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What is IEA PVPS TCP? 

The International Energy Agency (IEA), founded in 1974, is an autonomous body within the framework of the Organization for Economic 

Cooperation and Development (OECD). The Technology Collaboration Programme (TCP) was created with a belief that the future of  energy 

security and sustainability starts with global collaboration. The programme is made up of 6000 experts across government, academia, and 

industry dedicated to advancing common research and the application of specific energy technologies.  

The IEA Photovoltaic Power Systems Programme (IEA PVPS) is one of the TCP’s within the IEA and was established in 1993. The mission 
of the programme is to “enhance the international collaborative efforts which facilitate the role of photovoltaic solar energy as a cornerstone 

in the transition to sustainable energy systems.” In order to achieve this, the Programme’s participants have undertaken a variety of joint 
research projects in PV power systems applications. The overall programme is headed by an Executive Committee, comprised of o ne dele-

gate from each country or organization member, which designates distinct ‘Tasks,’ that may be research projects or activity areas.  

The IEA PVPS participating countries are Australia, Austria, Belgium, Canada, Chile, China, Denmark, Finland, France, Germany , Israel, 

Italy, Japan, Korea, Malaysia, Mexico, Morocco, the Netherlands, Norway, Portugal, South Africa, Spain, Sweden, Switzerland, Thailand, 

Turkey, and the United States of America. The European Commission, Solar Power Europe, the Smart Electric Power Alliance (SEP A), the 

Solar Energy Industries Association and the Cop- per Alliance are also members. 

Visit us at: www.iea-pvps.org 

What is IEA PVPS Task 13? 

Within the framework of IEA PVPS, Task 13 aims to provide support to market actors working to improve the operation, the reliability and the 

quality of PV components and systems. Operational data from PV systems in different climate zones compiled within the project  will help 

provide the basis for estimates of the current situation regarding PV reliability and performance.  

The general setting of Task 13 provides a common platform to summarize and report on technical aspects affecting the quality, performance, 

reliability and lifetime of PV systems in a wide variety of environments and applications. By working together across national boundaries we 

can all take advantage of research and experience from each member country and combine and integrate this knowledge into valu able 

summaries of best practices and methods for ensuring PV systems perform at their optimum and continue to provide competitive return on 

investment. 

Task 13 has so far managed to create the right framework for the calculations of various parameters that can give an indication of the quality 

of PV components and systems. The framework is now there and can be used by the industry who has expressed appreciation towards the 

results included in the high-quality reports. 

The IEA PVPS countries participating in Task 13 are Australia, Austria, Belgium, Canada, Chile, China, Denmark, Finland, France, Germany, 

Israel, Italy, Japan, the Netherlands, Norway, Spain, Sweden, Switzerland, Thailand, and the United States of America .  

DISCLAIMER 

The IEA PVPS TCP is organized under the auspices of the International Energy Agency (IEA) but is functionally and legally autonomous. Views, findings and publica-

tions of the IEA PVPS TCP do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries. 

COVER PICTURE  

The process of PLR determination, after initial exploratory data analysis and data quality grading, consists of the four steps are 1) input data cleaning and filtering, 

2) performance metric selection, corrections and aggregation, 3) time series feature corrections and finally 4) application of a statistical modeling method to deter-

mine the Performance Loss Rate value.  
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EXECUTIVE SUMMARY  

This IEA PVPS Task 13, Subtask 2.5 reports on a benchmarking study of the various ap-
proaches for calculating the Performance Loss Rates (PLR) of commercial and research pho-
tovoltaic (PV) power plants in diverse climatic zones. PLRs are calculated with data from the 
PV systems’ power and weather data. The PLR is used by power plant owners, operators, and 
investors to determine the expected power output of a PV system over its installed life. There-
fore, discrepancies in various calculation methods can greatly impact the financial around a 
PV installation. This benchmarking study is necessary due to the inconsistency in reported 
PLR results based on the many different approaches currently used to calculate PLR of PV 
systems. This study is focused on identifying which of the various approaches produce similar 
results and what causes inconsistencies between these different methods. 

The findings of the study lead to a PLR framework which defines the basic four steps common 
to PLR determination. After initial exploratory data analysis and data quality grading, the four 
steps are 1) input data cleaning and filtering, 2) performance metric selection, corrections, and 
aggregation, 3) time series feature corrections, and 4) application of a statistical modeling 
method to determine the PLR value. The PLR of 19 high quality research PV systems and four 
simulated (aka “digital”) PV systems using the various available PLR methodologies. These 
23 datasets are now open access datasets for the PV community. This reports shows the 
impact of data quality and missing data on PLR calculations. Additionally, the “true value” of 
PLR (i.e., mean PLR (𝑃𝐿𝑅𝑖)) of each of the i systems studied is reported. 

The PLR results were compared between the different calculation methods using statistical, 
data-driven, and deterministic analytical methods. These results help define which analysis 
methods produce results that cluster around the mean PLR of the individual PV systems. The 
results of the PLR framework for each PLR calculation method are benchmarked in terms of 
a) their deviation from the 𝑃𝐿𝑅 value, and b) their uncertainty, standard error and confidence 
intervals. Of the 19 systems studied, nine systems had 𝑃𝐿𝑅𝑖 values between -0.4%/annum to 
-1%/a, 3 systems showed lower 𝑃𝐿𝑅𝑖 values, and six had larger 𝑃𝐿𝑅𝑖 values in the range from 
-1%/a to -4%/a.  

Various statistical modeling methods can be applied for the calculation of the PLR of PV sys-
tems. Furthermore, the selections made at each calculation step are highly interdependent 
such that the individual steps cannot be assessed individually. In addition, the different meth-
ods used are impacted by the quality and missingness of the specific dataset in a complex 
manner such that one cannot identify particular methods as more relatively more robust.   

The key findings of this report are: 

• Data quality of the research and commerical PV systems impact the calculated PLR re-
sults. Exploratory data analys is important to assess, quantify, and grade the input data-
sets in order to understand the reliabilty or bias of reported results and to make choices 
on the appropriate methodology. If more than 10% of the daytime data is missing, then 
data imputation techniques are recommended.  

• The degree of data filtering can impact the stability of the PLR results. Heavy data filte-
ring can introduce strong bias in the PLR results, enabling a user to raise or lower the 
reported PLR of a PV system When calculating and reporting PLR, an exhaustive report 
on filter selection and data cleaning is vital to better comprehend the steps in the PLR 
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calculation. Reported PLR values need to be reproducible by others and have clearly re-
ported confidence intervals, so that results among systems are comparable at a 5 % si-
gnificance level. 

• The choice of Performance Ratio (PR) or Power (P) does not strongly influence the PLR 
results and give comparable results ; therefore, neither metric is preferred over the other. 

• The uncertainity of the PLR is determined by the quality of data (power and weather). 
When there is high quality of data to compare between different types of PLR calcula-
tions on a single PV system, the results should be standardized on the 95 % confidence 
intervals. When comparing PLR results between multiple systems, the results should be 
standardized at the 83.4 % confidence intervals. In both of these cases, this standardiza-
tion corresponds to a p-value, capture ratio and significance level of 0.05 and is sug-
gested be best practice. If a time series decomposition is used in the statistical mode-
ling, then the residuals should be retained with the trend, to report comparable confi-
dence intervals.  

• In cases where local weather data is not available, it is possible to use satellite-based 
weather data.  

• Higher order time series data such as I-V, Pmpp (max power point) datastreams, by virtue 
of containing more information, represent an important opportunity for advanced analy-
tics of PV system performance and degradation. 

Careful data filtering is an essential foundation for reliable PLR analysis. Filtering can be di-
vided into two categories: threshold filters and statistical filters used to remove outliers in 
power-irradiance pairs.  High irradiance threshold filters tend to lower the reported PLR which 
is not necessarily representative of real system performance. Statistical filtering (to remove the 
anomalous power-irradiance data pairs) in combination with low to medium irradiance thresh-
olds (to retain a larger amount of the system’s data) provides the most reliable datasets for the 
next steps in PLR determination and produces the most accurate results. 

These results will inform standards development for PLR determination, which was previously 
attempted with an initial proposal for a new IEC 61724-4 standard. However, the results re-
ported here suggest that proposing a specific standardized method is still premature. 

Even if we have not yet defined a single way to calculate the PLR of a PV system, this study 
suggests that the preference aggregation approach may itself represent an accurate ensemble 
approach for PLR determination. By calculating PLR using many filters, performance metrics 
corrections, data aggregations, time series corrections, and statistical modeling approaches 
we can provide consistent and robust estimates of 𝑃𝐿𝑅𝑖 for PV system i. This ensemble, mul-
tiple method, approach may serve as the best model for minimizing the inaccuracies found in 
the different approaches for determining 𝑃𝐿𝑅𝑖.  
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 INTRODUCTION 

The Performance Loss Rate (PLR) of a photovoltaic (PV) system is a parameter, which indi-
cates the decline of the power output over time and is provided in units of % per annum (%/a, 
or %/year). The PLR does not just represent the irreversible physical degradation of PV mod-
ules; it also measures performance-reducing events, which may be reversible or even prevent-
able through good operations and maintenance (O&M) practices. The goal of this Task 13 
Subtask is to define a framework of analytical steps that are required for PLR determination, 
and assess the reliability and reproducibility of the many different approaches and methods 
used by the PV community to determine and report the PLR of a PV system. Another important 
aspect is to establish an approach to assess the quality of PV system power and weather 
datasets from research PV systems and commercial PV power plants, and to identify the ap-
plicability of these analytical approaches, and their steps, to different types of PV system da-
tasets that can be of varying quality1.  

 How is performance loss rate calculated? 

In this work, PLR has been calculated based on DC power readings if they are available, oth-
erwise AC power has been used. An overview of the available measurement data for the indi-
vidual systems can be found in Section 1.2.8, Table 1. Figure 1 presents the necessary steps 
for calculating the PLR. The steps include gathering and understanding of the input data, the 
application of certain filters, the selection and aggregation of a performance metric including 
possible corrections and the application of models to calculate PLR. Typically PLR has been 
reported as a linear rate, which is the simplest, first order model of the temporal change in PV 
system power production, which we refer to as the “assumed linear PLR”. This linear PLR is 
simplest manner of quantifying the temporal drop in power output over the system’s lifetime. 
However, field experience has shown non-linearities in a system’s PLR, so we have moved to 
a second PLR model fit based on change-point segmented regression, which reports the time 
of the change point and the linear PLR for both segments in the dataset. This non-linear model 
can capture and quantify the more complex observed behavior of real systems, and can also 
be extended if the data is of sufficient quality.  

 
Figure 1: General PLR calculation steps using time series data1. 
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First, we have to understand which data are available and the format conditions of our raw 
data. A quality check of the measured data is always recommended and this exploratory data 
analysis will ensure a smooth application of the steps to follow. To characterize the quality of 
time series datasets, we use exploratory data analysis, for example visualizing the power da-
taset as a heatmap (Figure 2) to assess the dataset for outliers, missing data points, and larger 
gaps in the data and then use a grading scheme to document this information (as discussed 
in Section 3.4.1 and Section 0). Next, we apply filters to extract the essence of our data. This 
step is performed to remove anomalous points, measurement errors and non-representative 
data. Usually irradiance, power, temperature and performance ratio (PR) are considered. In 
cases where local weather data (irradiance and temperature) are not available, it is possible 
to use satellite-based weather data. At this point a performance metric has to be selected to 
account for the instantaneous operating conditions of the systems, most notably irradiance and 
temperature. These metrics are usually performance ratios (PR) but also empirically defined 
metrics like power predictive models. Correcting for temperature is not required but in most 
cases suggested. The correction attenuates seasonal variations of the chosen metric. Either 
the measured or modelled module temperature can be used. If the module temperature has to 
be modelled, the choice of the model will depend on available climatic input data. Popular 
representatives are the nominal operating cell temperature (NOCT)2, the Sandia Photovoltaic 
Array Performance Model3, or the weighted moving average temperature model4. The temper-
ature correction of the PR should be performed according to standard IEC 61724-1:20175. 
Additionally, the data will be aggregated to a desired time interval, which is usually days, 
weeks, months, or years. After this step you will be left with a metric of power that is theoreti-
cally independent of the variations in weather conditions through time. Quantified performance 
loss is extracted from the trend between this metric and time.  

 
(a) EURAC 

 
(b) FOSS 

Figure 2: Power heatmap of (a) the EURAC PV System, and (b) the FOSS PV System.  

The last step involves the application of a statistical or empirical methodology to receive your 
systems final PLR. Currently, there are numerous methodologies in the literature to choose 
from. A comparative study of methodologies found in the literature has been performed by 
Phinikarides6 et al., and by Lindig et al.7. 

Two different definitions for the PLR are found in the literature. The relative PLR is calculated 
from power data by: 

Equation 1. 𝑷𝑳𝑹𝒓𝒆𝒍.  [%𝒂 ] = (𝜷𝟏 𝒕𝜷𝟎) ∗ 𝟏𝟎𝟎 

and has units of %/annum ( or %/a). The absolute PLR is calculated by:  



Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Assessment of Performance Loss Rate of PV Power Systems 

 

 

13 

 

Equation 2. 𝑷𝑳𝑹𝒂𝒃𝒔.  [ 𝒂 ] = 𝜷𝟏𝒕 . 
In these equations for the performance loss over time, 𝛽𝑖 are the coefficients of the linear 
additive model’s terms between time and the chosen metric (predicted power or PR), with 𝛽1 
being the coefficient of the slope (units of watts/time for predicted power or 1/time for PR) of 
the line and 𝛽0 being the y-intercept of the model for the PLR calculation (units of watts for 
predicted power and unitless for PR). 𝑡 is a scaling parameter to convert the time scale at 
which power or PR is observed to a yearly scale, as PLR is reported per year (12 for monthly, 
52 for weekly, etc.). The absolute PLR (Equation 2) is independent of the initial starting value 
of the chosen metric, and the units are those of the chosen metric/annum. The absolute PLR 
gives an indication of the absolute power loss rate (i.e. watts or PR loss, per year) but it is 
important that the fitting parameter 𝛽0 is also given8. The relative PLR (Equation 1) makes it 
easier to generalize the findings to the energy yield of the array using the initial yield of the 
plant, correcting for plant size and initial performance and making results comparable between 
different systems. In the course of this work, the calculated PLR refers to the relative Perfor-
mance Loss Rate.  

 Data imputation, filtering and correction approaches 

In the case of missing data different strategies can be implemented. If only a small fraction of 
data is missing, imputation is not necessary and usually data aggregation solves the issue. If 
instead a larger share of data is missing, data imputation is the recommended approach, alt-
hough many different imputation techniques exist. A recent study by Livera et al.9 proposes a 
unified methodology for data processing, quality verification and reconstruction. It was shown 
that PLR studies are sensitive to invalid or missing data rate. If less than 10% of data are 
missing, the study recommends to use the list-wise deletion method, where simply data with 
invalid measurements are omitted. If more than 10% of the data are missing, data imputation 
techniques should be applied. In this study, the Sandia PV Array Performance Model10,11 is 
recommended for missing power measurements, multiple imputation by predictive mean 
matching for missing irradiance measurements12 and the Sandia module temperature model11  
for temperature measurements. In another study by Lindig et al.13 data imputation techniques 
for a considerable amount of missing POA irradiance measurements were compared, where 
other on-site measured climate data were available. Here, the histogram-based gradient boost-
ing regressor performed with highest accuracy among several tested classical irradiance trans-
position as well as machine learning-based models. 

Filtering serves to identify and remove data within the time series that are influenced by factors 
that cannot be modelled14,15. The basic relationships between the output of a solar panel, inci-
dent irradiance, and the temperature are well understood, however real-world applications 
cannot be well controlled and the performance of the plant may have external dependencies. 
Natural occurrences such as night, shading/soiling/snow coverage or inconsistent irradiance 
across modules, operational features such as inverter saturation and outages, or extreme con-
ditions including high temperature and irradiance, can all influence the instantaneous power 
production of a system. These features are typically difficult to control, model, or quantify, and 
may not necessarily relate to the temporal performance of the system, so it is prudent to re-
move these data in any given analysis. 

It is a common approach to remove such data however, the extent of filtering is often an arbi-
trary process that varies by individual analysts, or must be tailored to individual systems in 
many cases. 



Task 13 Performance, Operation and Reliability of Photovoltaic Systems– Assessment of Performance Loss Rate of PV Power Systems 

 

14 

 

1.2.1 Irradiance threshold  

The irradiance threshold is one of the most standard filters applied to PV time series. Data with 
irradiance values that fall below or above given values are removed. Low cutoff values (filtering 
out irradiance data below a given value) are intended to remove night time and low irradiance 
periods. High irradiance thresholds remove outliers and potential errors in measurement. High 
cutoff values are typically set at 1200 W/m2 based on typical maximum terrestrial irradiance 
readings; this generally concerns a small portion of the total data. The low irradiance cutoff, 
however, applies to a much larger portion of data. Low irradiance threshold values have varied 
significantly between research groups. Previously, data was subset to a high irradiance level, 
typically 800W/m2 and above to maintain conditions similar to STC. This has become less 
popular recently given the massive amount of data removal that occurs from such filters, as 
opposed to low irradiance cutoffs which keep more of the operational data. Low irradiance 
cutoffs are generally around 100-200 W/m2.24,49 

1.2.2 Power threshold  

Power thresholding and irradiance thresholding have strong overlap with each other, given 
their fundamental link in PV systems. Removing low irradiance values will also remove low 
power values and vice versa, however power thresholding can still target some specific fea-
tures that irradiance thresholding cannot. System outages are a common occurrence in com-
mercial systems which can be easily removed with a low power filter, as power values will be 
low during these periods even when irradiance is high. High power cutoffs target outliers in the 
time-series; power values that are unreasonably high. Power presents a unique problem since 
it is not uniform across systems due to the different technologies installed at different locations 
that are exposed under different environmental conditions. Power outputs of different systems 
can vary by many orders of magnitude, so threshold values have to be tailored to individual 
systems. A common method is to remove data based on a percentage of maximum power.  

1.2.3 Inverter saturation & curtailment 

Inverter saturation occurs in a PV system when the power output produced by the modules is 
higher than the allowed AC power output of the inverter. At this point the inverter will be "sat-
urated" and the power output will be maintained at this maximum value and will not be able to 
increase, even if the module DC power increases. Curtailment is commonly used to stabilize 
the power output of PV plants and increase the capacity factor, making the systems easier to 
integrate into existing grids, but proactive curtailment can lead to reduced availability. As such, 
inverter saturation is most commonly observed in larger scale commercial PV systems. Satu-
ration poses a unique problem in PV data analysis as it occurs at higher irradiances, when 
systems are assumed to perform under ideal operating conditions. Power values exceeding 
saturation limits are no longer a function of weather conditions and should not be used in 
modeling. Saturated data can be removed quickly if the saturation limit is known by filtering out 
power above 99 % of the limit. 99 % is commonly used but other values can be applied if 
needed for different datasets16. Unknown saturation limits can be identified by observing max-
imum power trends in the data, appearing as flat plateaus at the peaks of daily power trends.  

1.2.4 Clear sky filters  

Clear sky filters attempt to subset data to periods of time with little to no cloud cover during 
operation. There are several different reasons why someone might want to perform this filter 
step. In keeping with the trend of previous filters which remove features that cannot be cap-
tured well by models, clear sky filters may be used to reduce the influence of inconsistent 
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shading on a system. Large systems in particular may experience variation in irradiance be-
tween different strings and the pyranometer under periods of cloud cover, leading to a discrep-
ancy between power produced and irradiance measured. Additionally, clear sky filters are often 
used to merge in modeled irradiance values for a system, which do not perform well in cloudy 
periods. Comparing sensor and modeled irradiance during clear sky periods is a common 
method for detecting sensor drift.  

There are two well used methods of identifying clear sky periods in a system, the 5 factor 
moving average by Reno et al.17 available in PVlib18, and a clear sky index (CSI), used by 
NREL in RdTools19. The first uses a comparison between modeled and sensor irradiance with 
a moving average evaluating which periods show strong similarity. Periods where sensor and 
modeled irradiance show strong overlap are noted as clear sky periods. The CSI is a less strict 
method and simpler to apply. It also used a comparison between sensor and modeled irradi-
ance, but identifies clear periods using a ratio between the two, defaulting to 85 %. Any period 
where the sensor irradiance is within 15 % of the modeled irradiance is flagged as clear sky or 
near clear sky. Of these two methods the 5 criteria method is stricter which ends up removing 
large amounts of data, and is generally not used in a direct PLR analysis. The CSI method 
keeps more data and is incorporated into the standard RdTools PLR analysis pipeline.  

1.2.5 Influence of filtering on PLR analysis 

A comparison of PLR values of the same systems calculated with different power correction 
models and filter criteria showed that PLR magnitude and uncertainty shows a dependence on 
filtering24.  

1.2.6 Shading, soiling and snow corrections 

Shading, soiling, and snow coverage may refer to events inhibit light reaching the surface of 
the modules, while not being represented in the local irradiance if the sensors are cleaned 
periodically or freed from snow. This effect is observed as a drop in power without a corre-
sponding drop in irradiance. Identifying these periods can be tricky as their influence on the 
power output can vary greatly from minor affects to large scale loss, making them difficult to 
detect. System logs can identify snow events or dust build up, however these may not be 
available or accurate for all systems. Automated soiling removal is usually done with outlier 
detection. When converting power measurements to performance ratios, soiling events will 
produce lower performance ratio values than regular operating periods and can be filtered 
out20. Other methods can also be applied which use power and irradiance trends and clustering 
to detect and remove data influenced by soiling21. Shading, soiling, and snow can vary greatly 
between systems and it is recommended that PV analysts should view power corrected time-
series (performance ratio, weather regression, etc.) of their systems to identify any potential 
areas of concern.  

1.2.7 Performance metric IQR filters 

P and PR are the most common performance metrics used. PR is a unit-less parameter, which 
describes the relationship between incoming irradiation and produced energy by a PV system. 
Since power and irradiance follow a nearly linear trend over a wide range of irradiance, this 
relationship can be used to detect and remove non-realistic power-irradiance pairs created 
through sensor shadowing, alignment or other issues. Usually, statistical thresholds based on 
interquartile ranges around the median or mode22 of the performance metric values are used 
to filter irradiance and power data.  
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1.2.8 Data filters summary 

In Table 1, the applied filters and the chosen aggregation steps are summarized together with 
the model names and the performance metric used.  

Table 1: Chosen filter and aggregation steps.  

 

Models Metric 

Filter 

Aggregation 
# 

Irradiance 

[W/m2] 

Module 

temperature 
[oC] 

Power PR 

1 STL1, YoY1 PRTcorr  500-1200 -40 – 100 
(0.01 – 1.2) 

*Pnom 

±2 standard devi-

ations around 

monthly PR 

mode 

Monthly 

2 

STL3, STL4, STL5, 

STL6, LS-LR4, LS-

LR5, LS-LR-6, LS-

LR7, STLYoY1, 

YoY4 

6K 

PVUSA 

XbX 

XbX + UTC 

>100  
(0.01 – 1.2) 

*Pnom 

1.5x inter quar-

tile range 
Monthly 

3 VAR1 P 350-850   

±2 standard devi-

ations around in-

stantaneous PR 

Daily then 

yearly 

4 R-LR1, LS-LR1 P 800-1000 

5k bin con-
taining larg-

est share of 

data points 

 
±5 % from 

yearly median 

PR 

None 

5 CSD1, LS-LR2 PR    
0 %< PR 

<100 % 
Monthly 

6 
STL2, YoY3 

CSD2, LS-LR3 
PRTcorr 200-1200 -50 – 100 

0.01W-(98th 

percentile of 

Pac*0.99) 

PR > 0 Monthly 

7 

YbY1 

or 

YbY2 

P 
780-820,  

980-1020 

18-22 

 

23-27 

  Yearly 

8 

LS-LR8, CSD3, 

STL7, STL8, HW1, 
Prophet1 

PR 50-1300  
(0.1-1.3) 

*Pnom 

±3 standard devi-

ations around 
monthly PR 

mode 

Monthly 

9 YoY2 PVWatts 200-1200 -50-110 P > 0  Daily 

10 YoY5 PR 100-1000   
1.5x inter quar-

tile range 
Daily 

11 SCSF1 P Strict clear-sky filter Daily 

 Metrics 

A metric is a certain measure which provides information about the performance of a PV sys-
tem in one way or another. In the following, the most commonly used metrics in PV are de-
scribed.  

1.3.1 Power (P) metrics 

This metric refers to the measured system power, filtered and adapted depending on the se-
lected statistical method for PLR determination. For instance, the power metric was subject to 
very strict irradiance filters and temperature binning for the R-LR1 and LS-LR1 models. 
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1.3.2 Performance ratio (PR) models 

The performance ratio at the DC side is calculated by Equation 35:  

Equation 3.  𝑷𝑹𝑫𝑪 = 𝒀𝒂𝒀𝒓𝒆𝒇 = 𝑬 𝑷𝒏𝒐𝒎⁄𝑯𝑷𝑶𝑨 𝑮𝑺𝑻𝑪⁄  . 

Where Ya is the array yield and Yref the reference yield; E the DC energy produced over a 
certain time t, Pnom the nominal power at STC, 𝐻𝑃𝑂𝐴 is plane-of-array irradiation over a certain 
time t, and GSTC the irradiance of 1000 W/m2. We have decided to use DC value to eliminate 
losses due to DC/AC conversion. 

The PR can be corrected for temperature using temperature coefficients as provided by the 
manufacturers (PRTcorr). The advantage of correcting temperature based on power data over 
the PV power plant’s lifetime is the large range of available temperature, increasing the cer-
tainty of the power versus temperature trend.  

The correction should be performed according to IEC standard procedures. Seasonal fluctua-
tions are still evident even when temperature corrected PR is used; this is due to other effects 
such as angle of incidence and spectrum. Furthermore, if the temperature coefficients are bi-
ased, a seasonality due to changing temperature ranges will be introduced23.  

1.3.3 Predicted power models 

Generally, a power prediction model is built to predict power as a function of weather over a 
period of time, then standard or representative weather conditions are applied to all models. 
This produces a predicted power value, at the given conditions, that is in theory independent 
of weather. Four Predicted Power models are used in this study to compare the effects of the 
subsequent time-series they produce on the PLR determined. The models are described in 
detail24. Here only a few details are given: 

XbX: The XbX model, is a data-driven, multiple regression predictive model25 with an irradiance 
(G) and a temperature (T) term (Equation 4) and 𝛽𝑖 are this model’s coefficients, while 𝝐 Is the 
residual error between the model and the data. The flexibility of this model enables non-linear, 
change point PLR and allows for either Plane of Array (POA) or Global Horizontal Irradiance 
(GHI) to be used in the irradiance term (G) and air or module temperature in the temperature 
term (T). 

Equation 4.  𝑷𝒑𝒓𝒆𝒅 = 𝜷𝟎 + 𝜷𝟏𝑮 + 𝜷𝟐𝑻 + 𝝐 

The X in the name refers to a given time step the power prediction model is built over; a model 
built on a day of data would be Day-by-day (DbD), while in Week-by-Week (WbW) or Month-
by-month (MbM) modeling, data would be subset by weeks or months. The time step is chosen 
based on the condition of the data being modeled, and what modeling will be performed on the 
overall dataset. 

XbX + UTC: When modeling on small time scales such as individual days, it can be difficult to 
properly model temperature given the low variation that typically occurs in that time. Days 
staggered by season (i.e. summer versus winter) have very different ranges of temperature, 
so modeling temperature between them can lead to extrapolation. By introducing a universal 
temperature correction (UTC), one can produce a single temperature coefficient that can be 
used to convert to the desired representative temperature value. Temperature correction co-
efficients are provided with a given module by the manufacturer, however they can also be 
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obtained from the time-series data to better reflect the actual outdoor performance of the mod-
ule.  

Equation 5.  𝑷𝒄𝒐𝒓 = 𝑷𝒐𝒃𝒔/(𝟏 + 𝜸𝑻(𝑻𝒐𝒃𝒔 − 𝑻𝒓𝒆𝒑)(𝑮𝒐𝒃𝒔/𝑮𝒓𝒆𝒑)) , 𝑷𝒄𝒐𝒓 = 𝜷𝟎 + 𝜷𝟏𝑮 + 𝝐 

Here, data are subject to a high irradiance 𝐺𝑟𝑒𝑝 of 900 W/m² and the slope of the irradiance 
over temperature becomes 𝛾𝑇. In Equation 5, obs represents observed or measured values 
and 𝑇𝑟𝑒𝑝 is a representative temperature. 

This method is most similar to a temperature corrected performance ratio used in other PLR 
tools such as RdTools26,27, but structured as a Predicted Power model for better comparison 
with other models.  

PVUSA: The well-known PVUSA model28 is physics based and described by Equation 6: 

Equation 6.  𝑷 = 𝑮𝑷𝑶𝑨(𝜷𝟎 + 𝜷𝟏𝑮𝑷𝑶𝑨 + 𝜷𝟐𝑻𝒂𝒎𝒃 + 𝜷𝟑𝑾𝑺) . 
Here, Tamb is the ambient temperature [°C], and WS the wind speed [m/s]. 

The assumption of the model is that the current of a solar panel is a function of the irradiance 
GPOA and the voltage is a function of the irradiance GPOA and the module temperature, which 
is predicted by the ambient temperature Tamb and the wind speed WS. 

6K: The 6K model29 is the most complicated Predicted Power model used in this study and is 
summarized in Equation 7, 8 and 9. The name “6K” refers to the coefficients fit by the model. 

Equation 7.  𝑮′ = 𝑮𝑷𝑶𝑨/𝑮𝑺𝑻𝑪 

Equation 8.  𝑻′ = 𝑻𝒎𝒐𝒅 − 𝑻𝑺𝑻𝑪 

Equation 9.𝑷 = 𝑮′(𝑷𝒏𝒐𝒎 + 𝒌𝟏𝒍𝒏(𝑮′) + 𝒌𝟐𝒍𝒏(𝑮′)² + 𝒌𝟑𝑻′ + 𝒌𝟒𝑻′𝒍𝒏(𝑮′) + 𝒌𝟓𝑻′𝒍𝒏(𝑮′)² + 𝒌𝟔𝑻′²)  
This model uses POA irradiance (GPOA) and module temperature (Tmod) but models them as a 
fraction of standard irradiance (GSTC) and difference from standard temperature (TSTC). Addi-
tionally, this model requires a nameplate power input (Pnom) and will always predict Pnom at STC 
conditions. 

PVWatts: This simple Predicted Power model (Equation 10) follows the irradiance and tem-
perature scaling approach of PVWatts30 as implemented in the PVLib Python software pack-
age31.  

Equation 10. 𝑷 = 𝑮𝑷𝑶𝑨/(𝟏𝟎𝟎𝟎 ∗ 𝑷𝒏𝒐𝒎) (𝟏 + 𝜸𝑻(𝑻𝒎𝒐𝒅 − 𝟐𝟓°𝑪))  

 Statistical methods 

Finally, a statistical methodology is applied to compute the PLR, given in percentage per year. 
The methodologies applied in this paper are: 

1.4.1 Linear regression (LR)  

PLR is commonly assumed as linear, where a single PLR value is representative of the entire 
lifetime of a system. Alternately, non-linear PLR methods23,32 can be used to determine change 
in the trend of performance between different periods during the lifetime of the system. 

Assumed linear PLR is determined by regression of the predicted metric versus time or through 
year-on-year modeling. For regression determined PLR, the slope and intercept of the trend 
directly relates to the change in system performance. Both, least squares linear regression 
(LS-LR) and robust regression (R-LR) have been used in this study. Least squares regression 
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can be simple if only one dependent variable predictor, or it can be ordinary least squares 
(OLS) regression if there are multiple predictors, and the errors are homoscedastic and uncor-
related. If the errors are normally distributed, then OLS regression provides maximum likeli-
hood estimation, and the coefficients are the most probable33. Robust regression is another 
form of regression that is less sensitive to assumptions about the data-generating process, 
and can be less affected by outliers, compared to ordinary least squares regression, while 
being more computationally demanding34. 

1.4.2 Classical seasonal decomposition (CSD)  

CSD separates seasonality and a certain irregular component from a set of measured time-
series data, using a centered moving average, to determine the performance trend over time35. 
The step of the seasonal period depends on the data resolution and is usually set to 12 for 
monthly data. In this case, six months at the beginning and six at the end of the observation 
period are not included in the averaged time series. By removing the trend from the measured 
data and averaging months of consecutive years the remainder corresponds to the residuals36. 

1.4.3 Seasonal and trend decomposition using Loess (STL)  

The idea behind Seasonal and Trend Decomposition Procedure Based on Locally Weighted 
Regression (Loess), commonly referred to as STL, is to decompose the PR or predicted power 
time-series into a seasonal part, a remainder and a trend using locally weighted, non-paramet-
ric regression35. The trend is a nonlinear curve37, and STL functions are available in R in both 
the base R stats package and the STL-Plus package38,39. Afterwards, a linear fit of the trend is 
performed to get a regression representation of the performance evolution of the PV system, 
of which the gradient is multiplied by a factor to present yearly values (12 for months, 365 for 
days etc.) of the final PLR. This statistical method is suitable for time series with a seasonal 
behavior and where the data are of high quality7.  

STL serves to highlight another important consideration in defining a robust methodology for 
PLR determination, even a single statistical method can give different results, depending on 
the programming language (R or Python) and the specific implementation. STL was first de-
veloped by W. S. Cleveland in 197940, 198841 and 199037. In 2010 a PhD student of Cleve-
land’s, Ryan Hafen, in his PhD thesis research developed and published the stlplus R pack-
age39. Loess is non-parametric regression, which is more complex than simple regression. 
This case of one statistical method demonstrates that to define a robust standard method of 
PLR determination, even a single statistical method, can have varying performance, depending 
on its implementation. For example we tend to find the best performance from the STL function 
implemented in the stlplus R package because it is capable of handling more diverse data 
quality issues successfully when it is applied.  

Just as the dataset, the filtering and statistical methods must be defined, even the implemen-
tation and coding language of a statistical method can lead to differences in results. In this 
benchmarking study, STL7 and STL8, were performed using the Python programming lan-
guage and follow the exact same approach including filtering, metric and STL time series de-
composition. The only difference is that STL7 uses STL ported from the STL function in the 
base R stats package42 to Python as the rstl package43, while STL8 uses a STL implementation 
developed in Python’s statsmodels package44,45. The stlplus package is currently not ported or 
available in Python. These two Python implementations of STL, appear to perform differently 
on the real datasets we are studying here, for reasons that are not currently clear.  
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1.4.4 Year on year (YoY)  

The YoY approach for PLR determination was first applied by Hasselbrink46, and is now avail-
able in the RdTools package19 in Python and the PVplr package in R21. In YoY the differences 
between one data-point in a calendar year with the data-point at the same position in the sub-
sequent year are accumulated over a 1-year period. The median value of these multiple yearly 
PLR represents the overall system PLR. The PLR of the YoY method is normalized to the first-
year's median, though one can choose not to normalize. The confidence interval is calculated 
using a Monte-Carlo, or bootstrap resampling of the distribution47,48. 

1.4.5 VAR method  

The VAR method gives degradation rates from one year to the next, and then by averaging 
the annual degradation rates we get the PLR of a system. Regression models of power varia-
tions with respect to environmental variations (irradiance and ambient temperature) are fitted.  

The basic idea of the VAR method is to build a model of correlation between yearly variations 
of output power with respect to yearly variations of environment, hence the name: the VAR 
method49. After filtering, aggregating and transforming the data, it fits a regression model, ∆𝑃 =𝑓(∆𝐺, ∆𝑇𝐴𝑚𝑏) + 𝑑, meaning that if 𝑓 is accurate enough, 𝑑 is the variation of power not due to 
environmental changes, but only due to the system condition itself, and then interpreted as a 
performance degradation. It gives degradation rates from one year to the next and by averag-
ing the annual degradation rates we get the PLR of a system. 

1.4.6 Year-by-year (YbY) 

A yearly aggregation of strictly filtered data is the basis for this method. Consequently, the first 
year of measurements is set as a base value to 0 % and the yearly difference in produced 
power within the filtered frame is evaluated in the following years. The average of differences 
between yearly values in respect to year 1 is the final PLR. 

1.4.7 Statistical clear sky fitting (SCSF) 

The SCSF method fits a constrained, non-parametric clear sky model to the data50. This model 
is adaptive and can model sites with complex shade patterns, as well as unobstructed fixed-
tilt and tracking systems. The model is very robust to missing data and poor data quality and 
can be used for data imputation, clear sky condition detection, and clear sky adaptive forecast-
ing. The algorithm compares data on sub-daily, daily, seasonal, and yearly time scales to es-
timate daily and seasonal patterns. One of the constraints on the problem is a consistent year-
over-year percent change in daily energy, which becomes the estimate of system degrada-
tion51. This approach is unique in that no other information or data is required besides meas-
ured power—no irradiance data, no temperature data, no meteorological data, no system con-
figuration information, and no metadata. Therefore, this method is suitable for the analysis of 
distributed rooftop PV systems as well as the more highly instrumented and well modeled 
centralized PV power plants. In addition, irradiance sensors can themselves be treated as a 
PV power signal source, allowing the automated analysis of sensor drift. 

1.4.8 Holt-Winters (HW) 

The HW seasonal model can be used to forecast and smooth performance time series of PV 
systems. It consists of three smoothing parameters, a level, slope and seasonal component. 
Although the HW model can be used in an additive or multiplicative manner, the additive 
method should be used for PV time series because seasonal variations are expected to be 
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fairly constant throughout the time of observation. A weighted average is used to compute the 
slope of the level and the smoothing parameter determine how fast the exponential weights 
decline over the past observations52,35. 

1.4.9 Prophet (Prophet) 

The Prophet R package is for forecasting time series datasets using four parameters, namely 
trend, seasonality, holiday and error53,54. The holiday term is used in business applications and 
is omitted in this study. Seasonality is considered for daily, weekly and yearly recurring pat-
terns. Since PV power time series are expected to show monthly seasonality, the built-in yearly 
seasonality option of the model is set to TRUE which takes into account monthly patterns. 
Time is used as a regressor and the trend is fit using a piecewise linear and a saturating growth 
model. Prophet has the advantage of incorporating change-point analysis which is useful for 
computing nonlinear PLR. However, in order to calibrate this model to provide meaningful re-
sults for PV degradation behavior, the flexibility of the extracted trend, number of potential 
change-points, and range had to be adjusted according to the process and settings reported 
by Theristis et al.55,23. 

1.4.10 Piecewise linear, change point PLR  

Piecewise linear PLR combines the ease of use and interpretability of other regression meth-
ods but does not use a linear assumption. It is instead able to quantify non-linear trends in PV 
time-series. This functionality is available in the R package, PVplr21. Instead of a single slope 
being representative of the entire trend, the piecewise linear PLR uses piecewise regression 
to identify the change point location56 and then divides the time-series into two (or more) sep-
arate linear trends, each with its own PLR magnitude and uncertainty. The PLR values of the 
individual trends have all the same interpretability of an assumed linear PLR, but non-linear 
behavior can be observed in the differences in PLR between segments.  

 Combinations of performance metrics & PLR calculation models 

Table 2 presents an overview of the metric - statistical method combinations used in this study.  

Table 2: Combinations of metrics together with statistical models. 

 LR STL YOY VAR CSD YbY SCSF HW Prophet 

PR 
LS-LR2 
LS-LR8 

STL7 
STL8 

  
CSD1 
CSD3 

  HW1 Prophet1 

PRTcorr LS-LR3 
STL1 
STL2 

YoY1 
YoY3 

 CSD2     

XbX LS-LR4 STL3        

XbX + UTC LS-LR5 STL4 
YoY4 

STLYoY1 
      

PVUSA LS-LR6 STL5        

6K LS-LR7 STL6        

PVWatts   YoY2       

Power 
R-LR1 
LS-LR1 

  VAR1  
YbY1 
YbY2 

SCSF1   
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 DESCRIPTION OF PLR BENCHMARKING DATASETS 

  Data characteristics: time interval, time length, data types  

Data from PV systems is not standardized and can show significant variation based on the 
source. There are several characteristics related to how the data was collected that are con-
sidered before PLR analysis.  

• Time interval - The time interval of collected time series data. Typical values range from 
1-15 minutes but can vary between 30 seconds to one or more hours, depending on 
hardware used or user settings. Typically, high resolution data with a low time interval 
is desired as it gives a more complete look at the performance of a system and a larger 
amount of data improves model fitting.  

• Time length - The total operating time of a system. For understanding the long term 
performance of systems, the obvious choice of data would be from systems that have 
been operating for long periods of time, however waiting is the only option for extending 
time lengths. Typically, systems with less than two years of data have difficulties in PLR 
measurements as seasonal trends in the data are difficult to account for in less time. 
For reliable PLR evaluation, at least a 3- or 5-year time series should be available57,58.   

• Available variables - Power (P), irradiance (G), and temperature (T) are the foundation 
of most PLR analyses but they can be measured in a number of different ways. Power 
can be recorded at the AC or DC side of the inverter, or represented as energy accu-
mulation instead of a power reading. DC power is desired over AC power readings in 
order to remove inverter influences. Irradiance can be reported as global horizontal 
irradiance (GHI) or plane-of-array (POA) irradiance. Temperature generally refers to 
ambient or module temperature, typically measured by a thermocouple. Backsheet 
temperature measurements of single modules may not be representative of the whole 
array in given PV system, particularly in larger plants. Additional variables including 
wind speed and direction, current, voltage, rainfall, air mass, etc. can all be used in 
certain types of PLR analysis, depending on availability. Lastly, metadata are also im-
portant; e.g. module and inverter characteristics, location, scale, orientation etc.  

• Collection quality - Events such as missing values or gaps, reading errors, or sensor 
drifting are all commonly observed in PV system data. This is why the proposed PV 
data quality grading is a useful measure to better understand why one system can be 
modeled easily, and yet another can have multiple approaches fail. Most PLR analyses 
are robust to a certain amount of such problems, or can account for some of them. 
However, PLR cannot be calculated reliably in datasets with large proportions of anom-
alous or missing data, or large time gaps in the dataset. Regular maintenance of sen-
sors, site performance, and observation of data collection can reduce the impact of 
these issues.  

 Systems with monthly power only  

2.2.1 IEA-PVPS Task 13 database 

Figure 3 shows the spatial distribution of the total number of PV systems, which are collected 
within the IEA PVPS Task 13 database, and the ones which are usable for calculations59. One 
necessary requirement for a PV system to be included in the study is the availability of a time 
interval of at least 24 months, whereby a small amount of missing months can be approximated 
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using a rolling mean/moving average. From 173 systems in total, data of 120 were usable for 
this study (Figure 4). Unfortunately, the database has not been updated since 2016 and it is 
relatively incomplete.  

 

Figure 3: PV systems within Task 13 database: red transparent dots represent all sys-
tems available; blue dots represent all usable systems59. 

Little is known about the state of the plants. Several PV parameters such as the power, the 
performance ratio and others are given as well as the location of the plants. There is no infor-
mation concerning the history of the plants. No data are provided on how thorough the systems 
are monitored, if and which degradation modes and other performance reducing effects took 
place and if countermeasures are carried out. For example, downtime due to inverter issues 
could negatively affect the PR, which is the primary parameter for the calculations, and would 
artificially influence the results. 

 

Figure 4: PV systems in the IEA-PVPS Task 13 database, as a function of their Köppen-
Geiger climate zone and technology59.  



Task 13 Performance, Operation and Reliability of Photovoltaic Systems– Assessment of Performance Loss Rate of PV Power Systems 

 

24 

 

Table 3. Metadata summary of the PV systems analyzed in this benchmarking study.  

Dataset 
Tech-

nology 

Coun-

try 

Pnom  

(kWp) 
Time Period 

Azi-

muth 
Tilt 

Measurement 

available 
KGC† 63,60 

KGPV‡ 
64,65 

EURAC pc-Si Italy 4.20 
02/11 - 
01/19 8 yrs. 188.5o 30o 

GPOA, Tamb, WS, 
Tmod, PDC, PAC Dfb, ET EM, DM 

FOSS mc-Si 
Cy-
prus 1.03 

06/06 - 
05/16 

10 
yrs. 180o 27.5o 

GPOA, Tamb, WS, 
Tmod, PDC Csa, BSk DH, CH 

RSE CdTe CdTe Italy 1.16 
06/09 - 
12/18 

9.5 
yrs. 180o 30o GPOA, Tamb, PAC  Cfa, Cfb  DM 

RSE pc-Si pc-Si Italy 1.68 
06/09 - 
12/18 

9.5 
yrs. 

180o 30o GPOA, Tamb, PAC Cfa, Cfb DM 

Pfaff-
staetten A* 

pc-Si Austria 2.11 01/13 - 
04/19 

6.25 
yrs. 

220o 22o GPOA, Tamb, Tmod, 
PDC, PAC 

Cfb, Dfb DM 

Pfaff-
staetten B* 

pc-Si Austria 2.06 01/13 - 
04/19 

6.25 
yrs. 

220o 22o GPOA, Tamb, Tmod, 
PDC, PAC 

Cfb, Dfb DM 

Pfaff-
staetten C* 

CIGS Austria 2.25 01/13 - 
04/19 

6.25 
yrs. 

220o 22o GPOA, Tamb, Tmod, 
PDC, PAC 

Cfb, Dfb DM 

US DOE 
c10hov6 

mc-Si USA 3.24 
11/15 - 
05/18 

2.5 
yrs. 180o 35o 

GPOA, Tamb, Tmod, 
PDC BSk, Cfb CK, DH 

US DOE 
kodpi8 

mc-Si USA 3.24 
11/15 - 
05/18 

2.5 
yrs. 180o 35o 

GPOA, Tamb, Tmod, 
PDC BWk, BWh BK, CK 

US DOE 
luemkoy 

mc-Si USA 3.24 
11/15 - 
05/18 

2.5 
yrs. 180o 35o 

GPOA, Tamb, Tmod, 
PDC Dfb EM 

US DOE 
lwcb907 

mc-Si USA 3.24 
11/15 - 
05/18 

2.5 
yrs. 180o 35o 

GPOA, Tamb, Tmod, 
PDC Dfb EM 

US DOE 
t3pg1sv 

mc-Si USA 3.24 
11/15 - 
05/18 

2.5 
yrs. 

180o 35o 
GPOA, Tamb, Tmod, 

PDC 
BSk, Cfb CK, DH 

US DOE 
wca0c5m 

mc-Si USA 3.24 11/15 - 
05/18 

2.5 
yrs. 

180o 30o GPOA, Tamb, Tmod, 
PDC 

Cfa DH 

US DOE 
wxzsjaf 

mc-Si USA 3.24 11/15 - 
05/18 

2.5 
yrs. 

180o 35o GPOA, Tamb, Tmod, 
PDC 

BWk, BWh BK, CK 

US DOE 
z0aygry 

mc-Si USA 3.24 11/15 - 
05/18 

2.5 
yrs. 

180o 30o GPOA, Tamb, Tmod, 
PDC 

Cfa DH 

NREL1 mc-Si USA 2.70 05/16 - 
07/19 

3.25 
yrs. 

180o 30o GPOA, Tamb, WS, 
Tmod, PDC, PAC 

Dfb,  BSk DH, CH 

NREL2 HIT USA 1.00 
08/07 - 
12/16 

9.25 
yrs. 180o 40o 

GPOA, Tamb, Tmod, 
PDC, PAC Dfb, BSk DH, CH 

NREL3 mc-Si USA 94.00 09/09 - 
01/18 

8.25 
yrs. 

175o 10o 
 

GPOA, Tamb, WS, 
Tmod, PAC 

Dfb, BSk DH, CH 

NREL4 mc-Si USA 524.00 
07/11 - 
05/18 

6.75 
yrs. 165o 9.1o 

GPOA, Tamb, WS, 
PDC, PAC Dfb, BSk DH, CH 

4 Digital 
power 

plants** 
c-Si France 

1.82 
each  5 yrs. 180o 21o 

GPOA, Tamb, WS, 
PDC, PAC Cfb DM 

* Second hand Modules;  
** Irradiance data from HelioClim for Rennes/France.  
† A-Tropical, B-Arid, C-Temperate, D-Continental, and E-Polar climates;  
f-no dry season, m-monsoon, s-dry summer, w-dry winter, S-steppe, W-desert; 
a-hot summer, b-warm summer, c-cold summer ,d-very cold summer, h-hot, k-cold 
‡ A-Tropical, B-Desert, C-Steppe, D-Temperate, E-Cold and F-Polar climates; 
L-Low, M-Medium, H-High and K-Very High irradiation zones   

Using longitude and latitude, which are provided for each dataset, it is possible to organize the 
plants by Köppen-Geiger classification60,61,62,63 visible in Figure 4. It is visible that the gross 
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amount of systems is located in a temperate climate without dry seasons since more than 50 % 
of the systems are located in Germany and Italy. Most plants are either made out of poly-
crystalline silicon or thin-film materials. No information is provided which thin-film material is 
used. 

 Systems with high quality time series power & weather data 

19 datasets were made available to the interlab benchmarking participants. An overview to-
gether with the most important metadata information on these PV Systems is summarized in 
Table 3. The climate zone categorization used in Table 3 is based on the well-known Köppen-
Geiger classification60,63. We also include the new KGPV classification which includes irradi-
ance intensity (L-K) but has reduced weather distinctions (A-F)64,65.  

In the following, the PV systems are briefly introduced and Figure 5 shows their geographical 
distribution. All datasets are publicly available at doi: 10.17605/OSF.IO/VTR2S66. 

 

Figure 5: The locations of the PV Systems used for the benchmarking exercise1. 

2.3.1 EURAC PV system 

The EURAC PV System was installed at the airport of Bolzano/Italy (ABD) in 2010. The poly-
crystalline system has a nominal power of 4.2 kWp. The system is ground mounted with a fixed 
tilt of 30° and an orientation of 8.5° west of south. Additionally, a weather station is installed in 
close proximity to the test side. Various meteorological parameters are recorded such as plane 
of array irradiance, ambient temperature, and wind speed. On the rear side of the system the 
module temperature is measured. The sensors are systematically cleaned and periodically 
calibrated in order to comply with the IEC 61724-1:2017 standard5. The weather data are rec-
orded with a time interval of one minute. Since the electrical measurements are taken at time 
intervals of 15 minutes, all values are averaged to the same time interval. A period of eight 
years of power data, shown in the heatmap of Figure 2a is evaluated ranging from February 
2011 until January 2019. It is important to mention that the time of observation is not equal to 

http://dx.doi.org/10.17605/OSF.IO/VTR2S
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the system age; the system began operating in August 2010, which is roughly six months 
before the observation time starts. The delayed start of observation was set to exclude initial 
degradation effects. 

2.3.2 FOSS PV system 

The FOSS PV system was installed at the outdoor test facility of the University of Cyprus (UCY) 
in Nicosia, Cyprus and was commissioned in May 2006. The climate in Nicosia, Cyprus is 
characterized as hot semi-arid. The PV system dataset used in this investigation, (Figure 2b) 
is obtained from a ground-mounted mono-crystalline Silicon (mono-c-Si) system that is rated 
at 1025 Wp, as depicted from the manufacturer’s datasheet. Furthermore, the PV system is 
installed in an open-field mounting arrangement due South and at the optimum inclination an-
gle of 27.5°.  

The monitoring of this system started in June 2006 and both weather data and operational 
measurements were acquired and stored in a database. More specifically, the electrical per-
formance of the system along with the prevailing irradiance and environmental conditions were 
recorded according to the requirements set by the IEC 61724-1:2017 standard5, and stored 
with the use of a robust measurement monitoring system. The monitoring system records 
plane-of-array irradiance (secondary standard pyranometer), wind and temperature measure-
ments. Periodic calibrations and inspections of the sensors were performed, in order to ensure 
high quality data and reveal any deviations from the real measurements.  

The PV system time series constructed for the purpose of this evaluation covers a period of 
10 years starting from June 2006 until June 2016. 

2.3.3 RSE PV systems  

RSE PV systems are based in the experimental area of Milan (north of Italy), where various 
PV technologies are analyzed. The data analyzed in this report (Figure 6) refers to two PV 
power plants, respectively with c-Si and CdTe technology. Both systems started to operate in 
June 2009. The c-Si (polycrystalline silicon) PV plant is a ground-mounted PV plant, full south 
orientation, and tilt of 30°. The PV plant has a nominal power of 1.61 kW, constituted by a 
string of 8 PV modules of 210 W. The CdTe (Cadmium telluride) PV plant is a ground-mounted 
PV plant, full south orientation, and tilt of 30°. The PV plant has a nominal power of 1.16 kW, 
constituted by 4 string of 4 PV modules of 72.50 W. A weather station is installed close to the 
test site and allows the acquisition of irradiance parameters (plane-of-array) and air tempera-
ture. According to the IEC61724-1:20175, sensors are periodically cleaned and calibrated. Op-
erational data are acquired every 10 seconds and sent to the remote unit which stores them 
as mean or integral values (1 and 15 minutes intervals).  

The PV System Pfaffstaetten is a 5 kWp rooftop system, running from 01/2013 until 04/2019. 
The system has three strings, two with 2nd hand poly-crystalline modules (110 and 120 Wp, 
dating back to the end of the nineties), and the third with CIGS modules (150 Wp). 

The inverter has three separate MPP trackers, and these are connected to 

• Pfaffstaetten A: 18 x pc-Si modules (initially measured power 1.812 kWp) 
• Pfaffstaetten B: 18 x pc-Si modules (initially measured power 1.669 kWp) 
• Pfaffstaetten C: 15 x CIGS modules (rated at 2.250 kWp) 

The monitoring data is inverter based with a 10 min timestep, but during morning start-up and 
closing-down additional measurement data with arbitrary timesteps are produced. If the in-
verter is idle during the night, no data is recorded, as can be seen in Figure 7. 
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(a) CdTe 

 
(b) pc-Si 

Figure 6: Power heatmap of (a) the RSE CdTe PV System, and (b) the RSE pc-Si PV 
System.  

2.3.4 Pfaffstaetten PV systems 

 
(a) pc-Si 

 
(b) pc-Si 

 
(c) CIGS 

Figure 7: Power heatmap of (a) the Pfaffstaetten A PV System, and (b) the Pfaffstaetten 
B PV System and (c) the Pfaffstaetten C PV System.  

Irradiance values are based on a c-Si reference cell as irradiance sensor, and the ambient 
temperature sensor is integrated in the case underneath, so the ambient temperature readings 
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are not the air temperature (in the shadow), but these inner case temperatures in the sun, and 
therefore follow more or less the temperature of the one module temperature sensor attached 
on the back side of one of the Kyocera modules.  

There are no additional temperature measurements for the MiaSolé CIGS glass/glass mod-
ules, which may operate at slightly higher temperatures. 

2.3.5 US DOE RTC baseline systems 

The US Dept. of Energy Regional Test Center Project67 has five sites. At each site there are 2 
systems that are used as the “Baseline Systems” and the data from these is publically availa-
ble68. These publically available, “open” datasets are currently version 0.2, and consists of a 
series of 8 identical PV systems, 3.24 kW strings with the same module and inverter, in 4 
locations/climate zones. The system Locations and their Köppen-Geiger climate zones62 in-
clude Nevada (BWk), New Mexico (BSk), Florida (Cfa), Vermont (Dfb). The data is 1 minute 
time series inverter data with ground and satellite weather data. The systems began logging 
data in 2016, with an identical system in Nevada starting up about 9 months later (Figure 8). 
The Vermont system has recently been discontinued but the historical data is still available. 
These systems have proved to be useful for research purposes given that they are nearly 
identical at each climate zone, including the same number and brand of modules and inverters. 

2.3.6 NREL PV systems 

Four PV systems from the US National Renewable Energy Laboratory (NREL) were included 
in the benchmark study (Figure 9), all located at the NREL main campus in Golden, Colorado. 
Short time interval 1-minute data is collected for three systems, with 15-minute data collected 
for the fourth and largest system. System #1 is similar to the RTC baseline systems described 
above using the same PV module type in one string of 10, total system size 2.7 kWp, 3 kWp, 
with data available from April 2016 until July 2019. 

System #2 is also a small research system using a string of 5 silicon heterojunction modules, 
1 kWdc, 1.8 kWac, with data availability from August 2007 until December 2016. Both of these 
small research systems have co-located calibrated broadband pyranometer G_POA irradiance 
measurements, wind-speed and back-of-module temperature measurement, and are mounted 
on free-standing open-rack structures.  
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(a) c10hov6, New Mexico (BSk) 

 
(b) kobdpi8, Nevada (BWk) 

 
(c) luemkoyy, Vermont (Dfb) 

 
(d) lwcb907, Vermont (Dfb) 

 
(e) t3pg1sv, New Mexico (BSk) 

 
(f) wca0c5m, Florida (Cfa) 
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(g) wxzsjaf, Nevada (BWk) 

 
(h) z0aygry, Florida (Cfa) 

Figure 8: Power heatmap of the eight US DOE RTC PV Systems, labeled (a) to (h) with 
their 7 digit alphanumeric identifier, location and Köppen-Geiger climate zones.  

Systems #3 and #4 are larger building-mounted systems with lower-quality silicon photodiode 
POA irradiance measurement. A nearby weather station provides calibrated GHI irradiance, 
wind speed and ambient temperature. System #3 is a 94 kWp building-mounted system at 10 
degree tilt and using multicrystalline-Si modules and a single 75 kVA central inverter. System 
#4 is a 524 kWp carport using high-efficiency back-contact modules connected to two 250 kVA 
central inverters, also at ~9 degree tilt angle.  

 
(a) #1 

 
(b) #2 

 
(c) #3 

 
(d) #4 

Figure 9: Power heatmap of the NREL PV Systems a) #1, b) #2, c) #3, and d) #4.  
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2.3.7 EDF digital power plants  

 
(a) 

 
(b) 

 
(c)  

 
(d) 

Figure 10: Power heatmap of the EDF Digital Power Plants (a) , (b) , (c) , and (d).  

The simulated "digital" power plant has been created with EDF R&D's tool "PV NOV". It con-
sists of a string of 10 PV modules in series, with the following characteristics: 

• From Data sheet: Pmpp = 180 W (+/- 3 %), Isc = 5.29 A, Voc = 44.8 V 
• From Flash simulated: Pmpp = 182 W, Isc = 5.44 A, Voc = 44.8 V 

The string is connected to a 2 kW inverter. The behavior of the plant is simulated with a 
Dymola/BuildSysPro Software, developed by EDF69. The model for the PV modules is a 2 
diode model. 

Solar data were derived from HelioClim70 with a temporal resolution of 15min. All in all, four 
scenarios have been created with the following settings: 

• 1 year weather data repeated for 5 years with and without known degradation 
• 5 years different weather (Real weather conditions given by HelioClim for a period of 4 

years and an added fifth year which is the minimum value of each previous years) with 
and without known degradation 

The degradation of PV panels is simulated with a linear variation of parameters: short circuit 
current (𝐼𝑠𝑐 , initial value: 5.44 Amps, variation of -4 %/a), series resistance per cell (𝑅𝑠𝑐𝑒𝑙𝑙, initial 
value: 0.00012 Ω 𝑚2, variation of +7 %/a), shunt resistance per cell (𝑅𝑠ℎ𝑐𝑒𝑙𝑙, initial value : 
0.14745 Ω 𝑚2, variation of -6 %/a), and the temperature coefficient (∝𝐼𝑠𝑐, initial value : 
0.037 %/K, variation of -1.5 %/a). The resistances at the module level, can then be determined 



Task 13 Performance, Operation and Reliability of Photovoltaic Systems– Assessment of Performance Loss Rate of PV Power Systems 

 

32 

 

as follows: 𝑅𝑠𝑚𝑜𝑑 =  𝑅𝑠𝑐𝑒𝑙𝑙 ∗ 𝑁𝑠/(𝑁𝑝 ∗ 𝑆𝑐𝑒𝑙𝑙), roughly 0.6 ohm, and 𝑅𝑠ℎ𝑚𝑜𝑑 =  𝑅𝑠ℎ𝑐𝑒𝑙𝑙 ∗ 𝑁𝑠/(𝑁𝑝 ∗𝑆𝑐𝑒𝑙𝑙), roughly 740 ohms, where Ns and Np and the number of cells in series and parallel re-
spectively, and Scell is the area of the cells. The values of the parameters change every hour, 
according to the chosen degradation rate (a decrease for 𝐼𝑠𝑐 , 𝑅𝑠 and 𝛾𝑇, and an increase for 𝑅𝑠). The theoretical degradation for the simulated dataset with induced power loss was simu-
lated from two viewpoints: 

• @STC the Pmpp degradation is -4.41 %/a (degradation with a linear variation of parame-
ters: Isc, Rs, Rsh, and the temperature coefficient (α) of Isc ) 

• Absolute energy degradation is -4.89 %/a, which has been quantified for the systems 
with repeating weather data. 

The resulting four digital power plant PV systems consist of timestamp, irradiance (𝐺𝑃𝑂𝐴), am-
bient temperature (𝑇𝑎𝑚𝑏), wind speed, AC power and DC power, and their DC Power heatmaps 
are shown in Figure 10. 

An additional set of systems was created at a later period by request for the evaluation of 
multiple low PLR values. The creation basis of this additional data is identical to the previous, 
including repeated weather and the weather with a different final year, however more cases 
were given across a larger range of PLR. In total, 11 cases (ranging from case 0 to case 10) 
were created with input energy degradation values from 0 %/a to -4.89 %/a (the previous deg-
radation case).  

 Systems with higher-order time series data types  

Additional data types, such as I-V, Power, Weather, or imaging data, can provide new insights 
into PV systems performance and degradation. 

2.4.1 Time series I-V, Pmpp datastreams 

The Fraunhofer-ISE dataset71 contains both time-series Pmpp measured at about 1 minutes 
time interval and time-series current-voltage (I-V) curve data measured at about 5 minutes 
time interval. The I-V curves are measured by the electronic load ESL-Solar 50072, with the 
number of data points in each I-V curve varying from 40 to 80. In addition there other variables 
such as air mass, irradiance, temperature of modules measured and recorded by local sensors 
at the same time, these variables are very useful for analyzing and modeling the module be-
havior over time.  

The data contains eight commercial PV modules produced by two manufacturers, one brand 
has a module architecture of glass-backsheet while the other brand are double glass modules. 
Five out of eight modules started exposure in 2010 while another three started in 2012, four of 
them are still being traced right now, while others ended exposure earlier, so the system age 
for these eight modules varies from 3 years to 9 years. They are also located at three different 
locations and these three locations are classified to be different climates using the kgc pack-
age63 in CRAN. Three of them are located in Gran Canaria (Spain) which is in the  BWh climate 
zone, three of them are located in the Negev desert (Israel) which is in the BSh climate zone 
and two of them are located in the Bavarian Alps (Germany) which is the ET climate zone.  
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 CALCULATION OF PLR BY MULTIPLE METHODOLOGIES 

This section of the report is divided into eight parts. First, Section 3.1 discusses the steps of 
calculating PLR while Section 3.2 shows a detailed example applied to a high quality time 
series dataset of a research PV system, the EURAC system. Next in Section 3.3 the ability to 
calculate PLR from low quality, monthly interval, data is demonstrated. In Section 3.4 the sta-
tistical characteristics of the 19 PV power time-series datasets are presented. These 19 PV 
datasets should be considered as predominantly well-tended “research” PV systems, yet they 
have many anomalous characteristics. And yet we expect these to be of higher “data quality” 
than commercial PV power plant datasets. Exploratory data analysis allows us to characterize 
these datasets and a dataset grading schema and tool are presented in Section 3.4.1. The 
dataset characteristics and grading of the systems used in this benchmarking study are sum-
marized in Section 3.4.2. The contributions to the uncertainty of the PLR results are discussed 
in Section 3.4.3 along with the need for handling uncertainty quantification in regression and 
YoY methods, so as to arrive at comparable uncertainties. In Section 3.4.4, the calculated PLR 
of the digital plants are investigated. The digital plants used in the benchmarking had large 
simulated PLR values, so an additional study of the impact of PLR magnitude on the computed 
PLR of these simulated digital power plants was performed and is addressed in Section 3.4.5. 
In Section 3.4.6 the impact of different data filters utilized in the benchmarking exercise are 
compared by applying them on two PV system datasets while holding the other calculation 
steps the same. Next the evaluation methodology is presented for how the results based on 
the real PV power time series datasets and the diverse set of filters and methods are presented 
in Section 3.4.7. Finally, in Section 3.4.8 benchmarking study, across all filters and modelling 
methods are compared by quantitative comparison of two groups of results: 1) G7-3-24: Eval-
uation of 7 systems with 24 approaches and 2) G13-7-17: Evaluation of 13 systems with 17 
approaches.  

 PLR pipeline workflow 

Nearly all PLR calculation pipelines follow a similar framework of four steps (Figure 1), with the 
specific application of each step being up to the discretion of the person performing the calcu-
lation. A notable exception is the SCSF method50 which evaluates PLR from power data only. 
The specifics of the data analysis steps and analyst choices are discussed in Section 1 as to 
how a modeler can make decisions for each step. Here we show examples of how decisions 
made at each of the four steps of PLR determination can influence the final PLR result. And 
unfortunately, a data analyst, knowledgeable of these effects, could bias the results, by rather 
simple use of filters, anomaly removal, or other factors.  

 Example calculation PV system PLR 

Here, the necessary steps for calculating the PLR of a PV system are visualized step-by-step 
through the analysis of the EURAC PV system dataset. The specifications of the corresponding 
system can be found in Section 2.3.1 and Table 3. 

The steps in PLR analysis using STL37 applied to the monthly temperature-corrected PR are 
shown in Figure 11 . The performance trend, extracted with STL, using the stlplus R package39, 
is fit with a simple linear model to determine the assumed linear PLR. Additionally, the PLR 
has been evaluated with a one change point, two segment model, to determine the change 
point position and the PLR of the initial and long-term segments. 
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Figure 11: Example calculation steps for retrieving PLR value: a) Yield; b) performance 
ratio (PR); c) filtered PR; d) temperature corrected performance trend; e) performance 
trend of temperature corrected PR; f) assumed PLR; g) change point linear PLR1.  

First, the power time series or the yield (the power divided by the installed capacity, in 
kWh/kWp), is shown in Figure 11a as the monthly aggregated yield of the power plant through-
out the time of observation. The system shows peak yield in the summer time and the lowest 
yield in the winter months. In Figure 11b, the selected metric (in this case PR) is added to the 
plot. It is shown, that due to the strong temperature dependence of PV modules, especially in 
crystalline Silicon, the PR exhibits high seasonality with low values during the warmer months 
and higher values during the colder periods. The application of a strict irradiance filter com-
bined with a PR filter, to exclude values out of the range of two times the standard deviation of 
the monthly PR mode, yields the filtered PR, shown in Figure 11c. The applied filters corre-
spond to filter 1 of Table 1 in Section 1.2. It can be seen that the PR time series exhibits a 
sinusoidal shape, which is an indicator of the exclusion of non-representative measurements 



Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Assessment of Performance Loss Rate of PV Power Systems 

 

 

35 

 

or measurement conditions through filtering. Figure 11d shows the effect of temperature cor-
rection according to the standard IEC 617214-1:20175. The correction was performed using 
measured module temperature values, and one can see a reduction in the apparent season-
ality of the time-series. The chosen statistical method for determining the final assumed linear 
PLR was a combination of STL37 and linear regression. STL is a non-parametric, locally-
weighted regression, which extracts a non-linear trend from a dataset by excluding the remain-
ing seasonality and the residuals. This non-linear trend (Figure 11e) can then be fitted with a 
simple linear model using regression to determine the best fit linear trend line, visible in Figure 
11f. The yearly aggregated gradient of the linear function, divided by the intercept, is the final, 
assumed linear, relative performance loss rate of our system (see Equation 1). The intercept 
of the function represents the PR value at the starting time of the time series. For this system, 
a relative PLR of -0.90 %/a was calculated using the approach explained above. For the as-
sociated uncertainty of the PLR value, the residuals are added back into the STL trend com-
ponent. The uncertainty between the STL combined component and the linearized trend is 
±0.09 %/a and accounts for one standard deviation. 

Additionally, a piecewise linear, change point PLR with one change point and two segments is 
shown in Figure 11g. Here, the segmented non-linear trend is divided into two segments and 
the change point regression fits the two linear segments and the change point location simul-
taneously, with the constraint that the two PLR segments are continuous. In this case the 
change point is found to be at 2.5 years, and the first piecewise linear PLR is 𝑃𝐿𝑅1 = 0.95 %/𝑎. 
The second PLR segment has 𝑃𝐿𝑅2 = −1.49 %/𝑎 for a time span of 5.5 years. Piecewise 
linear, or change point PLR provides a more detailed performance evaluation compared to the 
simpler assumed linear PLR result and is very useful for in-depth characterization activities of 
PV system performance. For example, many commercial PV systems exhibit stable or slightly 
increase power over the first 1 or 2 years, which would be the first segment, and then the slow, 
long-term performance loss of the second segment, begins, and extends over the systems 
lifetime.  

 Low quality data PLR results 

Here, the performance loss of 120 PV systems included in the PVPS IEA Task13 database 
was calculated. The systems have been in operation for up to 17 years and are located in the 
U.S. and Europe. The chosen methodologies for this study are either seasonal-trend decom-
position using LOESS (STL) and year-on-year (YoY) statistical modeling to determine PLR. 

In Figure 12 an overview of the results is given for the two PLR methodologies selected. The 
figure shows the PLR distribution for the STL and YoY approach. Both methodologies show 
similar trends.  

The PLR peaks at the bin of -1.0 to ‑0.5 %/a and the distribution is approximately normal con-
sidering all 120 systems as we would expect from the central limit theorem for these PV sys-
tems22. STL delivers a median PLR value of -0.71 %/a and YoY a value of -0.63 %/a. Looking 
at the results, it seems that both methodologies deliver very similar values when applied to 
monthly data, as we find them here. It became apparent that STL should be used with care if 
the dataset in question shows a non-seasonal behavior. This non-seasonality can arise from 
different causes, such as the prevailing climatic conditions, the technology of the system or the 
application of certain weather dependent corrections. It can be expected that an overestimation 
of seasonality falsifies the results to a certain degree. Within the database no such cases were 
found because the climatic zones the systems are located in, have distinct seasons. It is be-
lieved that the overall results are relatively accurate. 
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Figure 12: PLR distribution of database using STL and the YoY approach59. 

The aforementioned seasonality problem that arose for time-series decomposition is not an 
issue if YoY is used. It was very interesting to realize that the YoY methodology is highly af-
fected by the amount of digits with which the PR is specified. The PR is given in the database 
with two digits, e.g. 0.88. The usage of a PR with just two digits results in a very inaccurate 
representation of the actual value. A high number of PLR values from the calculated PLR dis-
tribution results in a PLR of 0.00 %/a. That is why the PR was calculated again by dividing the 
monthly final yield with the reference yield, which are provided in the database as well. Intro-
ducing this extra step yields more reasonable final values because the PR is reported with 
greater precision. 

Figure 13 shows the PLR divided by technology and methodology. Additionally, the amount 
and the average operational lifetime (median) of the systems is provided. When comparing the 
trend between the methodologies, again, both methodologies provide similar results. In both 
cases, mono-crystalline silicon systems (mono-Si) degrade at the slowest rate, while thin-film 
systems are subject to the highest degradation rate. These results confirm observations of 
previous studies73. On average, the thin-film systems were installed 25-30 months before the 
crystalline systems. This fact could further result in the observed elevated PLR values. The 
absolute median and mean values, comparing the methodologies, are quite similar, except for 
the median of the mono-Si systems. Here, YoY provides an almost doubled overall PLR com-
pared to STL. One reason might be the relatively small distribution of available systems com-
pared to the other technologies. The distribution of the STL results is non-Gaussian. The 𝑃𝐿𝑅 
of the mono-crystalline systems is similar across the methodologies. Due to a stronger left 
skewness of the distribution, the median is quite low for STL. By comparing to YoY and also 
considering values from the literature74, it seems that this value is less trustful. 
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Figure 13: PLR divided by technology and methodology; amount and average opera-
tional lifetime of systems59. 

It is visible that both PLR calculation methodologies, STL as well as YoY, are relatively well 
suited to calculate the PLR of PV systems where low quality data are provided. Under the 
given circumstances, the application of both methodologies results in relatively reasonable  
PLR rates. The larger the number of studied systems is, the more the PLR distributions ap-
proach a similar, and more normal, Gaussian distribution. 

 High quality data PLR results 

3.4.1 Exploratory data analysis of the power time series datasets 

To assess the meaning, accuracy, and robustness of the calculated results for a particular 
dataset, it is useful to determine during initial exploratory data analysis (EDA), the appropriate 
statistical measures of PV dataset quality. This provides insights into which datasets are robust 
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to analysis, and which datasets may fail at particular steps or for certain types of analysis, such 
as the case where different aspects of data missingness makes analysis impossible75,76. In 
addition, these measures can guide the user on the expected uncertainties in comparing 
among multiple PV systems, which may have quite different equipment and operational histo-
ries, and therefore dataset quality. From time series analysis of building electricity time series 
data to perform virtual building energy audits, a time series dataset grading schema has been 
developed which has proven useful to alert users to expect high, or low, quality of results of 
data analysis of the systems77. We have adapted this approach for application to PV system 
time-series datasets such as the power and irradiance time series, and have implemented PV 
dataset quality grading in the PVplr package. We statistically characterize the power time se-
ries and then grade each dataset in three areas, outliers, missing data points, and data gaps. 
We have developed a grading schema, summarized in Table 4, and the measures and grades 
are summarized in Table 5.  

Table 4: Data quality grading criteria. Outliers include the impact of clouds, and anom-
alous datapoints; missing data is 5 or fewer sequential datapoints; and the longest 
gap is of all the data gaps in the dataset. The dataset length needs to be > two years 
for a passing “P” grade, otherwise it is graded F. 

Letter Grade Outliers (%) Missing percentage (%) Longest Gap (days) 

A Below 10 Below 10 Below 15 

B 10 to 20 10 to 25 15 to 30 

C 20 to 30 25 to 40 30 to 90 

D Above 30 Above 40 Above 90 

Outliers are typically defined as points which are greater than ±1.5 times the interquartile range 
(IQR), and these may, or may not, be anomalous datapoints that should be removed78. In time 
series data, such as PV time series, outliers can arise from causes that fall beyond the expec-
tations of a model, so for example of the power generated by a PV system, if there were no 
clouds, then a linear second-order model can fit the daily and seasonal changes in power 
production79. But clouds, being statistically random, are not easily modeled, and the power 
drops due to cloud shading, would be outlier data points, yet at the same time still physically 
meaningful. Anomalies are a subset of outliers, and correspond to datapoints that are not 
physically reasonable, but arise due to a mistaken measurement or malfunction of a piece of 
equipment80. For outlier detection we use the tsoutliers R package, which identifies time series 
outliers arising from clouds and anomalous data points such as arise from measurement er-
rors81,82. Various of the filtering and correction methods discussed here, are examples of ap-
proaches to address dataset outliers. Missing datapoints in a dataset is another typical data 
error that can impact analysis. A set of up to 5 sequential missing data points can be imputed 
rather easily using simple interpolation, so we consider the % missing datapoints the second 
important dataset characteristic to identify, and if desired, to impute. Longer data gaps in a 
time series dataset can arise from system or communications outages, can be quite problem-
atic for different analysis methods, and are hard to correct or impute in an attempt to mitigate 
their impact, so we consider this the 3rd important characteristic. These three categories of 
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statistical properties give us a quantitative sense of the "missingess" of the dataset, and learn-
ing which filters, and methods are robust in the face of outliers, missing datapoints and data 
gaps, is important to advance the field. There is much active work on data imputation to ad-
dress both outliers, missing datapoints and data gaps, but we have not implemented these 
here83. 

3.4.2 Dataset quality issues 

Various dataset quality issues are present in the selection of PV system power time series, as 
can be seen by in Table 5, and are discussed here.  

• EURAC System: No major data quality issues have been detected. This system has 
more than 10 % outliers (Figure 2a), probably due to cloudiness. 

• FOSS System: No major data quality issues have been detected. This system had a 
higher amount of missing datapoints (Figure 2b). 

• RSE Systems: No major data quality issues have been detected. These systems had a 
25-day long gap in the datasets, as can be seen in the power heatmap (Figure 6). 

• Pfaffstaetten Systems: A relatively low amount of measured data has been reported. 
This can be seen in the missing % and the # of datagaps, and the power heatmap (Fi-
gure 7). 

• US DOE RTC Baseline Systems: Several data quality problems have been detected and 
are visualized in the power heatmap (Figure 8). These resulted in some filter-metric-
methods to be unable to calculate sensible PLR results for some methodologies. System 
c10hov6 experienced a four month long initial inverter clipping followed by a period of 
four months without data. Afterwards, normal data acquisition without major issues is re-
ported. The systems luemkoy and lwcb907 are also, at least partially, subject to inverter 
clipping and negative power values are recorded. It is likely that the polarity has been 
switched for the time period of recorded negative values. For the luemkoy system, posi-
tive PLR values have been calculated which can be traced back to an initial power limita-
tion due to inverter clipping followed by a period in which the power was not capped. 
System t3pg1sv is subject to significant inverter clipping. In the data of the systems 
wca0c5m and z0aygry a data shift in the power output measurements has been de-
tected additionally to inverter clipping.  

• NREL systems: The power versus measured irradiance data for the PV systems NREL1 
and NREL2 show a substantial number of outliers as is visualized in the power heatmap 
(Figure 9). Therefore, a large share of the raw data has to be filtered to ensure reliable 
data. For the PV systems NREL3 and NREL4, the measured irradiance sensor data 
were faulty and was be replaced by modelled clear-sky values (that were provided in the 
raw data files). The irradiance sensor used for NREL3 is installed a distance of a few 
hundred meters away from the PV system, and has a different tilt, which was translated 
to the plane-of-array, and shows decreasing irradiance values over time, possibly a re-
sult of a degrading reference cell. 

3.4.3 Uncertainty contributions to reported PLR results 

Uncertainties in the final reported PLR result arise from multiple contributions, including meas-
urement and sampling uncertainties. The power, temperature, and irradiance time series da-
tasets which are used as inputs for PLR determination, are a sample of a real world PV system. 
Consider two different samples of this one system, a 1 minute interval and a 5 minute interval 
time series, acquired over the same time period, but with different instruments. These two time 
series, measured by different instruments, would exhibit different standard deviations (𝜎𝑚𝑒𝑎𝑠) 
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due to the instrumentation's characteristics. If instead we use two identical measurement in-
struments, each measuring the system over the same time period, e.g. by lagging one meas-
urement by 30 seconds, these should have the same measurement uncertainty 𝜎𝑚𝑒𝑎𝑠, but they 
are two independent samples, and their sampling uncertainties will vary when one considers 
the population mean 𝜇 of the PLR (i.e. the 𝑃𝐿𝑅) of the PV system, and will have sampling 
standard deviations (𝜎𝑠𝑎𝑚𝑝) that are also different. Of course each dataset is a sample of the 
system and contains contributions to its standard deviation arising from measurement and 
sampling uncertainty, intrinsically. The easiest way to determine the dataset standard deviation 𝑠 of the time series is by seasonal decomposition, into the dataset’s seasonal, trend and re-
sidual components, and then the sampling standard deviation can be calculated from the time 
series residuals.  

Table 5: Statistical characteristics of PV datasets used in the PLR benchmarking exer-
cise.  

In many fields, researchers do not clearly distinguish between the standard deviation (sd) of a 
set of measurements, a descriptive statistic, and the standard error (se) of the mean84. As a 

Dataset  Grade  
Power  

Variable  
Length  Outlier  Missing  Data Gaps:  

ID 
Outlier, Missing, 

Gaps, P/F 
[kW] (Years) (%) (%) 

# of 
gaps 

longest 
gap (days) 

EURAC BAAP 𝑃𝐷𝐶  7.95 11.5 2.1 2847 7 
FOSS* BCBP 𝑃𝐷𝐶  10.9 13.8 32.9 134 26 

RSE CdTe AABP 𝑃𝐴𝐶  9.59 10 0.3 2 25.3 
RSE pc-Si BABP 𝑃𝐴𝐶  9.59 11 0.3 2 25.3 

Pfaffstaetten A* ADAP 𝑃𝐷𝐶  6.33 2 41.2 2082 0.9 
Pfaffstaetten B* ADAP 𝑃𝐷𝐶  6.33 2.2 40.1 2014 0.9 
Pfaffstaetten C* ACAP 𝑃𝐷𝐶  6.33 2.2 39.1 2061 0.9 

US DOE c10hov6 BAAP 𝑃𝐷𝐶  3.16 14.6 1.2 69 13.1 
US DOE kobdpi8 BAAP 𝑃𝐷𝐶  3.44 13.2 0.4 15 5.2 
US DOE luemkoy AAAP 𝑃𝐷𝐶  2.45 10 0.5 16 3.7 
US DOE lwcb907 BACP 𝑃𝐷𝐶  3.47 13.8 3.7 33 49 
US DOE t3pg1sv BACP 𝑃𝐷𝐶  3.47 12.2 3.7 33 49 

US DOE wca0c5m BAAP 𝑃𝐷𝐶  3.16 12.8 1.2 69 13.1 
US DOE wxzsjaf AAAP 𝑃𝐷𝐶  2.45 9.9 0.5 16 3.7 
US DOE z0aygry BAAP 𝑃𝐷𝐶  3.44 14.8 0.4 15 5.2 

NREL1* BACP 𝑃𝐷𝐶  3.31 13 6.3 727 76.7 
NREL2* BABP 𝑃𝐷𝐶  6.06 15.2 4.3 1733 22.2 
NREL3** AADP 𝑃𝐷𝐶  7.88 8.7 10 669 146.1 
NREL4* ABBP 𝑃𝐷𝐶  6.82 1.7 18.5 1999 27.9 

Digital power plant 1 AAAP 𝑃𝐷𝐶  5 8.2 0 0 0 
Digital power plant 2 AAAP 𝑃𝐷𝐶  5 7.9 0 0 0 
Digital power plant 3 AAAP 𝑃𝐷𝐶  5 8.6 0 0 0 
Digital power plant 4 AAAP 𝑃𝐷𝐶  5 8.6 0 0 0 

*Incomplete cases omitted. 
**Shows negative and high values (>60) for 𝑃𝐷𝐶, and a high power time series standard deviation. 
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descriptive statistic, the standard deviation is a measure of the variability of a set of measure-
ments, arising from instrument and sampling effects. The standard error of the mean provides 
an estimate of our uncertainty in the "true" value of a population mean, which in this study is 
the true PLR value of the real-world PV system85. Here we are benchmarking which filter-
metric-method approach can capture, or determine, the "true" voted value for a system. Our 
goal is for all the researchers, using common approaches for PLR determination, such as in 
the RdTools or PVplr packages, or their own implementations, should produce comparable  
results that "true" PLR of the system. We are benchmarking methods applied to diverse da-
tasets, to identify the most robust approaches for determining the replication means for these 
19 systems86. Typically, replication studies attempt exactly the same method, and the standard 
error of the mean measures the variance among the attempts, to determine the population 
mean value of PLR, 𝑃𝐿𝑅. Here, since we have no apriori basis to know which of these many 
methods is "correct", we expand to use multiple methods, and by comparing standard errors, 
and overlapping confidence intervals we can determine statistically, what the true, or as we 
refer to it, the "voted" PLR of that real world PV system is. We are interested in the standard 
error of the population mean across the filter-metric-methods of Table 1 and Table 2. n null 
hypothesis testing, for a significance level, or Type 1 Error Rate, of 𝛼 = 0.05 33, corresponding 
to a p-value of 0.05, we should compare PLR determination results (and filter-metric-method 
approaches) using 95 % confidence intervals, determined from the standard error of the 𝑃𝐿𝑅 
of these results.  

Consider that we want to know the true PLR of one PV system, and we use one or many PLR 
determination filter-metric-methods and calculate PLR 100 times, the PLR will vary around the 
mean, or "true" 𝑃𝐿𝑅 and the important descriptive statistic is the standard error of this 𝑃𝐿𝑅. 
And as we calculate more values, our confidence in the mean improves. This is the basis of 
the preference aggregation, or"voting", method we apply here so that we can determine the 
most likely mean value of PLR for the 19 real-world PV systems87. By utilizing many data fil-
tering and statistical modeling methods applied across all 19 datasets, the 𝑃𝐿𝑅 value is prob-
ably the most likely. And the standard error of the mean is a measure of the variance of these 
methods in determining the 𝑃𝐿𝑅. To compare multiple methods of PLR determination for a 
single system, we compare the different results and their 95 % confidence interval (CI) to 
achieve a p-value of 0.05. With this approach we will find the true population 𝑃𝐿𝑅, within range 
of the 95 % CI 19 out of 20 times. To determine if different methods show statistically similar, 
or different, estimates of the PV system's true PLR, we can check that the 95 % CIs are over-
lapping88. This is the approach we use here, for example as shown for the EURAC system and 
multiple methods in Figure 21. If in this Figure 95 % CIs for each result were used, then we 
could define which methods give similar estimates of the PV system’s 𝑃𝐿𝑅, and which methods 
provide distinctly different estimates. 

Regression based PLR uncertainty can be evaluated from the variance of the slope of the 
linear model coefficients for the corrected performance metrics with time (Section 1.4.1), by 
reporting the  95 % confidence interval of the final PLR result, as described in Lindig’s paper7. 
When using this method with time series decomposed into components using either CSD or 
STL to determine the PLR it is recommended to add back the residuals component into the 
trend component so that the final time series has the same signal to noise characteristics, as 
a PLR determined without using decomposition. In this way the uncertainty of a regression 
PLR and a PLR determined on decomposed time series are directly comparable. Otherwise 
STL would have an apparent and artificial advantage due to the separation of the residuals' 
variance from the regressed model line on the trend component. This cannot be used for YoY 
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PLR as the individual PLR values used in YoY have no error given they are between two points 
only. YoY instead uses the probability density function of the individual PLR results to repre-
sent the uncertainty in the reported PLR and one needs to determine the correct comparative 
uncertainty measure; should this be the standard deviation, standard error, or the appropriate 
95 % or 83.4 % confidence intervals.  

Since comparisons of the PLR uncertainties of different filter-metric-method combinations  are 
important we seek to address the divide between regression and YoY PLR uncertainties. PLR 
uncertainty can also be evaluated using bootstrap resampling of the time series with replace-
ment24,47,48,33. For PLR estimates obtained using regression7, 65 % of the days are randomly 
chosen from the total time series and the PLR is recalculated, and this process is repeated, 
typically, for 1000 iterations. The standard error of the distribution of the 𝑃𝐿�̂� estimates ob-
tained from all iterations represents the uncertainty of the 𝑃𝐿𝑅 value. A more stable 𝑃𝐿�̂� is 
expected to have less resampling variance. This process can also be used with YoY as well, 
however instead of resampling individual days, which would bias YoY, the final 𝑃𝐿�̂� distribution 
is resampled. Bootstrap resampling requires large computational capabilities and it’s important 
to confirm that the bootstrap uncertainty has converged, therefore bootstrap is usually run 1000 
times to confirm convergence. And bootstrap resampling does enable a direct comparison 
between uncertainties determined using regression and YoY PLR.  

The graphical display of 95 % CIs and visualizing whether the CI ranges overlap, is an effective 
way to enable “inference by eye” and display the relative uncertainties of the 𝑃𝐿�̂� estimates. 
This graphical confidence interval visualization approach also enables multiple comparisons, 
whereas the traditional student’s t-test is only a pairwise comparison89,90. For a 5 % type I error 
rate and significance level, corresponding to a p-value of 0.05, we can compare methods for 
one system by plotting the 95 % CIs.  

If we want to compare two PV systems and determine if the difference of their 𝑃𝐿𝑅 is signifi-
cant, then we need to adjust our CI criteria to be appropriate for a t-test of the difference of two 
means. To determine if the 𝑃𝐿�̂� for two different PV systems are statistically similar (the null 
hypothesis), or significantly different, we modify the size of the CI we visualize so as to achieve 
the same 5 % significance level α, which is also referred to as a 5 % capture rate. In this case, 
the comparison of the means of two systems ( 𝐻0: 𝑃𝐿𝑅1 = 𝑃𝐿𝑅2 , 𝐻𝑎: 𝑃𝐿𝑅1  ≠  𝑃𝐿𝑅2 ), to 
achieve a 5 % capture rate or type I error, we graphically compare the overlap of the confi-
dence intervals of 𝑃𝐿𝑅1 and 𝑃𝐿𝑅1 using 83.4 % confidence intervals, as this achieves a 5 % 
capture rate91. If we used 95 % CIs for the comparison of two means this would correspond to 
a hypothesis test with a p-value and significance level of ~ 0.01. This suggests that researchers 
who wish to compare on a common basis, different PLR determination methods should use 
95 % Cis on a single system as we do in this report. A PV system fleet owner wanting to 
determine which systems are exhibiting similar or distinctly different performance loss, should 
graphically compare the overlap of 83.4 % Cis, and in Figure 22 we show these results for 
comparing across the PV systems in this study. When the minimum CI for one system just 
touches the maximum CI of the other system, you have met a p-value significance level of 0.05 
and a Type I error of 5 % for your comparison of two system means hypothesis test.  

3.4.4 Benchmarking PLR digital datasets 

The digital datasets are introduced in Section 2.3.7 along with the real PV systems and Table 
6 summarizes the most important characteristics of the plants.  
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Table 6: Main characteristics of digital PV plants. 

Characteristics Repeating weather data 
Real weather data  

with 5th induced cold year 

No Degradation Same Meteo_0Deg Real Meteo_0Deg 

Induced Degradation Same Meteo_xDeg Real Meteo_xDeg 

Initially four PV systems have been simulated, two plants with five years of repeating weather 
data and two PV systems with four years of satellite data (location: Rennes in the west of 
France) followed by a fifth colder year. The benchmarking results of the digital plants serve as 
a reference since for these systems the “real” PLR values are known, which is not the case for 
the 19 real PV system datasets. Two definitions of PLR are indicated, the loss in 𝑃𝑚𝑝𝑝 at STC 
and the constant absolute loss in energy from year to year. Both approaches are presented in 
the results. From a practical point of view, the parameter of interest is the degradation in en-
ergy. 

The individual methods used in this comparison have been introduced in Table 1 while Figure 
14 shows the calculated results for the two digital plants without degradation. The colors of the 
dots indicate the chosen metrics and the symbols the applied statistical models. Two horizontal 
lines are visible in the Figures, the orange line representing the degradation value for 𝑃𝑚𝑝𝑝 at 
STC and the green line the energy degradation. For these two systems, with no induced deg-
radation, these values are very similar to one another. 

Looking at the results, it is clear that the calculation accuracy varies depending on the source 
of the weather data. While all filter-metric-method approaches used yield the correct value 
within a ±0.05 % interval for the system with repeating weather data, greater deviations can 
be detected looking at Figure 15 where real weather data with an induced colder year were 
used. Especially the last induced colder year in the weather dataset seems to bias the results 
towards negative values. This colder year, subject to artificially induced lower radiation, yields 
just 63 % of the initial power output for this system, without being subject to degradation. Meth-
ods using a high irradiance threshold filter (VAR1, R-LR1, LS-LR1, STL1) or predicted power 
approaches as metrics (i.e. XbX + UTC) seem to be able to remove this induced effect and 
provide reliable results.  

Figure 15 shows the results for the digital plants with simulated degradation. Here, the indi-
cated degradation values (orange and green line) vary distinctively from one another. Among 
other things, this has to do with the irradiance distribution for this particular simulated site. In 
Figure 25 in the appendix, the yearly plane-of-array irradiation per irradiance interval is shown 
for the dataset measured at the test site in Rennes/France, where more than 60 % of the solar 
resource arises from irradiance values below 600 W/m². Therefore a large amount of the PV 
electricity is produced at irradiances far away from STC conditions and therefore both degra-
dation values differ. It is expected that such degradation estimates are closer in areas with a 
high amounts of irradiation from higher irradiances.  

For the simulated digital power plant systems with induced degradation, the deviations among 
the calculated PLR values are smaller between the systems and most calculated values are 
higher than the STC PLR value and lower compared to the energy degradation PLR. As men-
tioned before, the degradation in energy is the indicator of interest. All approaches are within 
a 10 % interval of the true energy PLR. It is visible that several YoY approaches yield values 
very close to the energy PLR. Furthermore, it seems that methods based on PR and PRTcorr 
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metrics, except for YoY3 and YoY5, yield results with lower PLR values, laying between the 
lower and upper bound. It seems that the fifth colder year shifts most approaches the larger 
PLR values. 

 

Figure 14: a) Calculated PLR of digital plant with no degradation & repeating weather 
data; b) Calculated PLR of digital plant with no degradation & real weather data; orange 
line: PLR at STC; green line: PLR in absolute energy. The “error bars”, are as reported 
by the analyst1.  
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Figure 15: a) Calculated PLR of digital plant with degradation & repeating weather data; 
b) Calculated PLR of digital plant with degradation & real weather data; orange line: PLR 
at STC; green line: PLR in absolute energy. The “error bars”, are as reported by the 
analyst1.  

For the two systems without degradation the methodologies VAR1, LS-LR5, STL4, R-LR1, LS-
LR1, YoY5 and STL1 yield the most accurate results with average deviations below -
0.025 %/a. For the systems with induced degradation the application of YoY3, STL4, YoY5 
and YoY2 returns results with deviations lower than -0.05 %/a compared to the energy related 
PLR. It is believed that a threshold filter for irradiance and power affect the final PLR calculation 
results in a way such that higher thresholds yield lower PLR values. All four systems have very 
high quality data where the effect of filtering irradiance-power pairs seems secondary in the 
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sense that the main purpose of these filters, namely anomaly removal, is unnecessary as the 
raw datasets do not have any anomalous values. 

3.4.5 Method validation for low PLR digital datasets 

As a continuation of the work with the digital power plant PLR comparisons, additional data 
was requested which had a range of lower PLR results to compare consistency between dif-
ferent PLR methods in predicting the actual values. For these systems, the PVplr R package 
was used to evaluate the PLR with three available predicted power models (XbX, XbX + UTC, 
PVUSA), and these were done with, and without, STL decomposition, and with year-on-year 
and linear regression evaluated PLR.  

Data filtering was kept at a minimum, with only an irradiance filter of 100 W/m2 applied to the 
systems’ datasets. As the data is simulated there were no gaps or corrections that required 
addressing beyond the irradiance filter. All predicted power models were built with a weekly 
data aggregation scale, with the coefficients of each weekly model being used to evaluate the 
long term degradation. The PLR results of all the calculated cases is shown in Figure 16. It is 
clear that the weather data used has a strong impact on the calculated PLR values for the 
PVUSA and XbX cases. In the systems with the 5th year having colder weather data (Diff. 
Meteo.), there is a distinct shift upwards in the results. The XbX + UTC model, which uses a 
universal temperature correction as defined by IEC61724-1:20175, does not show this shift to 
nearly the same degree. Both the PVUSA and XbX methods model temperature within each 
weekly segment, as opposed to an overall temperature correction, however the result show 
the temperature correction performed in these models cannot be extrapolated and will give 
different results within different temperature ranges. As the last year has a distinctly lower 
temperature than the other years, these models cannot adequately adjust the temperature 
influence between the different weather conditions, leading to higher predictions of power in 
colder weather. This leads to an artificially increase of the magnitude of the PLR result. The 
universal temperature correction enables correction for larger ranges of temperature and the 
power predictions in the 5th year are comparable to the others. It should be noted that the 
PVUSA and XbX models show greater accuracy under constant weather conditions (Same 
Meteo.), indicating they can still perform well in situations where there is not a significant tem-
perature variation between years.  

A more detailed view of the low degradation EDF digital power plant datasets is given in Figure 
17 where the difference between the real (the imposed performance loss used in the simula-
tion) and calculated PLR results are plotted as a function of the real PLR. The shift in PLR 
caused by the differing meteorological data case is again observed in the PVUSA and XbX 
models, with the XbX + UTC model maintaining predicted PLR values much closer to the real 
results. In all cases there is a trend for a larger difference in PLR values at a higher magnitude 
of PLR, in particular for the PVUSA and XbX models, with a trend towards zero as the PLR 
decreases. The PVUSA model shows a significant amount of spread between PLR results 
calculated using year-on-year versus regression for the different weather case and between 
decomposed and non-decomposed values for the same weather case, leading to an overall 
greater variance in results than the other two models. The XbX + UTC model shows a trend of 
over predicting the PLR results compared to the other two models, which consistently under 
predict the results, even in the same yearly weather case (exceptions for both cases occur at 
low PLR values). At this time it is not clear what would lead to a model having consistent trends 
in over or under predicting PLR.  
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Figure 16: Calculated PLR values versus real PLR values for all cases from the EDF low 
degradation digital power plants. The black line indicates equality between results.  

 

Figure 17: Difference between calculated and real PLR values versus real PLR values 
for all cases from the EDF low degradation digital power plants.  
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Despite the differences shown between these different models it must be noted that while the 
digital power plants are an excellent tool to demonstrate the accuracy of a PLR methodology, 
these datasets do not contain many of the essential features that are found in datasets from 
real PV systems. Real systems exhibit differing variance or noise in their data, the annual 
weather variations, module soiling, sensor inaccuracy, etcetera. Therefore the digital power 
plants while able to simulate a known PLR, do not give a complete picture of the accuracy of 
our PLR determination filter-metric-models for real PV system datasets. The variations in the  
meteorological data datasets do show the clear benefit of a universal temperature correction 
and suggests that a wide temperature range is needed to properly account for temperature 
influences in a PV system on an annual scale.  

3.4.6 Impact of data filtering on PLR determination 

It is useful to demonstrate the strong impact that data filtering has on all of these different PLR 
determination approaches, which is a concept that has not been emphasized in data analyses 
done to date. Instead many researchers just stated the filtering they felt was reasonable, with-
out documenting filtering’s role and impact on reported PLR results. Here we benchmark the 
complex role of filters on otherwise identical PLR data analyses. The applied filters and their 
name labels are given in Table 1. Temperature corrected performance ratio (PRTcorr) is used 
along with monthly data aggregation, and STL from the stlplus R package as the statistical 
method. In the case of missing data in the monthly PRTcorr time series, data imputation is ac-
complished using linear interpolation to address this aspect of missingness. The PLR of the 
digital systems with degradation and real weather data was studied along with the EURAC 
system. Figure 18 shows an example power versus POA irradiance plot for filter #3 applied to 
the EURAC PV system. The power along the y-axis has been normalized to the nominal power 
of the system and a plane-of-array irradiance interval from 0 to 1250 W/m² is depicted along 
the x-axis. The blue points represent the raw data, the green points a first threshold filter and 
the red points the final filtered dataset, which is then used for the subsequent PLR calculation. 
Some filters only include a threshold filter, in which case the in-between filter step is omitted 
and only the final filtered data are shown.  

Figure 19 shows both the calculated PLR values of the digital plants and their dependence on 
the different applied filters, together with power versus plane-of-array irradiance plots in order 
demonstrate the strong impact of the individual filters. Similar results are shown for the EURAC 
PV system in Figure 20.  

Digital plant with degradation and real weather data: 

Figure 19 demonstrates clearly that the choice of filter strongly affect the magnitude of the 
reported PLR. The calculated PLR values range from -4.48 %/a to -5.47 %/a. It appears that 
filters with similar irradiance cut-off thresholds cluster together when using the same metric-
method combination. This correlation is strong for the digital power plant datasets, which are 
not subject to anomalous points or abnormal points. At the same time the outlier grade or 
filtering (mainly PR related) does not have any effect on the outcome. Stricter irradiance thresh-
olds, that remove more low irradiance datapoints, yields lower PLRs, an observation that could 
be exploited by an analyst to arrive at "desirable" PLR results. This suggests that PLR deter-
mined using different data filters, are not comparable results. The application of filters #3, #1, 
#4 and #7 results in PLR values with the lowest calculated values, particularly close to the STC 
PLR, while the irradiance thresholds stretch from 350 to 800 W/m². Filter #6 and #9 apply a 
200 W/m² cut-off resulting in PLR of -4.82 %/a each, being quite close to the energy related 
PLR. Filter #2 and #8, both applying a very low irradiance threshold of 50 to 100 W/m², yield 
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the results closest to the energy PLR. Filter #10 also applies a similar lower bound threshold, 
but additionally as well a high threshold at 1000 W/m², which appears to further increase the 
calculated PLR above the indicated value. Filter 5, which does not apply any threshold filter, 
but only a very loose PR filter, yields the highest deviations from both indicated degradation 
values. Consider PV plant datasets free of any data anomalies (i.e. Grade A in outliers), such 
as the simulated digital power plants presented here, and the approach of applying STL to-
gether with PRTcorr. For these systems it appears that low irradiance cut-offs between 50 and 
200 W/m² yield the most accurate results based on the energy related PLR described in Sec-
tion 3.4.4 for the digital plants.  

 

Figure 18: Normalized power versus irradiance plot for EURAC dataset with applied fil-
ter #3; blue - raw data,  green - threshold filter; red - final filtered data used for PLR 
determination1.  

EURAC System: 

Looking at Figure 20, one can see that similar observations can be made for the EURAC plant. 
Again, higher irradiance thresholds tend to yield lower PLR. Additionally, low irradiance thresh-
olds (e.g. filter #10 and #2) give, in certain circumstances, accurate PLR results. As we deal 
here with real performance data, outlier accountability seems to play an important role as well.  

The filter #7, #4, #10, #3, #1 and #2 yield PLR very close to the mean PLR reference. Four of 
these six filters are in relatively narrow intervals, excluding power-irradiance pairs which are 
not representing the nearly linear relationship between both variables. If a metric is directly 
irradiance related, such as the PR, accounting for outlier in power-irradiance pairs is crucial to 
provide clean and representable data. It is visible that the usage of filter #4 and #7, both subject 
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to very strict irradiance filtering approaches, provides results close to the mean reference, at 
least for high quality data. A problem of both approaches is the amount of filtered data. Below, 
the amount of data used for the final PLR calculation after filtering is shown in respect to raw 
data excluding nights for four different filter: 

• Filter #1: 33.7 % 
• Filter #2: 61.1 % 
• Filter #4: 2.7 % 
• Filter #7: 0.4 % 

 

Figure 19: Calculated PLR using all ten studied filters with PRTcorr as metric and STL as 
calculation statistical method for digital plant with degradation and real weather data; 
blue - raw data,  green - threshold filter; red - final filtered data used for PLR determina-
tion1.  

Filter #1 already applies a strict irradiance threshold at 500 W/m² but the data within the con-
sidered irradiance interval, although just being 33.7 % of the total amount of data, still account 
for roughly 80 % of the produced power by the EURAC system and can therefore be consid-
ered as being representative. Instead, a vast amount of data is excluded in the PLR calculation 
using filter #4 and #7. Although the methodologies perform well on the example dataset above 
and on some of the high quality datasets in Section 3.4.8, it is believed that such a small 
amount of remaining data (2.7 % and 0.4 %) does possibly not represent the overall perfor-
mance evolution well. Furthermore, depending on the location, such strict irradiance thresholds 
might even reduce the amount of available data even further. Instead, given the used metric 
and statistical method, a narrow power-irradiance interval seems to be the filter of choice for 
real datasets including outlier. It has to be stressed that this does not hold for all metric-method 
combinations. For instance, YoY2 uses filter #9 and yields quite accurate results for the 
EURAC system (see Figure 11) whereas filter #9 applied to PRTcorr combined with STL shows 
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in direct comparison the largest deviation from the mean reference PLR. This circumstance 
underlines again the strong dependency between all calculation steps from filtering up until the 
choice of a statistical method.  

 

Figure 20: Calculated PLR using all proposed filter with PRTcorr as metric and STL as 
calculation statistical method for EURAC system1. 

3.4.7 Evaluation methodology of benchmark PLR results of real PV datasets 

Evaluation of the benchmarking results across the 19 real datasets is complicated by the fact 
that the “true” value of the performance loss rate for each respective system is unknown. To 
rate the methodologies among each other, we used a replication study approach, where mul-
tiple filter-metric-method approaches to PLR were used to determine the PLR values, and 
comparing this sample of PLR values as a sample of the true population mean of the PV sys-
tem. Since we don't know the "correct" value, we use the sample mean from the calculations 
and using a voting procedure to identify the 𝑃𝐿𝑅 as the mostly reasonable value for each PV 
system. First, the (𝑃𝐿𝑅𝑖) for an individual PV system is calculated using all calculated PLR 
values (Figure 21a)). Next, the relative difference of all methodologies from the 𝑃𝐿𝑅𝑖, which is 
set at 0 %, is calculated for this particular “i” system (Figure 21b)). The closer a result is to 0 %, 
the more accurate the calculated PLR is. We see for example, that the highest deviations for 
the EURAC system are observed for statistical method LS-LR7 followed by SCSF1. LS-LR7 
uses the 6k method as metric, which might be the root-cause for the deviation. Statistical 
method SCSF1 has a different approach from the other methods, as it does not account for 
irradiance in the PLR calculation. SCSF1 practitioner's analysis suggested a positive sensor 
drift for the EURAC plane-of-array pyranometer accounts for the difference of their reported 
result from the mean result (a difference of +0.47 %/a). Combining the suggested sensor drift 
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with the estimation of degradation for the system, the deviance of the results using SCSF1 is 
reduced compared to the mean and yields a value similar to the majority of other methods.  

 

 

Figure 21: a) Calculated PLR of EURAC system; b) Relative calculated PLR values of 
EURAC system. The “error bars”, are as reported by the analyst1.  
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The difference from the normalized 𝑃𝐿𝑅 was subsequently calculated for all systems and the 
values were averaged to see which methodologies seemingly yield the highest accuracy by 
cross-comparison. Here, two key performance indicators (KPIs) were then identified to bench-
mark the proposed combinations for the calculation of PLR. 

• Absolute average deviation from the mean value considering all datasets 

Equation 11.   

|∑ (𝑃𝐿𝑅𝑖−𝑃𝐿𝑅𝑖𝑃𝐿𝑅𝑖 )𝑛
𝑖=1 |𝑛    

• Standard error of the average deviation 

Equation 12.   

√∑ (𝑃𝐿𝑅𝑖−𝑃𝐿𝑅𝑖𝑃𝐿𝑅𝑖 −𝜇)2𝑛
𝑖=1 𝑛−1 √𝑛⁄

   

Here, n is thereby the number of PV systems on which a particular approach was used, and µ 
is the mean of the numerator of Equation 11 over all systems for one filter-metric-method. The 
first KPI (Equation 11) provides an indication of how a particular filter-metric-method performs 
overall in terms of estimating the average value over all considered datasets. Thereby, the 
absolute average of the differences between the (𝑃𝐿𝑅𝑖) and the PLR for each statistical method 
is calculated where i refers to a specific PV system of the n PV systems analyzed in this report. 
The second KPI (Equation 12) provides an indication on how the average value deviates from 
dataset to dataset. Finally, all results are averaged in a target plot to see which methodologies 
perform the best across all systems. The results are discussed in detail in Section 3.4.8. Figure 
21 shows, in addition to the absolute PLR values, the uncertainties reported by the analysts 
for each applied methodology, which unfortunately were a variety of standard deviations, 
standard errors and confidence intervals, so are not actually comparable. Since there is no 
consensus on how to report PLR uncertainty values in the PV community, the analyst reported 
uncertainties were omitted in the final evaluation. In Table 7, the 𝑃𝐿𝑅 for all systems are de-
picted to get an overall impression of the degradation of the systems under evaluation. The 
calculated 𝑃𝐿𝑅𝑖 and the 83.4 % confidence intervals for inference by eye of the difference of 
two means is shown in Figure 22 using all n filter-metric-methods that were successfully ap-
plied to each PV system.  

Unfortunately, some of the datasets under investigation had certain dataset quality issues, as 
discussed in Section 3.4.2 and Table 5 and individual methodologies failed to yield PLR results 
for these datasets. Particularly affected systems are the ones belonging to the US DOE and 
NREL datasets. PLR of US DOE wca0c5m and US DOE z0aygry are marked with a star as a 
shift in the power output measurements has been detected and just methodologies, in which 
the shift was detected, were included for the calculation of the 𝑃𝐿𝑅. 

3.4.8 PLR analysis 

Based on the discussion above the PLR evaluation is subdivided into different groups consid-
ering a varying number of analyzed systems. That was done to also study the variability of the 
results. For example, the PLR of the systems NREL3 and NREL4 was only calculated using 
five different methods of which a few of these PLR results were strong outliers. Since the PLR 
evaluation is based on the mean of the calculated PLR values, a small predictor dataset may 
yield biased results. The idea is that an increasing number of calculated PLR values decreases 
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the average PLR variability and therefore increases the accuracy of the estimated reference 
PLR. Thereby, the trustworthiness of this “voted” PLR as being close to the "real" PLR is higher 
if more PLR values are included.  

With the voted results of our interlab/multi-method comparison shown in Table 7 and Figure 
22, we may actually have in hand an ensemble learning approach to determine the 𝑃𝐿𝑅𝑖 that 
is accurate and reproducible.  Ensemble models in machine learning, are where different mod-
eling approaches are all used and the final result is a voted result across all models92.  An 
example of this is how Random Forest machine learning, is the result of a “forest” of decision 
tree models all averaged together, and this ensemble averaging allows the different ap-
proaches to counterbalance their uncertainties.  In the case of PLR determination, with tool 
such as RdTools and PVplr, it becomes easier to perform an ensemble of PLR results on a 
system and then calculate the PV systems’ 𝑃𝐿𝑅𝑖.   
Table 7: The mean PLR (𝑷𝑳𝑹), across all filter/methods used, for all systems included 
in the benchmarking study. 

System 𝑷𝑳𝑹 System 𝑷𝑳𝑹 System 𝑷𝑳𝑹 

EURAC -0.85 %/a NREL1 -0.33 %/a US DOE 
luemkoy** 

0.95 %/a 

FOSS -0.71 %/a NREL2 -0.54 %/a US DOE lwcb907 -0.03 %/a 

RSE CdTe -1.75 %/a NREL3* 0.06 %/a US DOE  
t3pg1sv 

-0.75 %/a 

RSE pc-Si -0.96 %/a NREL4 -0.25 %/a US DOE 
wca0c5m*** 

-1.00 %/a 

Pfaffstaetten A -3.57 %/a US DOE 
c10hov6 

-0.50 %/a US DOE  
wxysjaf 

-0.97 %/a 

Pfaffstaetten B -3.96 %/a US DOE kob-
dpi8 

-0.73 %/a US DOE 
z0aygry*** 

-2.32 %/a 

Pfaffstaetten C -1.29 %/a     

*The provided modelled irradiance dataset should have been used, which was not done by all participants. The 
reported PLR corresponds to the average PLR of SCSF1, YoY2 and STL1 (see Figure 29). 

**The system power was for approximately the first half of its recorded lifetime limited by inverter clipping. After-
wards, the output power was not capped anymore. A calculation of PLR using this power data series, which has 
been done by all participants, does not correspond to the true PLR.  

***The power datasets were subject to data shifts at the beginning of operation. These shifts were detected only 
by the participants applying STL1 and YoY2. The average of the results of these methodologies is reported as 𝑃𝐿𝑅 , see Figure 30.  

Thresholds for a minimum amount of calculated PLR values were set per evaluation group for 
a given filter-metric-method to be included in the benchmark comparison:  

• G7-3-24: evaluate 7 systems with a minimum of 3 calculated PLR values per filter-me-
tric-method. This includes 24 filter-metric-method combinations. 

• G13-7-17: evaluate 13 systems with a minimum of 7 calculated PLR values per filter-me-
tric-method of which at least one has not been included in first evaluation group. This in-
cludes 17 filter-metric-method combinations.  
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The threshold for an evaluation over all systems was set to 15 calculated PLR values. This 
reduces the number of considered filter-metric-method combinations to two, namely STL1 and 
YoY2. Since these results are strongly biased, an evaluation over all systems has not been 
carried out.  

G7-3-24: Evaluation of 7 systems with 24 approaches: 

The first evaluation is based on the results calculated for the 7 most pristine datasets excluding 
all NREL and US DOE PV systems based on the dataset issues discussed before. For a PLR 
calculation method to be included in this analysis, at least three PLR values have to be calcu-
lated. The number of calculated PLR per system over these 7 systems ranges from 20 to 27.  

 

 

Figure 22: The mean PLR and 83.4 % confidence intervals (CI) for each of the 18 PV 
systems in the benchmark study. One system (luemkoy) that had a large positive PLR 
is not shown. If two systems have CIs that touch without overlapping, then they are 
different at a 5 % significance level. The number (n) above each system’s CI is the num-
ber of PLR results in the sample, and corresponds to the n used in the standard error 
calculation.  

The PLR statistical method ratings when considering these 7 different PV systems are shown 
in Figure 23. The deviance, a goodness-of-fit statistic for a statistical model33, shown along the 
x-axis and describes the absolute overall difference from the reference 𝑃𝐿𝑅, and along the y-
axis the standard error of the average differences from the reference PLR across the systems 
under consideration is shown. Uncertainties are omitted because no consistent approach to 
report the uncertainties (such as confidence intervals) was used as we collected the bench-
mark results from the participating analysts and therefore, the usage of the indicated uncer-
tainties would be misleading. The difference in colors describes the usage of different metrics 
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and the difference in symbols the usage of different statistical methods. The isobands, at 10 % 
intervals, are a guide for the eye to categorize the results into different groups of accuracy.  

 

Figure 23: Target plot with absolute average deviations from 𝑷𝑳𝑹 value and standard 
error considering 7 PV systems (excluding all NREL and US DOE datasets)1. 

In Figure 23, a minimum of three calculated PLR was set for a statistical method to be included 
in the benchmark evaluation of these 7 different PV systems. These datasets are considered 
as high quality research PV systems without serious data quality issues apart from the minor 
ones reported in Section 3.4.7. It can be seen that the majority of applied filter-metric-method 
approaches have results in the first and second isoband with a relative average difference from 
the 𝑃𝐿𝑅 of up to 17 % and a corresponding standard error of 1 to 6 %. According to the results 
evaluating 7 different PV systems, YbY1, STL4, STL8, LS-LR3 and HW1 provide the most 
accurate results (all in the first isoband). YbY1 has been applied to three PV systems and the 
remaining three methods have been applied to all seven PV systems considered in the study. 
Two out of five of this methods use temperature corrected metrics PRTcorr and XbX + UTC. 
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YbY1 is one of the methodologies not applying any temperature correction, whereas this meth-
odology applies the strictest overall filter by only including data within an irradiance interval of 
40 W/m² around NOCT conditions.  

From 24 tested filter-metric-method approaches, seven are not in the first and second isoband 
with deviance values from the 𝑃𝐿𝑅 greater than 20 % and these perform with lower accuracy. 
YbY2 is at the edge of the cluster of methodologies performing with higher accuracy. It seems 
that the usage of power as metric combined with LR and CSD as statistical methods results in 
higher uncertainty results. In addition LR, when the metric was not subject to temperature cor-
rection is subject to high variance compared to other approaches. The statistical method with 
the lowest accuracy in direct comparison is LS-LR2, an approach using the PR as metric and 
LR as calculation method. The filter (see Table 2) used for LS-LR2 only applies a PR threshold 
of 0 to 100 % and thereby may not sufficiently exclude outliers and anomalous points, which 
are ultimately affecting the final result since LR is strongly affected by non-valid data-points.  

Methods using the common approaches of YoY and STL are performing with relatively lower 
uncertainty throughout, but also alternative models such as HW, Prophet or the VAR method 
yield satisfactory results. 

It is interesting to observe the deviance in the results looking at YbY1 and YbY2. For both of 
these approaches only three PLR values have been calculated. The only difference between 
these approaches are the applied filters. While YbY1 filters a narrow irradiance band around 
NOCT conditions (780-820 W/m²), YbY2 filters around STC conditions (980-1020 W/m²). Just 
considering this small sample of datasets, it seems that NOCT conditions represent the calcu-
lated 𝑃𝐿𝑅 better in direct comparison. Furthermore, both methodologies, together with LS-LR1 
and R-LR2, use narrow irradiance bands and temperature filtering and exclude thereby the 
vast majority of data-points. Three out of four (except the mentioned YbY1) of these “heavy 
filtering” approaches yield results with higher uncertainties, possible because of filtering out 
large amounts of data. The impact of filtering on the calculated PLR is further discussed in 
Section 3.4.6.  

A direct comparison of statistical method SCSF1 is more complicated as it does not include 
irradiance values for the PLR calculation. It evaluates power and irradiance time series inde-
pendently. For instance, the application of SCSF1 on the EURAC systems irradiance data 
suggests a positive drift (see Section 3.4.7). If one combines that with the PLR calculated for 
the EURAC system using SCSF1, the difference of the PLR using statistical method SCSF1 
compared to the result decreases. A similar observation was made for the FOSS system. The 
calculated PLR (using SCSF1) is with -0.35 %/a clearly below the 𝑃𝐿𝑅 of -0.7 %/a. An evalu-
ation of the irradiance sensor data is still ongoing to verify a possible drift but it has been 
ensured that both sensors are calibrated according to existing guidelines and standards.  

Instead, the results for the Pfaffstaetten systems using SCSF1 are quite close to the 𝑃𝐿𝑅 , 
although a strong irradiance sensor drift of +0.67 %/a is suggested using this statistical 
method. Irradiance drifts have to be considered with care, since inter-annual variations might 
contribute to this effect and are not excluded while estimating a sensor drift using the SCSF 
approach. Additionally, solar brightening effects are taking place since the early 1980s to this 
date, describing an increase of solar irradiation on the earth's surface in certain parts of the 
world93. For example, Kiefer et al.94 saw an average increase in irradiance of +1.1 % per year 
while studying the performance of several PV plants in Germany. These effects may well in-
fluence such measurements. It seems that a direct comparison of the SCSF approach to others 
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is quite complex for real datasets. A comparison based on a greater number of digital plants 
may present a better foundation for further evaluation. 

Furthermore, CSD did not perform well. CSD is based on a centered moving average where 
the first and last data-points are removed by the use of a statistical smoothing function. This 
may lead to the exclusion of important performance data, especially in shorter time series. 
Comparing the individual CSD approaches with one another, it is visible that CSD3 performed 
the best. This is the only CSD approach having a statistical PR filter which excludes outliers of 
power-irradiance pairs. 

Overall the majority of the test approaches calculate PLR with relatively low uncertainties con-
sidering these research PV system datasets. This study serves thereby as a first indicator of 
PLR estimation accuracy for high quality datasets without major measurement and operation 
issues. But for broad application to commercial PV systems, the impact of data quality, miss-
ingness, filters, metrics, temperature corrections and statistical methods could lead to these 
“best” methods performing very differently on commercial PV systems.  

G13-7-17: Evaluation of 13 systems with 17 approaches: 

The second evaluation considers 13 PV systems while excluding NREL3, NREL4, and US 
DOE systems luemkoy, lwcb907, wca0c5m and z0aygry. The latter two systems were ex-
cluded because of the detected data shift in the power output, which can be seen in the power 
heatmap (Figure 8). For those two systems, only two participants, using the approaches STL1 
and YoY2, took the data shift into account. The inclusion of the PLR evaluation results for 
these two PV systems would alter the results based on a thorough data quality check instead 
of the actual statistical method application.  

A minimum of 7 calculated PLR values was set for a statistical method to be included in this 
second benchmark category. At the same time at least one calculated PLR had to be for a 
NREL or US DOE dataset in order to avoid having redundant results compared to the first 
evaluation. The threshold reduced the number of considered methodologies from 24 to 17, 
and the results can be seen in Figure 24.  

The inclusion of methodologies in itself is already a first quality characteristic by being appli-
cable to this wider set of PV system performance datasets, which are partially subject to certain 
data related issues. Comparing both benchmark evaluations it is visible that the spread of 
methodologies in the target plot in Figure 24 increased substantially.  

While the majority of methodologies in Figure 24 yields results corresponding to values in the 
first and second isoband, seven of these now 17 methodologies are remaining in this area and 
the other 10 stretch over into the other isobands. The approaches with the highest accuracy 
are LS-LR8 and Prophet1. Both methodologies use the PR as metric and apply the same filter 
#8 from Table 1 . It has to be noted that, although very accurate results have been achieved 
using this two methodologies, results where serious data quality issues are present, led to 
those results being omitted; so while relatively accurate, these two methodologies may not be 
robust. Four more statistical methods have been tested using the same metric and filter.  
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Figure 24: Target plot with absolute average deviations from 𝑷𝑳𝑹 value and standard 
error considering 13 PV systems (excluding US DOE luemkoy, lwcb907, wca0c5m & 
z0aygry, and NREL3, NREL4) 1. 

It is interesting to note that two of these use STL as the statistical method, the only difference 
is that one function was taken from Python (STL8) while the other one was taken from R 
(STL7). The latter exhibits the highest standard error in Figure 24. A cross-comparison of STL7 
and STL8 shows that both approaches yield very similar results, except for system NREL1. 
Here, STL7 overestimates the 𝑃𝐿𝑅 substantially, whereas STL8 results in a PLR lower than 
the mean value, but with a lower deviation. This overestimation explains the highest standard 
error across all tested methodologies. Apart from LS-LR8, Prophet1 and STL8, four more 
methodologies are in the second isoband, namely HW1, YoY2, STL1 and LS-LR5. It should 
be noted that YoY2 and STL1 are next to YoY5 the only approaches for which all 13 PLR have 
been calculated and provided. Furthermore, LS-LR5 stands in direct comparison to LS-LR6, 
LS-LR4 as well as LS-LR7, three methodologies with high deviations from the 𝑃𝐿𝑅 . For all 
four methods, filter #2 from Table 1 and LS-LR as statistical method are used together with 
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different Predicted Power models. Thereby, 6k, PVUSA as well as XbX do not seem to yield 
reliable results with the 6k metric performing the poorest. Due to its nature the 6k metric tends 
to predict values close to the nameplate power at STC and underestimates thereby the PLR. 
Instead, XbX + UTC provides already satisfactory results by just applying LR. It is expected 
that the usage of a more sophisticated statistical method such as STL or YoY would return 
results with lower uncertainties. Method STL4, which uses XbX + UTC as metric, performed 
with high accuracy in the first benchmark considering 7 systems but was not applied to a suf-
ficient number of systems to be included in this second benchmark. 

Overall, a "perfect" combination of filter, metric and PLR calculation method probably does not 
exist, since there are complex interactions of filters, metrics and methods with the characteris-
tics of the datasets. Instead, based on the results discussed in this section, case-to-case de-
pendent arrangements of dataset dependent adaptive filter (possibly automated based on 
quantitative data quality measures), temperature corrected metrics and suitable statistical 
methods are recommended. Although LS-LR did yield some good results, is not recommended 
for more complicated datasets as it gives too much weight to outliers. The commonly used 
statistical methods STL and YoY performed well if suitable filters and metrics (performance 
ratio or power) have been applied. And finally temperature correction of the chosen power 
metric is beneficial.   

 New opportunities from analysis of time-series I-V, Pmpp datasets  

Recently with advances in data science and distributed computing it has become possible to 
analyze very large time series datasets of combined I-V and Pmpp data. For example 3.6 million 
I-V curves and 42 million Pmpp datapoints from 8 modules, of two different brands of which one 
is a glass/backsheet module and the other brand is a double glass module, over an 8 year 
period. First the performance PLR for each module is calculated using the DbD + UTC pre-
dicted power metric and the YoY regression statistical model on the outdoor time-series max 
power (Pmpp) data, the plane of array irradiance (POA) and the module temperature, 71. In this 
research, the PLR results show that for both brands of modules, the BSh climate zone is more 
aggressive than the BWh climate zone, and both of them are much more aggressive than the 
ET climate zone. And the two modules brands show similar PLRs with only an apparent differ-
ence in the BWh climate zone, where the double glass module architecture shows a lower 
PLR. The time-series I-V curves are then analyzed to give us direct insight into the  activated 
degradation mechanisms for these modules such as uniform current loss, corrosion, shunting 
and so on, rather than a generalized performance loss rate from analysis of Pmpp time-series 
data.  

Two approaches for studying time series I-V curves have been demonstrated in two papers, 
both of which require extraction of I-V features from I-V curves95. The first approach96 is similar 
to the analysis of time series Pmpp, but instead, the predicted I-V features are obtained at fixed 
conditions for comparison using purely data-driven models which are different for each I-V 
feature, thereby making the degradation behavior and loss factors comparable between differ-
ent modules, and then modeling these time series I-V features change over time. The second 
approach97,98 uses an outdoor Isc-Voc , or Suns-Voc, approach to analyze the time series I-V 
curves, so as to construct outdoor Isc-Voc curves from I-V curves measured as a function of 
irradiance throughout the day, and then using a power loss, or loss factor, conversion to de-
termine the loss factors associated with different degradation mechanisms97. The results show 
strong climate zone dependent degradation behavior. More detailed outdoor Suns-Voc and 
power loss factors approach is in M. Wang’s paper98.  
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 The role of PLR in PV system long term yield assessments 

Long term changes in system performance are still among the most unexplored effects occur-
ring in PV systems. From a survey regarding degradation effects in long term yield predictions 
(LTYP) carried out among PVPS Task 13 experts, a large variety of assumptions was docu-
mented. A participant used variable degradation rate for the first 5 years, then fixed from years 
5–30. Generally, they assumed a 1 % to 2 % drop in the first year, 0.7 % to 0.5 % to year 5, 
then 0.3 % to 0.5 % up to year 30.  

Some Yield Assessors also add an initial light induced degradation (LID) term of 0.3 % to 
1.0 %, depending on module technology and location (increased degradation caused by unfa-
vorable environmental conditions). In other cases, the value considered for the overall PLR is 
quite low using 0.25 %/a for crystalline Silicon based PV systems. Values are based on exten-
sive (publicly available) literature reviews, but there is no consensus on what values should be 
used as a simple proxy for actual PLR determination.  

The overall uncertainty associated with the PLR is a combination of the uncertainty related to 
the performance metric, which is a result of the uncertainty of the field measurements, and to 
the application of the data cleaning, filtering, and the metric and statistical modeling method 
as we have shown in this report.  

 Critical factors in PLR determination 

Based on the results of this PLR benchmarking study, one uniform “best practice” approach 
for calculation of reliable PLR values, including choices of the “best” filtering approaches, the 
“best” metric and the “best” statistical method, does not seem to exist at that point. Instead, it 
was shown that a thorough data quality check together with careful filtering approaches are 
absolutely crucial steps in calculating PLR, especially if the PV system dataset is subject to 
monitoring data quality related issues. In terms of calculation approaches, the most popular 
ones, STL and YoY, but also newly developed or less common ones, such as the VAR method, 
HW or Prophet, demonstrated reliable results. The complexity of the data and analysis inter-
actions, may suggest that using many filter-metric-method choices, and determining the voted 
mean PLR ( 𝑃𝐿𝑅 ) may at this point produce the most reproducible and accurate results.  

While we cannot recommend a single method to apply to any system, there are steps that can 
be taken to improve PLR calculation and reporting. First, time series features including, outli-
ers, gaps, seasonality, etc. are common in PV data. Proper exploratory data analysis (EDA) 
before applying any PLR evaluation methodology can help a researcher identify and be alerted 
to potential sources of data analysis bias. Useful tools for PV data EDA are heatmaps, corre-
lation matrices, and system dataset grading. Second, high irradiance filters show a tendency 
to reflect STC degradation in PV modules, while lower irradiance filters tend to reflect energy 
degradation. It is up to the individual to determine their modelling requirements. Third, it has 
been demonstrated (specifically in the low degradation digital power plants) that a universal 
temperature correction (such as in XbX+UTC or PRTcorr) provides a better extrapolation of tem-
perature trends in PV power output than modelling within discrete time segments, (such as in 
XbX or PVUSA approaches). Discrete temperature corrections may introduce additionally 
yearly seasonality into a corrected PV timeseries trend. Lastly, proper reporting of PLR uncer-
tainty helps present a more complete view of the performance of a system. PLR uncertainty 
can be evaluated through regression fitting, year-on-year distributions, multiple-method voting 
or bootstrap resampling of results, however with bootstrap uncertainties can be lower since 
resampling can’t capture the total variance.  Individual PLR uncertainties should be reported 
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as 95 % confidence intervals.  When comparing PLR values for two or more PV systems using 
the 83.4 % confidence intervals enables visualization of the PLR uncertainty of multiple sys-
tems at a significance level of 5 %. In cases where seasonal decomposition is used, the resid-
ual component should be added back into the trend component to prevent artificial smoothing 
of results and reporting artificially low uncertainties. Existing PLR evaluation software, includ-
ing RdTools19 and PVplr21 have existing functionality for calculating PLR uncertainty.  
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 CONCLUSIONS 

The Performance Loss Rate (PLR) of a research or commercial PV power plant system quan-
tifies the decline of the power output over time either as a single assumed linear rate in units 
of %/a, or %/year, or more recently as a rate over multiple time segments over the lifetime of 
the system. The PLR captures both irreversible physical degradation of PV modules and per-
formance-reducing events, which may be reversible or even preventable through good O&M 
practices. The goal of this report is to define a framework of analytical steps for PLR determi-
nation, and assess the reliability and reproducibility of these steps and approaches when ap-
plied to datasets of both research and commercial PV systems. With this goal, we undertook 
an extensive Interlaboratory comparison, or benchmarking exercise on 19 real and 4 simulated 
PV systems, and used multiple filtering, metrics and statistical methods, to find by voting, or 
preference aggregation, the mean PLR (( 𝑃𝐿𝑅𝑖 ) of these 23 systems. This also enabled us to 
identify critical aspects that play important roles in PLR determination. These include the criti-
cal importance of exploratory data analysis (EDA) to quantify and grade the statistical dataset 
characteristics of each system; this turned out to be a largely neglected aspect that actually 
determines the quality of the reported PLR.  

We establish a framework for PLR determination consisting of four basic steps common to all 
group’s PLR analyses. The four steps are 1) input data cleaning and filtering, 2) performance 
metric selection (performance ratio (PR) or predicted power (P) based), corrections and data 
aggregation, 3) time series feature corrections and finally 4) application of a statistical modeling 
methods to determine the Performance Loss Rate value and its uncertainty. The statistical 
methods are evaluated in terms of a) their deviation from the mean PLR value and b) their 
confidence intervals. Using the one digital power plant and one real PV system we compared 
the impact of ten different filtering approaches with an otherwise identical PLR calculation ap-
proach. Filtering can be divided into two categories, threshold filters and statistical filters used 
to remove outliers in power-irradiance pairs.  High irradiance threshold filters tend to lower the 
reported PLR which is not necessarily representative of real system performance. Additionally, 
statistical filtering approaches which remove the anomalous power-irradiance data pairs, in 
combination with a low to medium irradiance thresholds (to retain a larger amount of the sys-
tem’s data) provide the most reliable datasets for the next steps in PLR determination and 
consequently result with the highest accuracy results.  

Based on the results of our Interlaboratory benchmarking results, one uniform way of calculat-
ing a reliable PLR value of a PV system, including prescriptions for a fixed filtering approaches, 
the same metric and statistical method, does not seem to exist at this time. Instead, it was 
shown that a thorough data quality check together with careful filtering approaches are abso-
lutely crucial steps in calculating PLR; since as we know PV system datasets are subject to 
broad range of data related issues such missingness, gaps, offsets etcetera.  In terms of cal-
culation approaches, the most popular ones, STL and YoY, and also newly developed or less 
common ones, such as the XBX+UTC, VAR, HW or Prophet, demonstrated reliable results. 
While a standardized way of calculating PLR would be the desirable outcome of this study in 
order to reliably inter-compare results across PV systems and operators, it was highlighted 
that a sensitive combination of filtering / metrics and statistical methods is an important step 
forward. Often, dataset EDA is neglected, and the filtering step is either performed insufficiently 
or not explicitly reported in the corresponding literature. Therefore, when calculating and re-
porting PLR, an exhaustive report on filter selection and data cleaning is vital to better com-
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prehend the steps in the PLR calculation. In addition reported PLR values need to be repro-
ducible by others, and have clearly reported confidence intervals, so that results among sys-
tems are comparable at a 5 % significance level.  

Even if we currently cannot define a single way to calculate the PLR of a PV system, this study 
does suggest that the voting, or preference aggregation, approach used here, may itself rep-
resent an accurate ensemble approach for PLR determination. By calculating PLR using many 
filters, performance metrics corrections and data aggregation, corrections and statistical mod-
eling approaches does appear to provide consistent and robust estimates of 𝑃𝐿𝑅𝑖 for PV sys-
tem i. This multiple method approach may serve as an ensemble model in which inaccuracies 
of all the different approaches are minimized in the voted result of the ensemble calculation of 𝑃𝐿𝑅𝑖.  
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APPENDICES 

A. Irradiance distribution for digital power plant (location: 
Rennes/France) 

 

Figure 25: Plane-of-array (POA) irradiance distribution per 100W/m² interval1.  
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B. Data quality issues of PV system datasets 

B.1 US DOE RTC baseline PV systems 

 

Figure 26: Energy (red) / power (blue) over time for US DOE datasets: a) US DOE c10hov6 
- initial inverter clipping and missing data; b) US DOE luemkoy - negative power values 
and initial inverter clipping c) US DOE lwcb907 - negative power values and inverter 
clipping; d) US DOE t3pg1sv - inverter clipping; e) US DOE wca0c5m - data shift after 1 
year and inverter clipping; f) US DOE z0aygry - data shift after 1 year and initial inverter 
clipping1.  
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B.2 NREL PV systems 

 

Figure 27: Power over plane-of-array irradiance for NREL datasets: a) measured irradi-
ance - NREL1 - numerous outlier detected; b) measured irradiance - NREL2 - numerous 
outlier detected c) modelled irradiance - NREL3 - extreme outlier and inverter clipping 
detected; d) modelled irradiance - NREL4 - extreme outlier and inverter clipping de-
tected1.  
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C. PLR results for all PV systems 

C.1 EURAC, FOSS, RSE, Pfaffstaetten systems 

 
Figure 28: Calculated PLR of EURAC system; FOSS system, RSE CdTe & pc-Si systems; 
Pfaffstaetten A, B & C systems. The “error bars”, are as reported by the analyst1.  
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C.2 PLR results for NREL PV systems 

 

 

Figure 29: Calculated PLR of the NREL systems. The “error bars”, are as reported by the 
analyst1.  

Here, the calculated PLR results of all systems are listed. The number of calculated values per 
system varies due to monitoring data issues participants were facing while working on the data. 
They are discussed in greater detail in Section 3.4.8. The methodologies are depicted on the 
x-axis and the PLR on the y-axis. The colors indicate the chosen metrics and the symbols the 
applied statistical models. The horizontal lines indicate the 𝑃𝐿𝑅 for the respective system. Ex-
ceptions are the US DOE systems wca0c5m and z0aygry as well as NREL3. For the US DOE 
systems, the 𝑃𝐿𝑅 corresponds to the average PLR of the methodologies STL1 and YoY2. That 
is because both system datasets were subject to data shifts at the beginning of operation (see 
Section 3.4.2). This shift should have been detected and excluded for the PLR calculation. This 
was done only with statistical method STL1 as well as YoY2. For NREL3, the 𝑃𝐿𝑅 corresponds 
to the average PLR of the methodologies SCSF1, YoY2 and STL1. YoY2 and STL1 used the 
provided modelled clear-sky irradiance data series as an input and the methodology SCSF1 is 
not based on any irradiance data series. The remaining approaches used the faulty measured 
irradiance dataset as inputs and the corresponding results deviate thereby substantially from 
the "true" PLR.  



Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Assessment of Performance Loss Rate of PV Power Systems 

 

 

77 

 

C.3 PLR results of US DOE RTC baseline PV systems 

 
Figure 30: Calculated PLR of US DOE systems; 𝑷𝑳𝑹 for US DOE wca0c5m & z0aygry corre-

sponds to average PLR of STL1 and YoY2. The “error bars”, are as reported by the analyst1.  
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