

Development of Low-Cost, Crack-Tolerant Metallization Using Screen Printing

Omar K. Abudayyeh¹, Andre Chavez^{1,2}, John Chavez¹, Sang M Han^{1,2}, Francesco Zimbardi³, Brian Rounsaville³, Vijaykumar Upadhyaya³, Ajeet Rohatgi³, Byron McDanold⁴, Timothy Silverman⁴, and Nick Bosco⁴

¹Osazda Energy; ²University of New Mexico; ³Georgia Institute of Technology; and ⁴National Renewable Energy Laboratory

DuraMAT Capabilities	Industry Goals	Accomplishments	Outcomes and Impact
 Data Management & Analytics, DuraMAT Data Hub Predictive Simulation Advanced Characterization & Forensics Module Testing Field Deployment Techno-Economic Analysis 	 Produce screen-printable silver paste with crack-tolerance to substrate fractures. Incorporate low-cost, multi-walled carbon nanotubes for electromechanical reinforcement. Develop capability to electrically bridge cracks forming in PV cells for increased lifetime. Reduce LCOE by lowering cell degradation rate. 	 Demonstrated crack-bridging for commercial space solar cells. Translate the technology to silver paste used on terrestrial PV. Target terrestrial Si PV market > \$25B for economic impact. Reduce module degradation for increased lifetime. Accomplished mini-module stress testing w/thermal cycling. 	 Demonstrate increased module reliability against stress- induced cell fractures. Make specialized silver paste products available for integration on commercial Si PV modules. Target future partnerships with silver paste and module manufacturing companies. Provide new materials and integration solutions for Si PV.

Capability Development

Cost Drivers

0.6¢	

Sap bridging capability up to 50 μm with proper CNT loading Self-healing properties after multiple strained-to-failure and closed-gap cycles Increased ductility with CNT incorporation (16% increase in modulus of toughness)

◆ Little impact on cell performance upon MetZilla Paste[™] integration on commercial PERC cells

Mini-Module Characterization

Establish MMC • Demonstrate MMC-integrated cells maintain Paste Formulation >90% BOL upon fracture Perform S-N fatigue curves on • Present 2nd Poster MMC-enhanced metallization Mini-module construction (baseline & MMC)

Summary

Durability by deliberate design; Perfecting a process that is engineered to last

