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ABSTRACT 

 
PV performance models are used to predict how much 
energy a PV system will produce at a given location and 
subject to prescribed weather conditions.  These models 
are commonly used by project developers to choose 
between module technologies and array designs (e.g., 
fixed tilt vs. tracking) for a given site or to choose between 
different geographic locations, and are used by the 
financial community to establish project viability.  Available 
models can differ significantly in their underlying 
mathematical formulations and assumptions and in the 
options available to the analyst for setting up a simulation.  
Some models lack complete documentation and 
transparency, which can result in confusion on how to 
properly set up, run, and document a simulation.  
Furthermore, the quality and associated uncertainty of the 
available data upon which these models rely (e.g., 
irradiance, module parameters, etc.) is often quite variable 
and frequently undefined.  For these reasons, many 
project developers and other industry users of these 
simulation tools have expressed concerns related to the 
confidence they place in PV performance model results.  
To address this problem, we propose a standardized 
method for the validation of PV system-level performance 
models and a set of guidelines for setting up these models 
and reporting results.  This paper describes the basic 
elements for a standardized model validation process 
adapted especially for PV performance models, suggests 
a framework to implement the process, and presents an 
example of its application to a number of available PV 
performance models. 
 

INTRODUCTION 

 
There exist numerous commercial and academic 
computer models and algorithms for simulating the 
performance of PV systems.  Klise and Stein [1] present a 
description and summary of many existing models.  These 
models differ in their conceptual approach and the amount 
of data required for simulation but each essentially 
predicts the energy (DC and/or AC power over a time 
step) produced for a given global horizontal, and direct 
normal irradiance, and the resultant plane-of-array (POA) 
irradiance and module (or cell) temperature.  The validity 
of a given modeling approach rests in the ability of the 
model to match observed power (and energy) produced by 

the system taking into account measurement and other 
system uncertainties.  A standard method for validating 
these models has not yet emerged.  Furthermore, the 
validation efforts that have been well documented (e.g., 
[2]) are performed for a single model and a unique set of 
arrays and locations and are not designed for comparing 
the performance of different performance models.  Thus, 
models are rarely tested against a common set of weather 
and performance data and it is therefore very difficult to 
know how one model may perform relative to another for a 
given site.  This paper suggests a validation methodology 
that can be applied to models to increase the confidence 
in their results when applied to proposed PV systems.  
The procedure presented here is intended to be applied to 
the full range of module technologies and a representative 
set of locations chosen to represent different climates. 
 

A STANDARD MODEL VALIDATION PROCEDURE 
 

A standard model validation procedure is beneficial 
because it provides a common approach to test the ability 
of various models to predict PV performance for different 
system designs and technologies in varied climates.  In 
addition, the use of a standard approach allows the results 
of different validation studies to be compared, which leads 
to a better understanding of the various strengths and 
weaknesses of available models.  Finally, the approach 
discussed here is intended to provide information that can 
be used to improve existing models by identifying specific 
relationships or sub models that lead to the models 
deviating from measured performance.  For example, 
performance models typically rely on a radiation sub 
model to estimate plane of array irradiance.  This standard 
approach can be used to assess the accuracy of the 
radiation model separately from the accuracy of the 
performance model.  The major elements of the model 
validation process include: 
 
1. Develop data sets for model validation including 

system description, weather data and performance 
data for multiple technologies, applications, and 
climates. 

2. Provide the system description and weather data to 
modelers, who will model the system and provide 
results. 

3. Apply a unified mathematical/statistical approach for 
comparing measured and modeled quantities and 
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document comparisons in a standardized reporting 
format. 

4. Identify opportunities for model improvement, when 
possible. 

 
PV Array Description 
 

To test the effectiveness of our approach under this initial 
model validation, arrays that will be considered need to be 
as close to ideal design conditions as possible.  For 
example, arrays with partial shading should be avoided.  
More complex arrays, for example with row-to-row 
shading, will be included as validation efforts advance to 
features such as shading algorithms.  Heavy soiling 
environments should be avoided, and arrangements 
should be made to regularly clean both the array and 
adjacent irradiance sensors.  The period of assessment 
should ideally last a complete year but, at the least, from 
solstice to solstice to ensure that the full range of solar 
elevation angles is represented.  The system design (tilt, 
wiring diagram, wire lengths) must be fully characterized 
and documented, and performance data on major 
components must be available. 
 
Measured Weather Data 
 

All PV performance models rely on solar radiation and 
ambient air temperature data, which is either measured 
directly at the site or derived from measurements made in 
the region.  The accuracy of the cell temperature sub 
model may be improved with a wind speed measurement 
as well.  In order to isolate the quality of the model from 
the quality of the input data it is desirable to measure solar 
radiation with as much accuracy as possible and to 
evaluate the magnitude of the measurement uncertainties.  
An ideal data set for model validation would include total 
horizontal, horizontal diffuse, direct beam, and plane-of-
array irradiance (ideally characterized by pyranometer and 
matched reference cell). 
 
Another issue is that measurement errors for high quality 
irradiance sensors can be between +2.5% to -10% for 
pyranometers and +/- 2.5% for pyrheliometers [3].  Lower 
quality instruments such as photodiodes can have larger 
measurement errors.  Given this reality and the wide 
variation between instrument maintenance and calibration 
procedures at different sites, it is challenging to compare 
irradiance data collected at two different sites at a 
sufficient accuracy for performance model validation 
purposes. 
 
Measured Performance Data 
 

At a minimum, the AC power output of the array must be 
measured, but if possible, measurements of DC current 
and voltage should also be made as they are useful for 
identifying problems with the array, such as short circuits 
or blown fuses as well as evaluations of inverter efficiency 
and DC side line loses.  If problems occur, data collected 
during these periods should be filtered out of the final data 

set (performance and weather data) so the models are 
only tested under normal operating conditions.  
Additionally, if module back-side temperatures can be 
monitored, the cell temperature sub models can be 
evaluated. 
 
Similar to irradiance measurements, there are accuracy 
issues with electrical performance measurements.  
Cumulative AC power should be measured with a revenue 
grade meter that has an accuracy of between 0.5 and 1%.  
Power measurements directly from the inverter should be 
treated with suspicion, unless independently calibrated.  
The accuracy of DC current and voltage is typically less 
than AC power from a revenue grade meter unless high 
quality, calibrated power analyzers are used.  Variations in 
data quality between different systems limit the accuracy 
of model comparisons across different systems. 
 
Additional Challenges 

 
One of the primary challenges to selecting appropriate 
array performance datasets for model validation turns out 
to be a lack of consistency in quality and data collection 
procedures between different sites.  The use of different 
weather instruments and/or calibration schedules at 
different sites can result in a several percent variation 
between irradiance measurement accuracy.  Similar 
problems exist for electrical measurement accuracy.  In an 
effort to solve this problem, the U.S. Department of Energy 
(DOE) is currently pursuing a program that will define a 
standard set of monitoring equipment and procedures for 
measuring system performance and weather conditions at 
a site.  These standards will be applied to a number of 
federally-funded photovoltaic generation projects across 
the country with the goal of collecting consistently 
accurate data from these systems.  This program should 
provide high quality and consistent performance and 
weather data which will be valuable for determining 
appropriate system derate factors and for testing various 
models. 
 
Mathematical/Statistical Approach 

 
A popular method for comparing model predictions with 
measurements is based on regression techniques and is 
often limited to reporting the R

2
 value from a linear 

regression between measured and simulated quantities 
(e.g. DC or AC power).  Comparisons may also report 
random and systematic errors (e.g., root mean square 
error (RMSE) and mean bias error (MBE)).  While these 
metrics are valuable, they do little to increase our 
understanding of why and where the model deviates from 
the measurements.  The more interesting questions are 
under what conditions errors arise and which sub models 
or components result in modeling errors?  The method of 
residual analysis we propose here provides information 
needed to begin to answer these questions. 
 
Residual analysis is based on examining the distribution 
and sensitivity of model residuals (difference between 
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modeled and measured values) with respect to other time-
varying variables in the analysis.  The relationship 
between predictions of a "perfectly valid" model and 
measured performance should be "statistical" rather than 
deterministic.  This is because models are based on 
mathematical functions and model parameters derived to 
match mean behavior, not point-by-point behavior of the 
system.  Furthermore, all measurements (weather and 
performance) are characterized by uncertainties, meaning 
that any particular measured value is a sample from some 
underlying uncertainty distribution, which is often poorly 
defined.  For these reasons, a completely valid model is 
one which results in residuals that are randomly 
distributed with respect to all variables in the analysis. 
 
We propose the following analysis steps to quantify the 
degree to which this relationship is random.  The first step 
is to identify the quantities of interest and calculate 
residuals.  In the case of PV performance models, these 
quantities can include: annual, monthly, daily, hourly, 
and/or sub-hourly energy produced by the system.  
Intermediate quantities of interest include plane of array 
irradiance and module/cell temperatures, among others.  
There are several ways to determine the degree of 
randomness in the residuals. 
 
First the residuals are plotted as a function of time (run 
plot) to ensure that there are no significant trends with 
time.  A general sudden shift in the residual values 
indicates that there may have been a change in the 
system, such as a component failure, soiling (or cleaning) 
event, etc.  A gradual monotonic trend in the residuals 
might indicate instrument drift or system or component 
degradation.  These features, if they exist, indicate that the 
measured performance data is not as controlled as 
thought and the data may need to be filtered to exclude 
these changes.  If the trend follows a periodic or seasonal 
trend it could indicate an error in the model related to 
temperature or sun elevation angle or a measurement or 
calibration error related to these seasonal sensitive 
parameters.  In addition, outliers can also be identified and 
excluded from the run plot and other statistical 
calculations.  Outliers can occur due to a number of 
reasons, such as occasional shading of sensors, severe 
soiling, electrical noise, etc., but identification after the 
data has been collected is usually very difficult if not 
impossible.  Therefore, it is usually justified to simply 
remove outliers from the validation analysis. 
 
Second, the residuals are plotted as a histogram, a 
cumulative distribution function, and/or on a probability 
plot to examine the distribution.  A perfectly valid model 
should result in normally distributed residuals.  However, 
normally distributed residuals do not guarantee a valid 
model because the periodic (diurnal) nature of PV 
performance data can result in systematic residuals that 
when combined over a year behave normally.  We will 
discuss this later. 
 

Third, the residuals are analyzed using a stepwise 
regression and graphical residuals analysis techniques.  A 
stepwise linear regression of the residuals identifies and 
ranks input variables in order of their contribution to 
residual variance, assuming a linear model form.  
Variables with a relatively high contribution to residual 
variance help to identify specific sub models or 
parameters that are contributing to modeling error. 
 
Stepwise regression is based on performing a series of 
linear regressions of the form: 

  
jj

P

j

o XbbY
1

,    (1) 

where Y is a vector of dependent variables and X is a set 
of P vectors of independent variables included in the 
stepwise model.  The b coefficients in (1) can be used to 
develop a prediction model, if desired.  In the first step, the 
method tests the linear regression between Y (in our case, 
model residuals) and a set of independent variables (time-
varying variables in the analysis) to see which variable 
results in the best linear fit (highest R

2
).  For the second 

and subsequent steps, additional independent variables 
are added to the regression in order of which variable 
provides the highest R

2
 value for each step.  This process 

continues until the probability (p) that an effect is due to 
chance is exceeded.  For our application we are interested 
in the order of the X variables that are selected for the 

model and the resulting R
2
 values.  This method is limited 

in that it can only identify linear trends, but if applied 
judiciously, it can shed light on which variables are most 
correlated with model residuals and help to quantify the 
validity of a PV performance model. 
 
Graphical residual analysis examines the relationship 
between residuals and input variables and is useful for 
identifying both linear and non linear patterns.  An 
illustration of this can be made by plotting mean residuals 
calculated in bins defined by time-varying variables 
against the bin midpoints.  If these mean residual plots 
show systematic trends (monotonic or periodic) this 
suggests a non-random effect.  One simple metric is to 
compare the standard deviation of the bin means divided 
by the standard deviation of the entire residual population.  
Higher values indicate that the variable is affecting the 
residuals. 
 

EXAMPLE APPLICATION OF THE VALIDATION 
APPROACH 

 
To illustrate the approach we examined performance data 
from a small (1 kW) c-Si grid-tied PV system at Sandia 
National Laboratories in Albuquerque, NM between April 1 
2007 and March 31 2008.  As model input, we measured 
irradiance (direct normal, diffuse horizontal, and global 
horizontal), air temperature, and wind speed.  We also 
monitored electrical performance on the DC (current and 
voltage) and AC (power) sides of the inverter.  We ran two 
PV performance models included in the Solar Advisor 
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Model (SAM) [4]: The Sandia Array Performance Model 
(SAPM) [5] and the CEC 5-parameter model [6].  No 
derate factors were included for these runs.   
 
Figure 1 shows scatter plots of modeled and measured 
DC power for both models.  Except for a slight difference 
in the annual energy bias, which could be compensated by 
including an appropriate derate factor, the models appear 
to perform quite similarly.  It is not until the methods of 
residual analysis are applied do differences between the 
models begin to appear.   

 

 
Figure 1 Scatter plots of modeled DC Power against 
measured DC power for two models. 

 
Several outliers are evident in the data.  Outliers below the 
1:1 red line are likely due to occasional shading of the 
irradiance sensors for brief periods of time (cleaning, birds 
perching, etc.).  Outliers above the 1:1 red line might 
indicate occasional shading of the array by field workers, 
birds, or electrical noise from the power sensors.  Before 
proceeding, we have filtered out residuals that are greater 
than 150 W and less than -150.  When a residual value is 
filtered for one model, we filter out the same records from 
the other model to ensure that annual comparisons are 
valid between models. 
 
From this filtered data we next calculate annual percent 
bias error, root mean square error (RMSE) of residuals 
with bias removed and mean bias error (MBE).  The 

annual bias error is the percent difference between 
modeled DC energy (sum of hourly DC power values) and 
measured DC energy.  RMSE is the square root of the 
mean of the squared residuals (bias removed) in units of 
Watts.  Mean bias error is the difference between the 
mean of the modeled power and the mean of the 
measured power in units of Watts.  Table 1 displays these 
statistics for both models.  Quantities are calculated after 
outliers and zero values have been removed. 
 

  SAPM CEC 5 Par 

Annual Bias 5.6% 3.3% 

RMSE (bias 
removed) 26 W 23 W 

MBE 27 W 16 W 

Table 1. Summary of Annual Model Results 

 

 

 
Figure 2. Residual run plots for SAPM (top) and CEC 
5-Parameter model.  X-axis runs from April 2007 to 
March 2008. 

 
Figure 2 compares run plots for both simulations with 
nighttime periods excluded from the dataset. Both models 
appear to show some seasonal pattern to the residuals 
with a dip in the summer period and a spike (more 
prominent in the SAPM residuals) at the coldest period of 
the year (see Figure 3 for a similar plot of air temperature).  
This pattern suggests that the SAPM model results might 
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be improved by lowering the magnitude of the module 
temperature coefficients as the model appears to be over 
compensating for temperature. 

 
Figure 3. Daytime air temperature run plot.  X-axis 
runs from April 2007 to March 2008. 

 
The next step is to analyze the distribution of residuals.  
Figure 4 shows histograms and probability plots of the 
residuals for each model.  The residuals from both models 
share normally distributed characteristics except for a 
slight skewness towards the left, which comes from a high 
frequency of residuals close to zero.  This pattern is 
expected since two periods each day have low irradiance 
(morning and evening) and therefore will be characterized 
by residuals with a low absolute magnitude. 
 

 

 
Figure 4. Comparison of the distribution of the 
residuals: Histograms are shown on the left and 
probability plots are shown on the right. 

 
The final step in the model validation process is to identify 
if there are any other input variables that are affecting the 
residuals in a systematic way.  Stepwise regression is a 
useful technique for this purpose.  We ran a stepwise 
regression on the residuals from each model (outliers 
removed).  The independent variables that were included 

were irradiance (incident beam, diffuse, and total), 
temperature, wind speed, sun zenith and azimuth angles, 
angle of incidence, and air mass.  The results of the 
stepwise regression are summarized in Table 2. 
 

SAPM    

Order Variable R
2 

Incremental R
2 

1 Temp 0.18 0.18 

2 Incident Tot 0.35 0.17 

3 Azimuth 0.37 0.02 

4 Zenith 0.39 0.02 

    

CEC 5-
Par 

   

Order Variable R
2 

Incremental R
2 

1 Incident beam 0.12 0.12 

2 Temp 0.22 0.10 

3 WS 0.27 0.05 

4 Azimuth 0.28 0.01 

Table 2. Stepwise Regression Results. 

 
These results are interpreted as follows.  The incremental 
R

2
 value is the fraction of the variance in the residuals 

explained by the variable.  Therefore, about 35% of the 
variance in the SAPM residuals is explained by a linear 
trend with air temperature and total incident radiation.  In a 
similar pattern, 22% of the variance in the CEC 5-Par 
residuals can be explained by linear trends with incident 
beam radiation and air temperature.  The variable in the 
third and forth steps account for such small fractions of the 
variance they can be ignored. 
 
Figure 5 shows a scatter plot of SAPM residuals vs. air 
temperature. 

 
Figure 5. SAPM model residuals vs. air temperature. 

Figure 6 shows a scatter plot of CDC 5-Par model 
residuals vs. incident beam radiation.  These plots visually 
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demonstrate the correlations identified in the stepwise 
regression. 
 

 
Figure 6. CEC 5-Par model residuals vs. incident beam 
radiation. 

 
SUMMARY AND CONCLUSIONS 

 

A standard approach for PV performance model validation 
has been presented along with a short example of its 
application to two performance models that were run for 
one year of data collected from a PV system in 
Albuquerque, NM.  The methodology is based on applying 
residual analysis, which aims to quantify the magnitude of 
the residuals as well as check the degree to which model 
residuals are randomly distributed and not correlated with 
other variables in the analysis.  Models are typically run 
without derates in order to understand how bias errors 
differ between models.  Initial model validation efforts 
suggest that different models require different derate 
factors, which means that derate is a function of both 
system design and choice of model.  A better 
understanding of this relationship will lead to greater 
confidence in performance model results.   
 
A model validation report should include the following: 

1. A detailed description of the PV system that is 
being used for the validation, including 
information on sensor accuracy and precision. 

2. An accurate description of how the model was 
run including all parameter values 

3. Annual and monthly summary statistics of model 
residuals (both random and systematic errors) 

4. Residual analysis results following the example 
set forward in this paper 

5. Estimate of data and model uncertainties 
 
The method assumes that quality data (weather and 
electrical performance) have been collected and that 
uncertainties in this data are understood.  However, in 
practice, this is rarely the case.  In fact, the application of 
residual analysis frequently aids in identifying data quality 
problems. 

 
As an example, the residual analysis method was 
demonstrated with two performance models on a dataset 
from Albuquerque, NM.  Both models were shown to have 
similar patterns in their residuals, with the highest 
correlations attributed to air temperature and irradiance 
levels, respectively.  Correlation with air temperature 
suggests that the model predictions could be improved by 
adjusting the module temperature coefficients or the cell 
temperature model.  If module backside temperatures are 
measured, the application of residual analysis to the 
modeled cell temperature would determine whether the 
source of the correlation with temperature arises from the 
module temperature coefficients or the cell temperature 
model and coefficients.  
 
Future work will focus on applying these analysis 
techniques to different datasets.  There is a great need to 
examine how commonly used models perform in different 
climates, with different module technologies (e.g., thin 
films, concentrator technology), and with different 
performance and weather instrumentation.  The 
application of a standard approach to validating 
performance models will help improve understanding of 
how these models perform, provide model developers with 
information allowing them to make model improvements, 
and lead to greater confidence in the results. 
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