Introduction to the Open Source PV_LIB for Python Photovoltaic System
Modelling Package

Robert W. Andrews !, Joshua S. Stein 2, Clifford Hansen2, and Daniel Riley 2
Calama Consulting, Toronto, Ontario, M5T1B3, Canada
2Sandia National Laboratories, Albuquerque, NM, 87185, USA

Abstract—The proper modeling of Photovoltaic(PV) systems
is critical for their financing, design, and operation. PV_LIB
provides a flexible toolbox to perform advanced data analysis
and research into the performance modeling and operations of
PV assets, and this paper presents the extension of the PV_LIB
toolbox into the python programming language. PV_LIB provides
a common repository for the release of published modeling
algorithms, and thus can also help to improve the quality and
frequency of model validation and inter comparison studies.
Overall, the goal of PV_LIB is to accelerate the pace of innovation
in the PV sector.

Index Terms—PV modelling, software, data analysis, perfor-
mance modelling

I. INTRODUCTION

HE proper modeling of a photovoltaic (PV) system

is critical to its technical and financial success. Many
commercial integrated software packages are available and
accepted in industry: for example PVsyst, Helioscope, SAM,
PVWatts and others provide the ability for designers to asses
the potential output and revenue from a PV system. These
packages are particularly adept at answering the following
design questions:

o Opverall system output given irradiance information.

o Sizing and specification of major components (inverters,
panels, combiners).

o Shading and loss factors analysis.

And they are able to provide these results in a form
which is accepted in the technical and financial industries (i.e
bankable). This is due to the traceability of their algorithms
and the familiarity of the industry with these outputs.

However, because of the integrated nature of these simu-
lations packages, there is a lack in flexibility of simulations
which the package can perform. This means that designers and
researchers cannot create customized and integrated tools for
exploring advanced topics in PV performance analysis.These
advanced tools are often required to perform detailed analyses
of system performance, and to allow innovation in the deploy-
ment of PV technologies. Examples of questions which are not
easily answered with integrated modeling packages are:

o Comparisons of performance outputs using varying mod-
els and assumptions

o Large scale parametric analyses of multiple datasets
(though some newer models are allowing this)

o Ability to modify, customize, and update modeling algo-
rithms

o Automated integration into external workflows, eg. auto-
mated performance assessments

o Ability to view intermediary modeling results and per-

form on-the-fly statistical analyses

Thus, those requiring the ability to perform more advanced
data analysis will generally create custom algorithms in
programs such as MATLAB, R, Python, or in spreadsheet
programs. These algorithms are generally based on published
literature or understood industry best practice, however the
process of creating new algorithms based on these sources is
time consuming and can lead to errors or mis-interpretations,
and are generally difficult to individually validate.

In order to address these issues, Sandia National Laborato-
ries has developed PV_LIB [0, a collaboratively developed
open source PV modeling environment. This environment
consists of modeling algorithms which can be used in isolation
or in combination to analyze all portions of the PV system
modeling work flow.

II. THE PV_LIB CONCEPT

The vision for PV_LIB is to become a standard repository
for high quality PV related analysis algorithms. Put simply, an
algorithm can be published in a journal, conference, or white
paper, and the code can be published through PV_LIB.

This code is open-source, collaboratively developed and
validated, and it is hoped that the release of this code will
accelerate the development of the PV industry for the follow-
ing reasons:

o Create a linkage between researchers and implemen-
tors Authors of new algorithms can present them in a
format which can be adopted into modeling work flows
quickly and and at a low cost

o Provide validated tools to groups which do not have
the ability to develop them Many industry and research
groups do not have the ability to develop algorithms for
advanced data analysis, and are limited by the capabil-
ities of spreadsheet software and commercial integrated
analysis packages

o Increase the efficiency of PV research Many research
projects in PV performance require the development of
an initial testing and modeling suite before new research
can begin. By providing a high quality and validated tool-
set for the basis of research, the rate of innovation can
be accelerated

+ Enable faster, reliable model inter-comparisons and
validations Models integrated into the PV_LIB Package
can be easily compared and validated in a reproducible
way.

o Increase the quality of communication between de-
velopers, Independent Engineers (IEs), and financiers



By providing a common modeling platform for advanced
data analysis, the communication of complex data anal-
ysis can be simplified and shared in a reproducible way.

o Provide tools to efficiently handle large datasets The
analysis of data on hourly or minutely timescales can
provide valuable insights into system performance, and
spreadsheet programs are generally not able to handle the
volume of data associated with these datasets. Using ef-
ficient code and the ability to parallelize some operations
means that high resolution data can be analyzed.

¢ Collaboration can increase the pace of technology
innovation in the sector Because the future expansion
of PV_LIB will be based on the contributions of the
PV community, new analysis methodologies and best
practices can be quickly adopted by the sector.

ITII. THE PV_LIB PACKAGE

The PV_LIB software package currently exists as a set of
Python and MATLAB scripts which perform system perfor-
mance calculations, and represent a large portion of currently
published system performance and atmospheric functions.

These algorithms can be used in isolation to investigate
a certain portion of PV performance evaluation, or can be
used in combination to fully simulate a PV array, and are
summarized in Table L.

A. Python PV_LIB

The Python programming language is a free and open
source programming environment which has been shown to
be very well suited to scientific computations [[], [B], []. A
key feature of Python is it’s flexibility to handle computation
from small scale to large highly parallelized high performance
computing operations [8] and because of this is able to scale
easily, with no costs, to a users demands and requirements.

In addition, the Python language is supported by a vi-
brant community of developers, and new features are actively
added and maintained. Because of this, integration with web,
database and graphically intensive processes are relatively
simple and intuitive in the system, allowing for a greater
flexibility when developing models and algorithms. [H]

Python is also designed to be easily written and interpreted,
and because of the high-level nature of the code is easily
learned and understood by those with a basic understanding
of programming syntax.

As PV_LIB develops into the Python programming lan-
guage, it will feature three main principles:

o Take advantage of the Python programming language, to
ensure free access to academic and commercial users

o Designed for collaborative development, and backed by
a rigorous method to include the contributions of authors
and researchers into the package

o Backed by a full testing and validation suite- to ensure
stability of the package and to allow for validation of
model results against real-world performance data.

IV. COLLABORATIVE SOFTWARE DEVELOPMENT

The Python version of PV_LIB will be designed and main-
tained to allow for collaborative development of the software
using the open source model. [7], [¥]

The full set of code is maintained on the Git Hub collab-
orative revision control system and it is possible for those
interested in using or modifying the code base to create a
"fork’ of the code onto their local systems. The users can then
use or modify the code on their local machines. If a bug is
fixed or a new function is developed, a request can be made
through the GitHub system to integrate it into the main code
base.

Requests to merge a change into the code base are then
reviewed by the maintainers of the code, and if accepted can
be integrated and merged into the code of those utilizing the
code. At specified milestones, official version updates will be
released which will integrate the latest updates into a down
loadable package.

A. User demographics

There is a distinction made between two categories of
expected users of the PV_LIB package: Users and Developers

Users Users are concerned with using high level modules
to develop analysis workflows. They would take advantage of
pre-defined modules, but wouldn’t generally dive into their
back end function or development. It is assumed that they
will generally interact with PV_LIB through the ’Ipython
notebook’ environment, shown in Figure [

Developers Though developers would be interested in the
end result of developing new analysis workflows, they would
also be concerned with the back end development of analysis
modules. This would include the development of algorithms
and the creation of algorithmic and physical testing suites.

B. Testing requirements

Algorithms integrated into the PV_LIB Python package
will require algorithmic and physical testing packages. The
specific requirements for these are published on the PV_LIB
website.

Algorithmic testing packages ensure that the module will
operate properly under all reasonable conditions imposed on
it by users , including logical error handling.

Physical physical testing should include a validation
dataset which demonstrates the implied function of the
algorithm. This provides users with an accessible method
of ensuring the accuracy of results and ensuring the
physical validity of their models. Validation datasets must be
included directly in the testing file, and should not rely on
external datasets to ensure stability of the validation over time.

In order to ensure repeatable results, a version tracking
system is also included in PV_LIB which will provide a
standard method to document the algorithms and versions
which were used in a particular simulation.



TABLE I
FUNCTIONS INCLUDED IN VERSION 1.1 OF PV_LIB . ALL REFERENCES ARE INCLUDED IN THE ON LINE PV_LIB DOCUMENTATION

Irradiance and atmospheric functions

pvlib.pvl_alt2pres(altitude) Determine site pressure from altitude
pvlib.pvl_pres2alt(pressure) Determine altitude from site pressure
pvlib.pvl_getaoi(SurfTilt, SurfAz, SunZen, SunAz) Determine angle of incidence from surface tilt/azimuth and apparent sun zenith/azimuth
pvlib.pvl_disc(GHI, SunZen, Time[, pressure]) Estimate Direct Normal Irradiance from Global Horizontal Irradiance using the DISC
model
pvlib.pvl_ephemeris(Time, Location], ...]) Calculates the position of the sun given time, location, and optionally pressure and
temperature
pvlib.pvl_spa(Time, Location) Calculate the solar position using the PySolar package
pvlib.pvl_extraradiation(doy) Determine extraterrestrial radiation from day of year
pvlib.pvl_globalinplane(SurfTilt, SurfAz, ...) Determine the three components on in-plane irradiance
pvlib.pvl_grounddiffuse(SurfTilt, GHI, Albedo) Estimate diffuse irradiance from ground reflections given irradiance, albedo, and surface
tilt
pvlib.pvl_makelocationstruct(latitude, ...) Create a structure to define a site location
pvlib.pvl_relativeairmass(z[, model]) Gives the relative (not pressure-corrected) airmass
pvlib.pvl_absoluteairmass(AMrelative, Pressure) Determine absolute (pressure corrected) airmass from relative airmass and pressure
pvlib.pvl_clearsky_ineichen(Time, Location) Determine clear sky GHI, DNI, and DHI from Ineichen/Perez model
pvlib.pvl_clearsky_haurwitz(ApparentZenith) Determine clear sky GHI from Haurwitz model
Irradiance Translation Functions
pvlib.pvl_perez(SurfTilt, SurfAz, DHI, DNI, ...) Determine diffuse irradiance from the sky on a tilted surface using one of the Perez
models
pvlib.pvl_haydavies1980(SurfTilt, SurfAz, ...) Determine diffuse irradiance from the sky on a tilted surface using Hay & Davies’ 1980
model
pvlib.pvl_isotropicsky(SurfTilt, DHI) Determine diffuse irradiance from the sky on a tilted surface using isotropic sky model
pvlib.pvl_kingdiffuse(SurfTilt, DHI, GHI, SunZen) Determine diffuse irradiance from the sky on a tilted surface using the King model
pvlib.pvl_klucherl979(SurfTilt, SurfAz, DHI, ... Determine diffuse irradiance from the sky on a tilted surface using Klucher’s 1979
model
pvlib.pvl_reindl1990(SurfTilt, SurfAz, DHI, ...) Determine diffuse irradiance from the sky on a tilted surface using Reindl’s 1990 model
Data Handling
pvlib.pvl_readtmy?2(FileName) Read a TMY?2 file in to a DataFrame
pvlib.pvl_readtmy3(FileName) Read a TMY?3 file in to a DataFrame
System Modeling functions
pvlib.pvl_physicaliam(K, L, n, theta) Determine the incidence angle modifier using refractive models
pvlib.pvl_ashraeiam(b, theta) Determine the incidence angle modifier using the ASHRAE transmission model
pvlib.pvl_calcparams_desoto(S, Teell, ...[, ...]) Applies the temperature and irradiance corrections to inputs for pvl_singlediode
pvlib.pvl_retreiveSAM(name[, FileLoc]) Retrieve latest module and inverter info from SAM website

pvlib.pvl_sapm(Module, Eb, Ediff, Tcell, AM, AOI) Performs Sandia PV Array Performance Model to get 5 points on IV curve given SAPM
module parameters, Ee, andcell temperature

pvlib.pvl_sapmcelltemp(E, Wspd, Tamb[, modelt]) Estimate cell temperature from irradiance, wind speed, ambient temperature, and module
parameters (SAPM)
pvlib.pvl_singlediode(Module, IL, 10, Rs, ...) Solve the single-diode model to obtain a photovoltaic IV curve
pvlib.pvl_snlinverter(Inverter, Vmp, Pmp) Converts DC power and voltage to AC power using Sandia’s Grid-Connected PV Inverter
model
pvlib.pvl_systemdef(TMYmeta, SurfTilt, ...) Generates a dictionary of system parameters used throughout a simulation
C. Code examples Revision 1: name, organization

Date:
Developers wising to contribute to the PV_LIB package i

will be require to adhere to PV_LIB coding standards for import modules
documentation and function creation. Docstrings (function def pvl_Fcn(Inputs ,**xkwargs):
descriptive headers) should be included for all functions and nr

formatted according to the current google python docstring Function Description

standard, and functions should adhere to the google python %?Ei?i?f

style guide where possible. An example of the basic layout Input name: format

of a function and it’s test function is shown below. Note that Input Description
the data included in a physical function test must be included Returns

in the same file as the test script to ensure stability of the

R R Output name: format
testing package over time.

Output Description
rrr

Function Code Vars=locals ()
Expect={’'Inputl’ :(’num’ ,’x>0")
#Numerical logical contsraints
"Input2’ :(’str’ ,('optionl’ ,’option2’)
Attribution block #String dependancy constraints
Developed by: name, organization ’Inputopt’:(’Optional’)}
Date:

rrr



#Kwargs input
var=pvlib.pvl_tools.Parse(Vars, Expect)

function_body_producing_output
return Output

Testing Code

rrr

Attribution block
Developed by: name,
Date:
Revision 1: name,
Date:

organization

organization

rrr

from nose.tools import x

from import pvl_fcn

import modules

def test_proper_algorithmicl ():
#Run the function with multipe of inputs
#to ensure it handles edge cases properly
pvl_fcn (Inputs)
assert (algorithmic

test passes)

def test_proper_physical ():

#inputs representing a physical
#numpy array or DataFrame
Inputs=np.array ([ Physcial data])
#physically correct outputs,
#DataFrame
output=np.array ([ Physcial
#run the function
output_algorithm=pvl_fcn (Inputs)

test case,

data])

#check it’s validity

assert (output_algorithm==output)
def main ():

unittest.main ()
if __name__ == ’'_ _main_ ':

main ()

D. Licenses

PV_LIB is licensed under the BSD 3 clause which is quoted
in part below:

Redistribution and use in source and binary
forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the
above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce
the above copyright notice, this list of conditions
and the following disclaimer in the documentation
and/or other materials provided with the distribu-
tion.

3. Neither the name of the copyright holder
nor the names of its contributors may be used
to endorse or promote products derived from this
software without specific prior written permission.

The intention is to enable users to integrate the code

into other projects or programs while ensuring that proper
traceability and attribution of the code is maintained.

can be numpy ar =

V. USING PV_LIB FOR PYTHON

PV_LIB is created in the Python programming language,
and can used alongside a powerful suite of Python modules
to enable powerful options for data analysis including:

Numpy Numerical and statistical analysis tool-set

Scipy Scientific computing tool-sets including optimization
and advanced regression

Pandas Time series analysis tool-set, including timezone
and daylight savings handling, and time series statistical
operations

The predominant method used by users to interact with
PV_LIB is through the IPython Notebook [3] which is shown
in Figure [, and allows users to create shareable workflows like
the one demonstrated below. These workflows can contain all
processing steps from data input, to modeling, to statistical
analysis. In addition, these workbooks can be shared as
individual program files, or can be converted to HTML and
easily shared as a static web-page.
can be

MY, meta=pvlib.pvl_readtmy3('7236507.cev
print meta.Name

"ALBUQUERQUE INTL ARPT [ISIS)"

1 (2)

), TMY[ 'SunEl' ), THY([ ‘Appar

out(3

Fig: 1. Example of PV_LIB tools being used in IPython to perform analysis.
This analysis shows a comparison of TMY GHI in Golden, Colorado to the
clearsky GHI calculated from two models .

VI. CONCLUSION

This paper introduces the PV_LIB for Python software
package developed by Sandia National Laboratories. The
intention of this open source package is to accelerate the
pace of innovation in the PV sector through providing a
powerful, validated set of tools for the modeling of PV system
performance. The intention of this package is to develop along
with the industry and to serve as a common repository for
new and developing techniques prior to their inclusion in
commercial integrated modeling software, and to enable users
to gain deeper insight into their data analysis.



ACKNOWLEDGEMENTS

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

REFERENCES

[1] J. S. Stein, “The Photovoltaic Performance Modeling Collaborative
(PVPMC),” Photovoltaic Specialists Conference (PVSC), 2012.

[2] K. Hinsen, “High-Level Scientific Programming with Python,”
Computational Science ICCS, pp. 691-700, 2002.

[3] F. Pérez and B. E. Granger, “IPython: a system for interactive scientific
computing,” Computing in Science & Engineering, 2007.

[4] F. Pérez, B. E. Granger, and J. D. Hunter, “Python: An Ecosystem for
Scientific Computing,” Computing in Science & Engineering, vol. 13,
no. 2, pp. 13-21, 2011.

[5] X. Cai, H. P. Langtangen, and H. Moe, “On the performance of
the Python programming language for serial and parallel scientific
computations,” Scientific Programming, 2005.

[6] K. J. Millman and M. Aivazis, “Python for Scientists and Engineers,”
Computing in Science & Engineering, vol. 13, no. 2, pp. 9-12, 2011.

[7]1 B. Kogut and A. Metiu, “OpenSource Software Development and
Distributed Innovation,” Oxford Review of Economic Policy, vol. 17,
no. 2, pp. 248-264, Jun. 2001.

[8] K. R. Lakhani and E. Von Hippel, “How open source software
works:“free” user-to-user assistance,” Research policy, 2003.



	Introduction
	The PV_LIB concept
	The PV_LIB Package
	Python PV_LIB

	Collaborative software development
	User demographics
	Testing requirements
	Code examples
	Licenses

	Using PV_LIB for Python
	Conclusion
	References

