

Self-shading analysis in PV simulation: comparison of different software packages

Peter Orosi, Artur Skoczek, Branislav Schnierer Solargis, Slovakia

- About Solargis
- PV simulation model development
- Visualization tool
- GTI and PVOUT shading simulation
- Verification of shading simulation
- Comparison to other software packages
- Conclusions and future work

About Solargis

Solar resource, meteorological and photovoltaic simulation data, software and expert services for power industry

- Prospection
- Project development
- Monitoring
- Forecasting

3

5000+ projects per year

20 years of experience in solar industry

- About Solargis
- PV simulation model development
- Visualization tool
- GTI and PVOUT shading simulation
- Verification of shading simulation
- Comparison to other software packages
- Conclusions and future work

Current status of Solargis 1 model:

- In operation over 12 years
- Some parts are outdated
- Not easy to serve new or special requirements

New challenges:

- Improved input data
- Improved modelling capabilities
- Improved models higher quality of simulation
- Collaboration in project development
- Improved PV knowledge customers are asking more
- More detailed simulation in reasonable time

 \Rightarrow SG2 simulator is being developed

Requirements:

- Processing of 1-, 10-, 15-, or 30- minute data (full time series, customized data)
- Representing available period of data (26+ years)
- Using updated parameters (TEMP, WS, PWAT, AP), added more input parameters (ALBEDO, PREC, DUST, SNOW)
- High resolution digital elevation model
- Single diode model (PVLIB)
- SANDIA inverter model
- Simulate different hierarchical levels of PV power plant
- Supporting actual technical standards (ISO, IEC, ...)
- Provide advanced graphical output
- Validation by independent software packages

Simplified **PV** simulation chain

SOLARGIS

- About Solargis
- PV simulation model development
- Visualization tool
- GTI and PVOUT shading simulation
- Verification of shading simulation
- Comparison to other software packages
- Conclusions and future work

- Detailed shading analysis of fix- and tracker-mounted systems
- Simulation for specific date
- Direct and diffuse shading
- Electric simulation of hierarchical levels of power plant down to cells
- Various strings layouts
- Modules orientation (vertical/horizontal)

Results available in:

- Large number of • parameters
- Interactive graphs •
- Visual presentation

1000

21. Jan

06:00

-

11

W/Wp 500

Group

PVOUT specific

Solar, meteo and electric outputs of PV simulation

.....

750

Highcharts.com

-

-

500

Cell data	
Coordinates	[T: 0, M: 21, SM: 2, C: 15
Electric coordinates	[I: 1, S: 0]
GTI (shading, pollution losses)	849.78688 W/m2
GTI (shading, pollution, angular losses)	842.349594 W/m2
GTI (shading, pollution, angular, spectral losses)	829.158729 W/m2
Diffuse GTI (shading, pollution, angular, spectral losses)	84.604633 W/m2
Temperature	21.585646 °C
Shadow ratio	1
Voltage	0.522571 V
Current	6.73099 A
PV Out theoretical (with all GTI losses)	3.517425 W
PV Out effective (with all GTI losses)	3.517425 W
PV Out mismatch losses	0 W
PV Out contribution ratio	0.0173 %
Disconnected	0

- Results available also in 3D view
- Diffuse part of shading
- Real shade vs. electrical effect
- Cell contribution to generated PVOUT
- Current, voltage, temperature, ... all available operational parameters

• Example for strings

- About Solargis
- PV simulation model development
- Visualization tool
- GTI and PVOUT shading simulation
- Verification of shading simulation
- Comparison to other software packages
- Conclusions and future work

GTI and PVOUT Shading simulation

Raytracing method by Solargis

- Custom implementation
- Monte Carlo backward path-tracing (from cell to the source of light)
- Multiple bounces until the source of light is reached
- Fully converged unbiased per cell solution for Lambertian surfaces (no specular yet)
- Universal 3D scene (arbitrary panel placement)
- Sky model is adapted from Perez model (uses Solargis data):
 - Direct normal irradiance
 - Diffuse irradiance (sky isotropic)
- Easily extendable to more detailed models of sky (assuming the more detailed sky data is available)

© www.scratchapixel.com

GTI and PVOUT Shading simulation

• Single diode model

+

$$I = I_L - I_0 \left[\exp\left(\frac{V + IR_s}{nV_T}\right) - 1 \right] - \frac{V + IR_s}{R_{sh}}$$

• De Soto model (Single diode model params calculated as function of cell temperature and irradiance)

- Algorithms inspired by Pvlib, but with custom implementation
- PV module parameters are from SAM (System Advisor Model) database
- Each cell is simulated
- Bypass diodes
- Blocking diodes (On/Off)

16

• Connections into substrings, strings, inverters – arbitrary layout

- About Solargis
- PV simulation model development
- Visualization tool
- GTI and PVOUT shading simulation
- Verification of shading simulation
- Comparison to other software packages
- Conclusions and future work

• Main idea – to verify all possible simulator sections with independent software packages

- Raytracing shading simulation **bifacial_radiance**
 - Series of Python functions for RADIANCE (ray tracing lighting simulation tool) for photovoltaic (bifacial) simulations
 - Preparing for analysis

- Electrical effects of shading LTspice XVII
 - Analog electronic circuit simulator/schematic capture/waveform viewer, based on SPICE (Simulation Program with Integrated Circuit Emphasis, Berkeley University of California) open source simulator
 - Started

• Level of cells in a PV module

Suneel Raju Pendem, Suresh Mikkili: Modeling, simulation and performance analysis of solar PV array configurations (Series, Series–Parallel and Honey-Comb) to extract maximum power under Partial Shading Conditions (*https://www.sciencedirect.com/science/article/pii/S2352484717302378*)

- KYOCERA-KC200GT PV module
- Differences depending on shading situation
- In average 0.5%, maximum up to 1.0%
- Determined mainly by different Single-diode parameters (temp. coeff, Rs, Rsh) of used PV module (authors vs. SAM database)

• Level of a single module at STC conditions

- Hyundai HiS-M250MG PV module
- 60 cells simulation, 3 bypass diodes
- GTI = 1000 W/m², TEMP = 25°C

Simulation tool	P _{MPP} [W]
SG2	250.27
LTSPICE	250.2828
PVlib	250.2826
PVsyst 7.0.5	250.3
SAM 2020.2.29	250.29

- Level of a single string (shaded back row) landscape orientation
 - Siberia site (Lat: 59.878, Lon: 119.931), N-S tracker (GCR 50%), no backtracking
 - 10 modules in string (10 x 60 cells), landscape oriented, one string per row
 - No DC losses considered

- Selected day 12 May 2017, 16:37 local time
- 600 GTI values fed into LTSPICE simulator and IV and Power curves calculated

- On a single string (shaded back row) portrait orientation
 - Finland site (Lat: 59.865, Lon: 23.172), N-S tracker (GCR 50%)
 - 10 modules in string (10 x 60 cells), **portrait** oriented, one string per row
 - No DC losses considered
 - Selected day 26 July 2020, 8:52 local time
 - 600 GTI values fed into LTSPICE simulator and IV and Power curves calculated

- About Solargis
- PV simulation model development
- Visualization tool
- GTI and PVOUT shading simulation
- Verification of shading simulation
- Comparison to other software packages
- Conclusions and future work

- 9 representative sites
- Sites should represent
 various climate conditions
- SAM and Pvsyst
- Year 2017, hourly data, exported in required format

Site id	Site name	Country	Latitude [°] L	ongitude [°]	Alt [m asl]	Azimuth [°]	Tilt [°]
1	Tvarminne	Finland	59.8651	23.1717	25	180	43
2	Al Dabbyia	Emirates	24.2569	54.1638	3	180	23
3	Daying	China	30.6231	105.1944	337	180	14
4	Pulau	Indonesia	3.8911	108.1786	19	180	2
5	Douala	Cameroon	3.7864	9.6543	5	180	5
6	Kikorongo	Uganda	0.0000	30.0000	1	0	1
7	Vanrhyndsorp	South Africa	-31.2780	18.6493	29	0	29
8	Afrera	Etiopia	12.9830	40.5880	15	180	15
9	Tokko	Russia	59.8779	119.9310	47	180	47

- Fixed tilt 1MWp installations
- Optimum tilt angle
- CSI modules, landscape
- Centralized inverter
- Where possible, other losses set to 0
- 20 PV modules in a string
- 4 strings on a table
- Variants with/without interrow shading (no shading, GCR = 0.4, GCR = 0.5)

Global Tilted Irradiation (POA)

- Solargis exports GHI, DNI, DIF
- GTI is calculated inside of simulation SW with various models
- Albedo (!)
- Different approaches lead to different input data for simulation even after first step – preparation of data

Shading conditions	Yearly difference [%]
Not apply	-0.6 to +0.3

GTI effective

- GTI after shadings, soiling, incidence array losses
- Several IAM approaches exists, SG is using Martin & Ruiz model, which is not implemented in Pvsyst/SAM
- Shading calculation methods, solar geometry, hourly data too rough

Shading conditions	Yearly difference [%]
No shading	-0.2 to +1.4
Rel. spacing 2.5 (GCR = 0.4)	-8.1 to +1.5
Rel. spacing 2.0 (GCR = 0.5)	-10.5 to +1.6

Shaded DC PVOUT

- DC output after conversion, with electrical effect of shading
- Several approaches exists, GTI and TEMP are main inputs (more approaches also for TEMP)
- User knowledge, skills and practice

Shading conditions	Yearly difference [%]
No shading	+0.4 to +4.6
Rel. spacing 2.5 (GCR = 0.4)	-2.1 to +4.6
Rel. spacing 2.0 (GCR = 0.5)	-1.6 to +4.6

- About Solargis
- PV simulation model development
- Visualization tool
- GTI and PVOUT shading simulation
- Verification of shading simulation
- Comparison to other software packages
- Conclusions and future work

Conclusion and future work 1/2

Simulator

- Add and verify all currently used installation types (Fix tilt, Trackers, Bifacial, Floating)
- First version for internal consultancy work Q1 2021
- Public online version Q2 2021*

*Note: Electrical part of simulator is already available in Prospect (on irradiation side high quality view factor model is used as excellent trade-off of speed vs. precision for simple systems with regular layout)

Verification of simulation

- Raytracing check with Radiance
- More combinations of string connections with LTSPICE
- Cable losses, inverters, transformers check with LTSPICE

Conclusion and future work 2/2

Comparison with other simulation tools

- Differences are in solar radiation models, solar geometry calculations this introduces error even at the beginning of simulation chain
- Further differences are introduced by different PV parameters and problematic matching of them between simulators
- Add more simulation tools to comparison (Plant predict, ...) and prepare analysis of each level of energy conversion chain

Thank you for attention!

Solargis http://solargis.com

