in PVsyst (Andre Mermoud, Institute of the Environmental 

Sciences, University of Geneva) 

 

In a continued discussion about PVsyst, Andre Mermoud discussed the modeling of system 

losses and model improvements currently underway.  Mermoud emphasized the importance of 

identifying and planning for losses in PV system simulation, which can be model- or input-

driven.  As shown in Figure 18, PVsyst provides detailed analysis of all losses – optical, array, 

and system – with each simulation, which helps the user check the pertinence of input 

parameters. 

http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/Cameron_Sandia_BeyondModule.pdf
http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/Mermoud_PVSyst_Thu%20840%20am.pdf
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Figure 17. Performance Model Process Outline. 
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Figure 18. Loss Analysis Overview from PVsyst. 

 

PVsyst models both far and near shading losses.  Near shading requires knowing the dimensions 

and position of objects near the array and computing the impact of shading on each sub-module 

of each PV sub-array connected to each MPP inverter output.  Near shading may be modeled as 

three-dimensional structures and obstructions. 

 

Far shading includes obstacles that are at a distance typically greater than ten times the array 

size.  These are modeled as a horizon line that blocks the direct beam component as a function of 

sun position.  The horizon line can be captured from GIS sketches or by instruments such as 

Solmetric‟s SunEye.   

 

PVsyst also calculates inverter losses and allows the user to input wire lengths and cross sections 

to enable calculation of wiring losses.  Other losses require user estimates including soiling loss, 

in yearly or monthly values; module degradation; mismatch loss; and availability loss.  Default 

values are provided for each of these loss factors.   

 

Despite PVsyst‟s advanced capabilities, its simulations still experience the same uncertainties as 

many other models: meteorological data sources and accuracy, and validity/uncertainty of 

module specifications provided by manufacturers. 

 

Mermoud concluded his presentation by asking participants for input and discussion on the rising 

number of requests for P50/P90 performance estimates.  Calculation of these uncertainty 

estimates requires stochastic modeling methods.   
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Characterizing Shading Losses and the Impact of Sub-array MPPT  (Chris Deline, 

National Renewable Energy Laboratory) 

 

Shading leads not only to power loss, but also current mismatch within a series string and 

voltage mismatch between parallel strings.  Chris Deline is a staff engineer at NREL conducting 

modeling and analysis of PV module and array shading and mismatch resulting from orientation, 

manufacturing tolerance, aging and soiling.  

 

Depending on the reverse bias characteristics, shading of just 25% of the area of one cell can 

lead to bypass diode turn-on, which will remove the power from the 15-20 cells found within the 

diode-protected substring.  Power loss is greater in proportion to the amount of shade on the 

system, and detailed modeling is required to predict the power loss.  For example, 30% power 

loss from shading was observed in a string where only 12.5% of the string was shaded.  Since the 

system I-V curve is built from individual substring I-V curves in series and in parallel, partial 

shading can lead to local and global maxima as shown in Figure 19.  Further reduction in power 

output can occur if an inverter's maximum-power point tracking (MPPT) algorithm locks in on a 

local (rather than global) maximum. 

 

 
 

Figure 19. Demonstration of How Shading Can Distort the I-V curve (black) 
and Lead to Local Maxima in the Power Curve (red). 

 

Deline discussed numerous issues related to shading, including foliage changes throughout the 

year, spatial resolution, evaluation of opaqueness, position uncertainty for nearby objects, and 

the time commitment involved to complete three-dimensional shade modeling.  Electrical circuit 

models can also take a great deal of time to run, especially for large systems, so Deline 

recommends using a simplified 3-parameter model or a shade opacity look-up table. 

 

Deline‟s work focuses on utilizing individual sub-string I-V curves in series and in parallel to 

build a system I-V curve and evaluate shading effects.  The simulation uses PVWatts with an 

added shade derating factor, which is based on empirical relationships between extent of shade 

and overall power loss.  Modeled results compared favorably with measured data on 

representative sunny days and annual results show close agreement with site survey‟s solar 

resource fraction, though Deline acknowledges this is not always the case.  Deline is continuing 

http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/Deline_NREL_ShadeModeling.pdf
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to improve shading simulation and will be creating a simulation feature for SAM.  He is also 

performing test and evaluation of DC-DC converters and micro-inverters to determine the 

performance improvement that can be achieved with these devices. 

 

Modeling and Evaluating Sub-Array MPPT (Sara MacAlpine, University of Colorado) 

 

Sara MacAlpine is a graduate student in the Civil, Environmental, and Architectural Engineering 

department at the University of Colorado in Boulder. Her research focuses on using a 

combination of tests and modeling approaches to characterize shading response under non-

uniform shading conditions and evaluating the effects on energy production.  

 

One of MacAlpine‟s examples analyzed the impact of shading on various string configurations.  

For example, Figure 20 shows two system layouts.  In one, only one string is shaded.  In the 

other, both strings are shaded.  Her analysis of the impact of shading, presented in Figure 21, 

shows that the layout with two horizontal-strings produces more energy when the system is 

heavily shaded (95% of the irradiance is blocked), but the side-by-side configuration produces 

more power when only 50% of the irradiance is blocked.   This example illustrates the 

complexity of modeling shading effects. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 20. Partially-shaded Array. 

Isolated Shading – One string in array 
is shaded 

Distributed Shading – Both strings in 
array are shaded 

String 1 

String 2 

String 1 

String 2 

http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/MacAlpine_UColorado.pdf
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Figure 21. Effect of String Configuration on Performance with Partial Shading. 

 

MacAlpine then examined the potential benefit of using Distributed Maximum Power Point 

Tracking (DMPPT) to alleviate variability caused by disproportionate losses, which are often 

caused by mismatch within a system.  The results are presented in Table 4 and show that, when 

there is significant shading, DMPPT can improve performance but the degree of improvement is 

a function of system configuration.  When shading was more moderate, no advantage was seen 

with DMPPT because of the insertion loss associated with the devices. 

 
Table 4. Impact of DMPPT on Shaded System Performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Object 

Position

String 

Division

% Shading 

Loss with 

Prototype 

Converters

Shaded System %Output 

Difference -- Prototype 

Converters vs None

Shaded System Max Potential 

%Output Difference -- Modular vs 

Central MPPT

Left-Right 15% 3% 8%

Top-Bot 15% 8% 13%

Left-Right 21% 10% 15%

Top-Bot 21% 31% 37%

Corner

Center
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MacAlpine showed simulations of annual array energy capture, shading loss, and power recovery 

potential using MATLAB models at the panel, power converter, and inverter levels.  The 

simulation included TMY-3 hourly irradiance and NOCT data for Boulder, Colorado.  

Preliminary results indicate the potential for shade impact factors (SIF) to be used to accurately 

model DMPPT, with the most promising results occurring when SIF is implemented at the 

bypass diode substring level. 

 

Modeling Needs for Very Large Systems (Joshua Stein, Sandia National Laboratories) 

 

Most system performance models assume a point measurement for irradiance and that, except for 

the impact of shading from nearby obstacles, incident irradiance is uniform across the array.  

Module temperature is also assumed to be uniform across the array.  For small arrays and hourly-

averaged simulations, this may be a reasonable assumption.  Stein is conducting research to 

characterize variability in large systems and to develop models that can better accommodate 

large system factors.   

 

In large, multi-MW arrays, passing clouds may block sunlight from a portion of the array but 

never affect another portion.  Figure 22 shows that two irradiance measurements at opposite ends 

of a multi-MW PV plant appear to have similar irradiance (left), but in fact the irradiance is not 

always the same (right).  Module temperature may also vary across the array, with modules on 

the edges being cooler because they have greater wind exposure.  Large arrays will also have 

long wire runs and will be subject to associated losses.  Soiling patterns may also vary, with 

modules closer to the source of soiling, such as an agricultural field, receiving more dust load. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 22. Irradiance Differences between Two Sensors. 

 

One of the primary concerns associated with this effort is how to work with integrators to gain 

access to better and more comprehensive data for model development and validation. 

 

How Does Uncertainty in Input Parameters Affect Model Output? (Cliff Hansen, Sandia 

National Laboratories) 

 

The output of most PV performance models is presented as a deterministic result without any 

estimate of error or uncertainty, but both uncertainty and variability in model inputs affect 

http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/Stein_Sandia_Large%20Systems.pdf
http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/Hansen_Sandia.pdf
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results.  Uncertain parameters have fixed but imperfectly known values, such as parameters 

related to performance (e.g., Pmp) and parameters related to empirical approximations (e.g., the 

model coefficients relating Imp to irradiance).  Variable parameters characterize inherently 

variable quantities, such as weather data. 

 

Cliff Hansen, a Distinguished Member of Technical Staff at Sandia National Laboratories, is 

working with Joshua Stein and Steve Miller (also from Sandia) to address issues associated with 

quantifying model input uncertainties.  By doing so, efforts can be made to reduce those 

uncertainties and validate model outputs that drive decisions related to technology, system 

design, costs, and financing. 

 

The initial study presented was focused on model sensitivity of the Sandia PV Array 

Performance Model, which contains many empirically-determined performance coefficients 

(illustrated in Figure 23). The methodology used Monte Carlo statistical methods to assign 

uncertainty ranges to model inputs and investigate correlations between those inputs and the 

model output.  In order to reduce unknown variability in the study, weather data was fixed and a 

single SunPower PV module was analyzed for three different locations: Phoenix, Arizona; 

Alamosa, Colorado; and Detroit, Michigan. 

 

 
Figure 23. Schematic Representation of the Sandia PV Array Performance Model. 

 

In a study of 16 uncertain parameters in the Sandia PV Array Performance Model, those shown 

to be most significantly correlated to uncertainty in output (cumulative power) were maximum 

power point error, the Angle of Incidence correction factor, the Air Mass correction factor, and 

the C0 coefficient (relating IMP to effective irradiance).  This study is being continued and 

expanded to additional modules technologies and performance models.  Understanding the 

impact of uncertainty will both inform model users of the sensitivity of the models and will help 

focus efforts to improve the models on the most important parameters.  
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Model of Models (Doug Payne, SolarTech) 
 

Doug Payne is the executive director of SolarTech, a collaborative organization comprised of 

solar stakeholders including industry, financiers, local governments and utilities.   

The group focuses on six primary areas related to advancing the solar market: performance, 

workforce, financing, interconnection, permitting, and interconnection.  Of these, Payne 

indicates modeling is estimated to have the most significant impact on the financing and 

performance areas. 

 

Payne discussed a „model of models‟ proposed by SolarTech and shown in Figure 24.  The initial 

model design uses a family of cumulative kWh projection curves and allows uncertainty to be 

factored in using various methods.  SolarTech suggests that this model be updated quarterly in 

order to reduce uncertainty. 

 

 
Figure 24. SolarTech’s ‘Model of Models’ 

 

The objectives of SolarTech‟s approach are to use standard performance metrics and energy 

production tools to drive faster buying decisions, reduce transaction costs, and enhance due 

diligence for developers.  

 

 

2.2.2 Facilitated Discussion – Day Two 
 

The facilitated discussion for the second day focused on model validation, whether and how to 

include uncertainty in model outputs, and prioritization of future efforts to model system losses.  

 

Discussion opened with a recap of the information survey results from day one, in which 

participants voted for the most important elements to include in future modeling efforts.  The two 

most voted for were: (a) review of existing standards and development of standardized tests for 

industry that are not model-driven; and (b) inclusion of non-STC conditions in modeling and 

testing. 

 

http://photovoltaics.sandia.gov/Pubs_2010/performance_modeling_workshop_cameron_10/Payne_SolarTech.pdf
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Implementing suggestion (a) includes conducting a full inventory of existing standards to address 

elements that characterize power production.  The objective would be to identify gaps in test 

standards with respect to modeling and determine whether the solar industry is sufficiently 

employing standards (i.e., are the incentives for using them – or penalties for not using them – 

adequate enough to drive more consistent use?). 

 

The group did not come to agreement as to whether manufacturers could conduct this audit and, 

if so, whether manufacturers‟ processes and results should be open to third-party scrutiny and 

enforcement.  There was consensus, however, that individual components of solar systems 

should be isolated for testing and modeling and that doing so could help modelers capture 

aspects that are consistent across systems of varying sizes and configurations.  The group also 

agreed that there is a need for prompt and independent datasets for new technologies. 

 

Data for Model Validation 

 

The discussion about standardization and third-party datasets motivated a dialogue about how to 

validate and evaluate such elements, and who will fund and own the data.  One suggestion 

included DOE working with the General Services Administration to install identical systems on 

federally-owned buildings and then make data from those systems publicly available.  Concerns 

about this option included disagreement about the necessary number of installations and 

inevitable differences in climate and building characteristics that would keep the installations 

from being uniform.  As an alternative, the group recommended collecting data from projects 

installed under DOE‟s Solar America Cities and similar programs where political and financial 

capital has been invested, and/or developing the suggested federal installation program but using 

only portions of installations for data and analysis.  The group also suggested writing 

requirements for the data collection system procurement process to include standardized data 

systems, and noted that the use of uncertainty analysis to identify the most critical parameters 

will define the instrumentation needs. 

 

Despite the group‟s overall agreement that standardization would help alleviate modeling error, 

the concern remained that different classes of materials and types of systems could continue to 

require varying models.  How and whether to develop a standard approach relies heavily on 

whether such an approach can effectively cover current and future technology, either through 

protocols that can cover a broad range or through the inclusion of elements that can be tailored 

without disrupting the model.  Participants also noted that characterization should go beyond 

components to include evaluation of entire systems, and that uncertainty analyses be conducted 

for all system scales: utility, commercial, and residential. 

 

Model Improvement 

When asked for a „wish list‟ from the modeling community in terms of revising current and 

developing future models, participants narrowed their requests to four specific items: 

 

 The ability to run multiple years and then separate them readily 

 The ability to input the user‟s measured data to models 

 Parametric analysis and sensitivity analysis capabilities 
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 Model output that can feed readily into a wide variety of financial models and rate 

schedules 

 

Access to reliable, quality data was acknowledged as a key shortcoming for the modeling 

community.  Chris Cameron asked participants interested in supporting future development to 

collaborate with Sandia and other model developers to determine how to best improve access to 

data and information. 

 

The workshop concluded with an optional tour of Sandia‟s Photovoltaic Systems Evaluation and 

Distributed Energy Technologies Laboratories. 
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APPENDIX A: AGENDA 
 

PV PERFORMANCE MODELING WORKSHOP 
September 22 and 23, 2010 

 
Phillips Technology Institute Collaboration Center 

on Maxwell Ave SE, one block north of Gibson Blvd SE 
Kirtland Air Force Base, Albuquerque, NM 

 

Wednesday, September 22, 2010 

9:00 Welcome and Purpose Chris Cameron, SNL 

9:15 A Review of System Performance Models 
Bradley Hibberd and Tarn 

Yates, Borrego Solar 

9:35 Needs and Issues in System Performance Modeling - Manufacturer/Integrator Ben Bourne, SunPower 

9:50 Needs and Issues in System Performance Modeling - Manufacturer/Integrator 
Adrianne Kimber,  

First Solar 

10:05 Needs and Issues in System Performance Modeling - Independent Engineer 
Jeff Newmiller, 

BEW Engineering 

10:20 Break  

10:35 Recent Studies of PV Performance Models Steve Ransome 

11:00 A Proposed Approach to PV Performance Model Validation Joshua Stein, SNL 

11:30 
Results of Model Inter-Comparison  - Predicted vs. Measured System 

Performance 
Joshua Stein, SNL 

12:00 
Lunch 

Luncheon Presentation:  Overview of PV*SOL and Plans for US Market 

Paul DeKleermaeker, 

Valentin Software 

1:00 An Overview of the Module Model in PVsyst Andre Mermoud, PVsyst 

1:20 Improvements to the CEC/Wisconsin n-Parameter Model Bill Beckman 

1:40 Overview of the Module Model in PVWatts Bill Marion, NREL 

2:00 Overview and Background on the Sandia PV Array Performance Model David King 

2:20 Modeling and Measuring Normal Cell Operating Temperature Matt Muller, NREL 

2:35 Modeling Module Temperature in the System Environment 
Ty Neises, U. of 

Wisconsin 

2:50 Break  

3:05 
Understanding Modeling Errors for Module Models Using Residual Analysis 

and Application to the Results from Model Inter-Comparison 
Joshua Stein 

3:50 Facilitated Discussions of Results  

  What must be done to improve module performance modeling?  

4:30  Prioritization of future efforts, roles, and responsibilities  

5:00 Adjourn  
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PV PERFORMANCE MODELING WORKSHOP 
September 22 and 23, 2010 

 
Phillips Technology Institute Collaboration Center 

on Maxwell Ave SE, one block north of Gibson Blvd SE  
Kirtland Air Force Base, Albuquerque, NM 

 

Thursday, September 23, 2010 

8:30 Beyond the Module - Modeling System Performance - Introduction Chris Cameron, SNL 

8:40 Modeling Systems Losses in Pvsyst 

Andre Mermoud, 

PVsyst 

9:05 Characterizing Shading Losses and the Impact of Sub-array MPPT Chris Deline, NREL 

9:25 Modeling and Evaluating Sub-Array MPPT 

Sara MacAlpine, 

U. of Colorado 

9:45 Modeling Needs for Very Large Systems Joshua Stein, SNL 

10:00 Break  

10:20 How Does Uncertainty in Input Parameters Affect Model Output? Cliff Hansen, SNL 

10:40 Facilitated Discussion  

 
 Industry-led Market Transformation: FY2011 Performance/Finance 

Framework (Doug Payne, SolarTech) 
 

  Validating models and inputs - are new standards needed?  

  Should uncertainty be included in model outputs?  

  Ensuring quality in model inputs  

  Validating model accuracy and uncertainty  

  Prioritization of future efforts to model system losses  

11:40 Closing Discussion and Action Items  

12:00 Lunch  

1:00 

 

Depart by Bus ONLY for Tours of Sandia Inverter and Outdoor Module Test Laboratories 
Please note: All tour participants must travel by bus.  Cell phones and other electronics are not permitted on the 

tour and cannot be left in the meeting room. They can be left on the bus, which will remain at the tour location.  

The group will return to the Phillips Technology Institute Collaboration Center at the end of the tour.   

~3:30 End of Tours and Workshop 
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APPENDIX B: PARTICIPANT LIST 
 

PV PERFORMANCE MODELING WORKSHOP 
September 22 and 23, 2010 

 

Abound Solar Larry Knipp 

American Capital Energy 
Ryan McDonald 
Tom Anderson 

BEW Engineering 
Jeff Newmiller 
Rhonda Bailey 

Black and Veatch Evan Riley 

Borrego Solar 
Bradley Hibberd 
Tarn Yates 

BP Solar 
Jay Miller 
Jeff Meyer 

Clean Power Andrew Parkins 

First Solar Adie Kimber 

Hoes Engineering Charles Hoes 

Independent analyst / consultant 
Steve Ransome 
Dave King 

Luminate Nick Lemon 

Miasole 
Roger Balyon 
Aaron Schultz 

Navigant Graham Stevens 

National Institute of Standards and Technology 
Tania Ullah 
Matt Boyd 

 Nate Blair 
Matt Muller 
Aron Dobos 
Chris DeLine 
Bill Marion 

National Renewable Energy Laboratory 



51 

 

Sandia National Laboratories 
 

Chris Cameron 
Jennifer Granata 
Charlie Hanley 
Geoff Klise 
Josh Stein 
Steve Miller 
Cliff Hansen 

SENTECH / SRA International, Inc. Coryne Tasca 

SolarTech Doug Payne 

SoloPower 
Sankaran “Jay” Jayanarayanan 
John Foreman 

SunEdison Bob Wimbrow 

SunPower Ben Bourne 

Uni-Solar / Solar Integrated 
Kevin Beernink 
Riley Caron 

University of Arizona - AzRISE Joseph Simmons 

University of Colorado - Boulder Sara MacAlpine 

University of Geneva Andre’ Mermoud 

University of New Mexico Mark Harris 

University of Wisconsin – Madison 

 

Ty Neises 
Bill Beckman 
 

U.S. Department of Energy Michael Cliggett 

Valentin Software Paul DeKleermaeker 

Yingli Kenneth Sauer 
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APPENDIX C: PV SYSTEM DATA DOCUMENTATION FOR MODELING 
WORKSHOP PRE-WORK 

 
This document describes the design of three fixed tilt PV systems that participants of Sandia's 

modeling workshop (Sept 2010) are being asked to simulate system performance (Watt-hr per 

hr) for a one-year period based on measured weather data from each site.  The design 

descriptions are found in Section 1.  The weather data format is described in Section 2, and the 

requested format of the results is described in Section 3 at the end of the document.  Participants 

are asked to simulate each of the systems using the model or models of their choice.  Derate 

factors must be estimated by the modelers based on expert judgment.  We have provided module 

parameters along with the system descriptions. 

 

Section 1: PV System Descriptions 
 

System 1: Shell Solar CIS Grid-Connected System 

 

Location:  NREL Outdoor Test Facility, Golden, Colorado 

Latitude:  39.74°N 

Longitude:  105.18°W 

Elevation:  1785 m 

Time Zone:  MST(-7) 

Installation Date: January, 2006 

Nameplate Rating:  1120 Wdc 

Array Tilt:  40° 

Array Azimuth: 180° 

PV Module: Shell Solar CIGSS model Eclipse 80. Pmax = 80 W. Sandia PV Array 

Performance Model parameters estimated by Dave King are included in 

the file 'Eclipse CIS 80-C.xlsx' and listed in Table 1.  Manufacturer 

datasheet is included with the data files. 

PV Array: Consists of two 560 W source circuits. A source circuit has seven modules 

connected in series with a resultant maximum power point voltage of 232 

V at STC.  

Inverter: 1.8-kW Sunny Boy model SWR 1800U. The minimum input voltage for 

peak power tracking depends on the grid voltage, and ranges from 138 

Vdc for a grid voltage of 105 Vac to 171 Vdc for a grid voltage of 132 

Vac. Maximum input voltage for peak power tracking is 400 Vdc. 

Notes:  
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Table 1. Sandia PV Array Performance Model Coefficients for Shell Solar Eclipse 
80-C module. 
 

Parameter Value Units  Parameter Value Units 

Module Shell Solar Eclipse 80-C   A0 0.921  

Area 0.86 m
2 

 A1 0.071815  

Material CIS   A2 -0.014619  

Series_Cells 84   A3 0.00125  

Parallel_C-S 1   A4 -3.74E-05  

Isco 2.68 A  B0 1  

Voco 46.6 V  B1 -0.002438  

Impo 2.41 A  B2 0.0003103  

Vmpo 33.2 V  B3 -1.25E-05  

aIsc 0.00013   B4 2.112E-07  

aImp -0.00041   B5 -1.36E-09  

C0 0.972   d(Tc) 3 C 

C1 0.028   fd 1  

BVoco -0.181   a -3.47  

mBVoc 0   b -0.0594  

BVmpo -0.149   C4 0.982  

mBVmp 0   C5 0.018  

n 1.752   Ixo 2.63 A 

C2 0.50877   Ixxo 1,71 A 

C3 -2.954   C6 1.045  

    C7 -0.045  

 

 

System 2: Mobil/ASE EFG Silicon Grid-Connected System 

 

Location:  NREL Outdoor Test Facility, Golden, Colorado 

Latitude:  39.74°N 

Longitude:  105.18°W 

Elevation:  1785 m 

Time Zone:  MST(-7) 

Installation Date: February, 1995 

Nameplate Rating:  1430 Wdc 

Array Tilt:  40° 

Array Azimuth: 180° 

PV Module: Mobil Solar Ra 280-50 H EFG Silicon.  Pmax = 286 W.  (Very similar to 

the module: Schott Solar ASE-300 DFG-50 (280) 2007(E), which is in the 

Sandia Module Database (included with SAM).  Manufacturer datasheet is 

included with the data files. 
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PV Array: Consists of five source circuits (five PV modules in parallel). A source 

circuit consists of one PV module with a maximum power point voltage of 

50 V at STC. 

Inverter: 2.5-kW Xantrex model SunTie STXR2500. The minimum input voltage 

for peak power tracking is 42 Vdc and the maximum is 85 Vdc. 

Notes:  
 

System 3: SunPower Grid-Connected System 

 

Location: Sandia National Laboratories, Albuquerque, NM 

Latitude: 35.05°N 

Longitude: 106.54°W 

Elevation: 1657 m 

Time Zone: MST(-7) 

Installation Date: April 1, 2007 

Nameplate Rating:  1085 Wdc 

Array Tilt:  35.05° 

Array Azimuth: 180° 

PV Module: SunPower SPR-210-WHT, Pmax = 217 W.  This module is included in 

the Sandia Module Database.  Manufacturer datasheet is included with the 

data files. 

PV Array: Consists of five source circuits (five PV modules in parallel). A source 

circuit consists of one PV module with a maximum power point voltage of 

40 V at STC. 

Inverter: 2.5-kW SunPower Corp (Originally Mfg. – PV Powered): model SPR-

2500 240 V. The minimum input voltage for peak power tracking is 140 

Vdc and the maximum is 450 Vdc. 

Notes: System and weather data are presented in order by month rather than 

chronological order (Jan 2008 – March 2008 –April 2007 – Dec 2007).  

Leap day data was removed from the dataset.  This was done so that the 

data could be represented in TMY2 format, which requires a full calendar 

year.  Please submit simulated performance in same 8760 hour format. 

 
Section 2: Weather Data Format 
 
Weather data is supplied for each of the systems in TMY2 format and in comma delimited files 

with the following columns containing 8760 hourly values (Jan 1 – Dec 31): 

1. Year: Year of measurement (e.g., 1996) 

2. Month of measurement (1-12) 

3. Day of month of measurement (1-31) 

4. Hour of measurement (1-24) 

5. Direct normal irradiance (W/m
2
).  Hourly average from previous hour. 

6. Diffuse horizontal irradiance (W/m
2
).  Hourly average from previous hour. 

7. Global horizontal irradiance (W/m
2
).  Hourly average from previous hour. 

8. Tdry (dry bulb temperature in degrees C).  Hourly average of period +/- 30 min. 
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9. Wind (wind speed in m/sec).  Hourly average of period +/- 30 min. 

10. WindDir (wind direction in degrees clockwise from North, E=90, S=180, W=270).  

Hourly average of period +/- 30 min. 

11. Pres (air pressure in mbar).  Hourly average of period +/- 30 min. 

During periods when weather instruments or array output was not ideal or normal, weather and 

performance data have been adjusted to make sure that the models will predict zero power during 

these periods.  For example, several systems experienced shade at certain times of the year.  

Weather data (and power output data) for these time periods have been altered so that irradiance 

and output power values are set to zero.  Also during these times periods, other weather variables 

were set to reasonable values that are not expected to alter performance calculations. 

 
Section 3: Performance Model Results Format 
 

Workshop participants are asked to simulate the hourly output in Watt-hours AC per hour for 

these three systems and report their results back to Sandia before the workshop.  Results will 

then be analyzed together to characterize the amount of variance between different models.  

Sandia will keep the source of the model results anonymous from other workshop participants 

and will identify individual results with a code number or letter (e.g., Simulation A, B, C, or 1, 2, 

3, …). 

 

Model results should be expressed in a table listing 8760 hourly values for each system.  The 

primary output of interest is AC power, but DC power, Module and Cell Temperature, 

Voltage and Current may also be of interest.  I have included a template in Excel that can be 

used to report back performance model output results.  The first page (sheet) of the template is 

meant to record information about the model used and allow any comments on the simulation 

you might want to provide (e.g., derate assumptions).  There are three other sheets where you can 

paste your modeling results for each of the PV systems.  You are free and encouraged to run 

multiple models; simply fill out one template per model used.  The more results the better.  
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APPENDIX D: PV PERFORMANCE MODEL VALIDATION 
SAMPLE REPORT 

 

Postworkshop Evaluation of Submitted PV Model Exercise 
Validation Analysis by: Joshua S. Stein 
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Chapter 1. Introduction 
 
The Sandia National Laboratories photovoltaic program is tasked with evaluating and improving 

PV performance models. One of our evaluation approaches is to compare the measured output of 

a PV array to the modeled output, where the modeling is performed with weather data measured 

coincident with the output measurements. Typically, the weather data is hourly data provided in 

Typical Meteorological Year (TMY-2) format. Comparison of measured to modeled data is 

performed to assess the validity of the model used to simulate the performance of the systems.  

 

One might expect a perfect model to exactly reproduce the measured performance. However, 

since all measurements have some inherent uncertainty and associated error distribution, even a 

perfect model will not exactly match the measured performance. Unfortunately the measurement 

uncertainty is usually not well characterized and therefore comparisons between measured and 

predicted performance are more difficult and imprecise. If the uncertainties are known and the 

model is perfect, the model residuals, defined as the difference between measured and modeled 

power, should reflect the uncertainty distribution. In practice, when the uncertainty is not well 

characterized, the distribution of residuals reflects the combination of measurement and model 

uncertainties.  

 

In most cases, the input data will be scrubbed of unusual circumstances that would interfere with 

model validation, such as missing power data. For such data, the effect of the data on model 

evaluation is removed by forcing both the irradiance and power data to zero. In the data 

presented in this report, data was not available for the month of December, as reflected in the 

figures.  

 
 
Chapter 2. Overview of Validation Methods 

Several analysis methods will be applied in a typical report. These will generally be illustrated 

with a series of figures and calculated values. For each array, modeled values of AC and DC 

power will be compared with measured data. Examples of each type of analysis are described in 

the rest of this section.  
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Scatter Plot Analysis 
 

The first step in PV model validation is generation of a scatter plot of modeled power vs. 

measured power for each time interval (one hour in this case). An example of such a plot is 

shown in the top left scatter plot in the figure below. The red line has a slope of 1 and represents 

exact equality between measured and modeled values. Points that fall above the line indicate that 

the model is overestimating power from the array and points below the line indicate that the 

model is underestimating power. Sometimes most of the points are to one side or the other of the 

line, which indicates that there is a model bias. The magnitude of the bias can be estimated by 

solving for the factor that when multiplied with the modeled power, results in the sum of the 

adjusted residuals equaling zero. The scatter plot on the upper right of the figure below shows 

bias-adjusted modeled power against measured power. The bias adjustment is listed at the 

bottom of the figure.  

 

The plot at the bottom of the figure shows irradiance and model residuals plotted against time for 

an example 8-day period, where throughout the report, residual = modeled – measured value. A 

positive residual indicates the model is predicting a higher value than the measured data. The 

plot shows whether there is a repeatable pattern in the residuals with diurnal cycles (morning, 

midday, and afternoon). Such patterns, if they exist, can help to identify systematic errors in the 

model.  

Figure D-1. Example Scatter Plot Figure. 
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Residual Distribution Analysis 
 

The next analysis performed is to examine the distribution of the model residuals (modeled - 

measured) with a probability plot (left) and a histogram (right). If the model is valid, the 

distribution of residuals should be normal with a small amount of variance equal to the 

measurement uncertainty. Deviations from normality can indicate problems with the model.  

 

A normal distribution plots as a straight line on the probability plot. Deviations typically occur in 

the tails of the distribution, as is shown in the example below. These outliers may indicate a 

problem with the model but also may simply reflect data quality issues, such as a bird perching 

on an irradiance sensor for part of the measurement interval.  

 

The histogram is shown along with a best-fit normal distribution for reference. This example 

below shows that the model does a pretty good job matching the measured data. The RMS error 

is shown below the figure.  

 

 

 

Figure D-2. Example Residual Distribution Figure. 
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Residual Run Plot Analysis 
 

A residual run plot shows the residuals as a function of daylight time (night time periods are 

stripped from the dataset). This plot is useful for determining whether there is a long-term trend 

in the residuals. Such a trend could indicate problems with sensor drift and data quality. If soiling 

is a problem on the array, this might be visible on this plot as periods when residuals increase in 

magnitude (soiling) and abrupt decreases in residuals (cleaning by rain). A seasonal trend in the 

residual run plot might indicate a systematic problem with the model related to seasonal patterns 

of temperature, solar elevation angle, etc.  

 

 
Figure D-3. Example Residual Run Plot. 
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Lag Plot Analysis 
 

Lag plots provide information about whether the model residuals are autocorrelated in time. A 

lag plot provides one check on whether a data set or time series is random or not. Random data 

should not exhibit any identifiable structure in the lag plot (e.g. correlation). Non-random 

structure in the lag plot or residuals indicates that the underlying data are not random and 

suggests that the model has a systematic error in time.  

 

Below are two examples of lag plots, one for a lag of 1 hour and the other for a lag of 6 hours. 

Both exhibit little to no correlation and indicate a random pattern in the time series of residuals. 

The concentration of points near and along the zero axes of the plots can be explained by the fact 

that the residuals tend to be small at the beginning and end of the day when power output is very 

low. Note that in this example, the bias error is negative (model is generally underpredicting 

power) and thus most points on the lag plots are located in the SW quadrant of the plot where 

both residuals are negative.  

 

 

 

Figure D-4. Example Residual Lag Plots. 
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Graphical Residual Analysis 
 

Graphical residual analysis is used here to explore correlations between residuals and input 

variables for the model. The input variables considered in this analysis include: month of year, 

hour of day, irradiance (global horizontal), ambient air temperature, wind speed, angle of 

incidence of sunlight on the array, and air mass.  

 

Below are two example of the type of plots used to examine these correlations.  

 

For the first trio of plots, the top bar graph indicates the percent of the total energy produced by 

the array in each month. The middle bar graph shows the energy difference (model - measured) 

expressed in percent of the array capacity at STC.  

 

In this example, these differences are quite small and all negative, which indicates that the model 

is underpredicting the monthly energy slightly for all months. A more pronounced pattern in 

these differences might indicate a problem with the model. For example, a seasonal variation in 

the residuals could indicate that the model is not accurate in correcting performance as a function 

of temperature.  

 

The lower plot is a box plot that shows the distribution of hourly residuals within each month 

bin. On each box, the central mark is the median, the edges of the box are the 25th and 75th 

percentiles, the whiskers extend to the most extreme data points not considered outliers, and 

outliers are plotted individually. Outliers are assumed to be outside the ~99% confidence 

interval, which is estimated as ranging from q3 + w∙(q3 - q1) to q1 - w∙(q3 - q1), where q1 and 

q3 are the 25th and 75th percentiles, and w is a user-defined factor (set to 1.5 for the plots in this 

report).  

 

The next set of plots are configured the same but residuals are binned by global horizontal 

irradiance. In this example, there is a larger (negative) disagreement between model and 

measured performance at very low irradiance values, indicated by the large (negative) blue bar in 

the lowest irradiance bin.  

 

In the body of the report that follows, the results are presented by an automatic report generator.  

Interpretation of the results is left to the modeler. 
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Figure D-5. Example Graphical Residual Analysis by Month. 
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Figure D-6. Example Graphical Residual Analysis by Global Horizontal Irradiance. 

 

  



67 

 

Chapter 3. Model Validation Results 

 Model = SAM-5-Par  

 Participant = Cameron  

 
Array 1: Shell  
 

Site parameters describe the latitude, longitude, and elevation of the site. Array parameters, such 

as tilt angle and azimuth angle are also specified. Site parameters are used in the calculation of 

sun position and absolute air mass. Latitude = 39.7400 deg Longitude = -105.1200 deg Elevation 

= 1785 m Array Tilt = 40 deg Array Azimuth = 0 deg  

 

 

Quantity Analyzed: AC Power 
 

 

Right plot is raw data. Left plot is bias-adjusted data (modeled power multiplied by an adjustment factor).  

Figure D-7. Scatter Plots Showing Modeled vs. Measured AC Power. 
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Figure D-8.  Distribution Plots of Bias-Adjusted Residuals of AC Power.  

 

 

 

Figure D-9. AC Power Residual Run Plot.  
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Figure D-10. Lag Plots of Residuals: AC Power. 
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Residual Analysis for AC Power 
 

 

Figure D-11. AC Power Residuals by Month.  
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Figure D-12. AC Power Residuals by Hour.  
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Figure D-13. AC Power Residuals by Irradiance. 
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Figure D-14. AC Power Residuals by Air Temperature. 
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Figure D-15. AC Power Residuals by Wind Speed.  
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Figure D-16. AC Power Residuals by Angle of Incidence. 
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Figure D-17. AC Power Residuals by Air Mass. 
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Quantity Analyzed: DC Power  
 

Right plot is raw data. Left plot is bias-adjusted data (modeled power multiplied by an adjustment factor).  

Figure D-18. Scatter Plots Showing Modeled vs. Measured DC Power. 
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Figure D-19. Distribution Plots of Bias-adjusted Residuals of DC Power.  

 

 

  

 

Figure D-20. DC Power Residual Run Plot. 
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Figure D-21. Lag Plots of Residuals: DC Power. 
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Residual Analysis for DC Power 

 

Figure D-22. DC Power Residuals by Month. 
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Figure D-23. DC Power Residuals by Hour 
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Figure D-24. DC Power Residuals by Irradiance. 
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Figure D-25. DC Power Residuals by Air Temperature. 
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Figure D-26. DC Power Residuals by Wind Speed. 
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Figure D-27. DC Power Residuals by Angle of Incidence. 
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Figure D-28. DC Power Residuals by Air Mass. 
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Chapter 4. Summary and Conclusions 
 

This report has presented a personalized example of a standardized analysis of PV performance 

model validation for an example PV system included in a modeling exercise that was part of 

Sandia National Laboratories' PV Performance Modeling Workshop. It was created using 

Matlab's Report Generator to allow rapid creation of such reports.  

 

The Sandia PV Modeling and Analysis Team hopes that this report is valuable for participants to 

evaluate the performance of their models. We encourage any feedback on improvements and 

additional information that would increase the value of such reports.  

 

Contact Information. Please provide any feedback or suggestions to Joshua Stein 

(jsstein@sandia.gov). Tel: 505-845-0936.  
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