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Abstract — Methods and initial results are presented for 

creating synthetic high-frequency solar simulations with unique 

profiles for each interconnection point on a distribution system 

feeder using low-frequency input data. The three steps to synthetic 

sample creation are to develop a relationship between high and 

low frequency data, create high-frequency timeseries based on this 

relationship, and then to generate unique samples for different 

spatial locations. The simulation results for a distribution system 

voltage regulator demonstrate the value of unique high-frequency 

samples for distributed PV compared to a single PV profile used 

at all interconnection points. 

I.  INTRODUCTION 

High-frequency solar variability datasets with unique inputs 

for different interconnection points on distribution feeders are 

important inputs to accurate quasi-static time series (QSTS) 

distribution grid integration studies [1]. Using low-frequency 

solar variability underestimates the impact of solar 

photovoltaics (PV) to distribution grid operations [2], while 

using a single PV profile for all interconnection points results 

in an overestimation of the PV impact due to the spatial 

smoothing provided by distributed PV [3].  

Measurements of high-frequency solar variability are scarce, 

motivating methods which can synthetically generate high-

frequency data from more ubiquitous low-frequency data such 

as satellite-derived irradiance [4]. In this paper, we present 

initial results from ongoing work to develop high frequency, 

spatially-unique synthetic samples and to show their value to 

QSTS.  

II.  METHOD 

To create inputs to distribution grid studies which involve 

distributed PV across a feeder, Sandia will use a 3-step 

process. 

1) Develop a relationship between low-frequency 

satellite derived solar irradiance and high-frequency 

solar irradiance, using an hourly or daily summary 

statistic such as the variability score (VS).  

2) Select high frequency timeseries samples given the 

predicted high-frequency summary statistic.  

3) Generate unique irradiance samples for each 

interconnection point by adding some decorrelation 

between points, while still retaining the overall 

summary statistics. 

A.  Low-frequency data and high-frequency data relationship 

The relationship between low-frequency satellite and high-

frequency irradiance has been established in previous work [5]. 

The relation between solar variability derived from hourly 

satellite irradiance versus sub-minute ground measured solar 

irradiance was found to be strongest when the hourly satellite 

data was adjusted in several ways.  

The adjusted satellite data was first converted to a clear-sky 

index to remove solar variability caused by the sun’s movement 

through the sky. Then, the median of all daily variability scores, 

using a year or more of satellite data, was used. This median 

variability score was then scaled by the ratio of 
median GHI

1000 Wm−2, to 

reintroduce the magnitude of irradiance that was removed by 

using the clear-sky index. Finally, spatial smoothing was used 

by taking the distance-weighted average of the 9 satellite pixels 

surrounding the location of interest. The ground 30-second 

variability is shown as a function of the 1-hour satellite 

variability in Figure 1, where the 1-hour satellite data was 

adjusted as described in the bullets above.  

 

B.  Select High-Frequency Timeseries 

At least three basic methods exist for selecting appropriate 

high-frequency timeseries based on the low-frequency 

variability determined in Section II. A.  

One method is to find hours in a lookup library that match 

the summary statistic found from satellite data. For this method, 

a large database of high-frequency irradiance samples is 

needed. Based on the variability statistic assigned to each hour 

of satellite data, a representatively variable hour of high-

frequency data is pulled from the library. Figure 2 shows an 

example of this method. Hours in the morning are clear and 

hence low-variability sample hours are assigned from the 

library. In the afternoon and evening, however, the hourly data 

indicates a sharp change in output, leading to a high variability 

 

Figure 1: Relationship between 30-second ground measured solar 
variability (y-axis) and 1-hour satellite derived solar variability (x-
axis) for several locations. [5] 



  

 

 

statistic for those hours, and hence the high-frequency samples 

assigned from the library are highly variable. This method is 

similar to the one in [6] that was shown to work well, but it 

requires nearby high-resolution irradiance measurements and 

correlations with satellite data. 

A second method is to create synthetic ramp rates by 

sampling from a cumulative distribution of high-frequency 

ramp rates for times which match the low-variability statistic. 

This method is similar to the first method, except that each 

short-interval ramp (e.g., 1-second or 1-minute) is sampled 

independently; in the first method, hour-long blocks are 

sampled all altogether. The advantage of this method is that it 

requires a smaller library of high-frequency data. The 

disadvantage is that, due to the independent sampling, special 

care must be taken to ensure that the autocorrelation of the 

created timeseries is representative of actual solar timeseries. 

That is, the independent sampling may, for example, often 

choose several large down ramps in a row, leading to a very 

steep decline in generation that is not reflected in the hourly 

data. Instead, additional dependencies must be factored into this 

method, such as that solar timeseries are more likely to ramp up 

after a down ramp than down again. 

The third method, which we describe in detail in this paper, 

is the creation of synthetic cloud fields based on the hourly 

irradiance statistic. The cloud sizes are scaled based on the 

variability determined from the hourly data. Cloud fields are 

created based on a modification of Perlin noise [7], which has 

historically been used for creation of clouds for movies and 

video games. Just as for the second method, special care must 

be taken to accurately reproduce the ramp rate statistics of true 

solar irradiance timeseries. as this method tends to predict too 

quick of changes from full output to cloud obstruction. 

Smoothing of the cloud edges and retention of high-spatial 

scale (in addition to larger cloud features) noise are imperative. 

C.  Unique PV Production Across a Distribution Feeder 

A single representative timeseries for all locations on a feeder 

will lead to significant overestimation of the PV impacts to the 

feeder (see Section IV), as all distributed PV systems will ramp 

at the exact same time and in the same direction. Instead, unique 

PV profiles must be created for each of the different 

interconnection points along the feeder to model cloud shading, 

movement, and the spatial smoothing of distributed PV.  

The method utilized to create unique PV profiles will depend 

on the method to create representative timeseries.  The first and 

second representative timeseries methods described in Section 

II. B.  result in a single timeseries. These can then be tuned into 

unique timeseries by time-shifting each timeseries based on the 

cloud speed. Example time shifts for PV interconnection 

locations on a distribution feeder and an example shifted 

timeseries are shown in Figure 3. Time shifts must occur for 

clear-sky index data, as seen in Figure 3, to account for 

changing sun angles (most important over long time periods of 

10s of minutes to hours), in addition to the cloud motion. The 

disadvantage to this method is that all locations perpendicular 

to the direction of cloud motion have identical PV generation 

timeseries, and all locations have identical irradiance statistics, 

just with different offsets. The results is that spatial smoothing 

 

Figure 2: Example of using a library lookup to assign 1-minute high 
resolution data based on hourly variability statistic data.  

 

 

Figure 3: [Top] Time offset for points along a distribution feeder, and 
[Bottom] resulting shifted timeseries for one offset.   



  

 

 

across the feeder is slightly underestimated, and, hence, the PV 

impact to the feeder may be slightly overestimated.  

III.  SYNTHETIC CLOUD FIELDS 

For the synthetic cloud field method, the unique PV output 

profiles are naturally created due to the 2-dimentional nature of 

the cloud fields, Since the synthetic cloud fields have the ability 

to create high-frequency timeseries and unique PV production 

across a distribution feeder, it is a promising method. In this 

section, we present work we have done to develop the cloud 

field method and create unique high-resolution PV timeseries. 

A.  Field at Different Scales 

The synthetic cloud fields method begins by creating random 

noise at different spatial scales, as seen in the left plots in  

Figure 4.  

 

 

Figure 4: [Left] Finer to coarser (top to bottom) scales of random 
noise. [Right] Those random noise fields interpolated to the size 
of the finest random noise field (scale 1).  

Next, each scale of random noise is linearly interpolated to a 

grid the same size as the finest grid (scale 1 in Figure 4). This 

results in a smooth field for the larger scales while retaining the 

more random field at the smaller scales, as seen in the right side 

of Figure 4.  

B.  Initial Cloud Field 

These interpolated fields are added together to create an 

initial cloud field, as seen Figure 5. Different weights are 

applied to the different interpolated fields. These weights are 

related to the solar variability: a higher weighting on the finer 

interpolated fields will lead to higher variability since the 

resulting cloud field will be more jagged.  

Here, we define scale weighting based on the variability 

score [8]. Specifically, weights are related to 𝑖1/−ln (𝑉𝑆),  where 

𝑖 is the scale and VS is the variability score. Research is on-

going to determine the exact coefficients.  

 

 

Figure 5: Initial cloud field created by summing all the interpolated 
fields (right plots in Figure 4).  

C.  Cloud Mask 

However, this initial cloud field does not look like actual sky 

conditions: values range from fully clear to fully cloudy without 

distinct cloud shapes. To obtain more distinct clouds, we create 

a cloud mask, which is based on the expected fraction of the sky 

covered by clouds (e.g., as found from hourly data).  

The cloud mask is created by setting all values greater than 

kt to clear sky. For example, if kt=0.5, then roughly half the 

pixels in the cloud field will be set to clear sky. Figure 6 shows 

an example cloud mask for kt=0.5, and the resulting cloud field 

when the mask is applied. 

 

  

Figure 6: [Top] Cloud mask. [Bottom] Resulting cloud field after mask 

is applied.   



  

 

 

 

To apply the cloud mask, two initial cloud fields are created. 

The first one is used to make the cloud mask, and the cloud 

mask is then applied to the second cloud field. If the cloud mask 

were applied to the same field as it was created from, there 

would be no values in the cloud field between kt and 1 (clear). 

This is especially a problem for low kt values, where, e.g., for 

kt=0.2, the clouds would all be very opaque (no values would 

be generated between 0.2 and 1). 

D.  Variation with VS and kt 

We have defined the cloud fields to be a function of VS and 

kt. Figure 7 shows example cloud fields for a variety of VS and 

kt combinations. As VS increases, indicating more variability, 

the clouds get smaller. As kt increases, indicating less of the sky 

is covered by clouds, we see more clear sky.  

Also included in Figure 7 is a clear-sky index sample. This 

was generated by sampling a complete row from each cloud 

field. Since the cloud fields have values ranging from 0-1, they 

are analogous to clear-sky index values: 0 is fully cloudy and 1 

is fully clear.  

These clear-sky samples again confirm that cloud fields with 

higher VS have higher variability, and that cloud fields with 

higher kt values tend to have fewer clouds. However, the clear-

sky index samples in Figure 7 are not fully realistic. They tend 

to be either 1 (clear) or a value much less than 1 (cloudy), 

instead of having smooth transitions from clear to cloudy. 

Additionally, cloudy areas are highly opaque, which is not 

representative of thin clouds which only slightly reduce the 

irradiance reaching the surface.  

We continue to modify the cloud field creation methodology, 

including adjusting the scale weights, applying targeted 

smoothing, and allowing for different cloud types and opacities 

[9]. The goal is to be able to match the statistics of ground 

measured irradiance.   

E.  Sampling from Cloud Fields 

Since the eventual goal of the cloud field methodology is to 

create unique PV samples for distribution grid studies, we need 

to be able to sample timeseries from the cloud fields. We do this 

by assigning a length scale to the cloud field (e.g., one pixel is 

one meter), and by advecting the clouds based on the cloud 

speed. For example, for a 5 m/s cloud speed with 1m pixels, we 

would sample every 5 pixels to generate a 1-second resolution 

timeseries.  

Examples of samples at various cloud speeds are shown in 

Figure 8. Fast clouds speeds lead to lower correlation among 

different PV sites [10], and we see this behavior in the samples 

from the cloud fields.   

However, a side effect of sampling at different intervals is 

that the cloud speed is directly impacting the variability of each 

individual location:  slower cloud speeds lead to less variability. 

The variability at each individual location should depend only 

on the VS (not the cloud speed), so this interdependency will 

need to be addressed in future iterations. 

 

Figure 7: Cloud fields created based on each VS and kt input.   



  

 

 

 

 

 

 

Figure 8: Timeseries created from sampling the same cloud field at 

different intervals corresponding to different cloud speeds.   

 

F.  Convert to GHI and Power 

The samples described in Section III. E. are analogous to 

clear-sky index samples. They can be converted to GHI by 

multiplying by a clear-sky index (e.g., [10]). Figure 9 shows a 

sample GHI timeseries created with this method. The “on-off” 

behavior of the clear-sky index samples is again seen in the GHI 

samples. 

Figure 9: Sample GHI timeseries derived from cloud fields. 

 

 These GHI samples can be converted to power output 

samples by using a decomposition and transposition model to 

convert to plane of array (POA) irradiance in the plane of the 

PV modules to be simulated, and then by using an irradiance to 

power model to convert to power output.  

Figure 10 shows PV power samples over a day. The VS and 

kt were varied over different hours of the day, so some periods 

are fully clear while others are cloudy. Again, we notice the 

“on-off” behavior of the power from the single location. 

However, when timeseries are sampled at hundreds of locations 

(corresponding to the hundreds of different transformer 

locations on the feeder), the aggregate output is much smoother 

and looks more realistic. As described in Section IV, we have 

ongoing tests to evaluate the need for accurate distributed PV 

inputs. For analysis such as voltage regulator tap changes, it 

may not be important that a single customer be accurately 

portrayed because the regulator will only see the aggregate 

output of several PV systems.  

IV.  UNIQUE PV PROFILES IMPACT ON DISTRIBUTION STUDIES 

Previous work has shown the value of the high-frequency 

solar inputs discussed in Section II.B. to distribution grid 

studies: it was found that computing voltage regulator tap 

change operations using hourly PV samples instead of high-

frequency samples resulted in a 20% to 70% error [2,11]. In this 

analysis, we additionally show the value of using unique PV 

inputs across the feeder (discussed in Section II.C.), instead of 

assuming the same PV power profile at all locations. Figure 11 

shows voltage regulator timeseries for a week-long simulation 

for both the case of a single irradiance profile used at all PV 

interconnection points and for a unique irradiance profile used 

at each interconnection point. The unique irradiance profiles 

were created based on 8 ground measurements, then were 

spread across the feeder using the cloud speed based time 

 

Figure 10: Sample power output timeseries for one location (blue), and for the aggregate of all locations on the feeder (black).  



  

 

 

shifting described in section II. C. ). The test feeder and shifting 

method are described in more detail in [12]. The result is that 

the unique irradiance profiles resulted in ~30% fewer tap 

change operations. Thus, in order to accurately determine PV 

impacts such as voltage regulator tap change operations, it is 

important to generate spatially-unique irradiance profiles.  

 

 

 

Figure 11. Voltage regulator tap change operations in a sample 
week for [top] a single irradiance profile used at all interconnection 
points and [bottom] unique irradiance profiles used at each 
interconnection point. 

V.  CONCLUSIONS AND FUTURE WORK 

We have shown the need for unique, high-frequency solar PV 

samples in quasi-static time series simulations (QSTS) of 

distribution grid impacts of PV, and laid out the synthetic cloud 

field method. Additional tweaks to the cloud field methodology 

are needed to make the sampled timeseries better match 

measured irradiance data. Additionally, the method should be 

further demonstrated with QSTS simulations to show its value 

for simulating high penetrations of distributed PV when no or 

limited ground data is available. 
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