
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Service Life Estimation 
for Photovoltaic  
Modules 
2021 

Report IEA-PVPS T13-16:2021 

P
V

P
S

 

Task 13  Performance, Operation and Reliability of Photovoltaic Systems 
 



Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Service Life Estimation for Photovoltaic Modules 

 

 

What is IEA PVPS TCP? 
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help provide the basis for estimates of the current situation regarding PV reliability and performance.  
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boundaries we can all take advantage of research and experience from each member country and combine and integrate this knowledge 
into valuable summaries of best practices and methods for ensuring PV systems perform at their optimum and continue to provide competi-
tive return on investment. 
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EXECUTIVE SUMMARY 

The economic success of photovoltaic (PV) power plants depends crucially on their lifetime 
energy yield. Degradation effects and the total lifetime directly influence the produced elec-
tricity and therefore the cash flow, which also impacts the levelized costs of energy (LCOE) 
and therefore the profitability of the power plant. In most cases, the lifetimes and degradation 
rates that are used to estimate the system performance are not system-specific but are 
based on average values from the evaluations of older systems or data sheets. So, these 
values unfortunately have no direct correlation with the specific components of the specific 
PV system, nor the operational and climatic conditions at the specific location. Also, the 
mathematical models used for calculating the expected power output typically expect linear 
degradation rates which are not in line with real degradation processes found in the field, 
which are typically non-linear. 

This report gives an overview on empirical degradation modelling and service life prediction 
of PV modules since they are the major components of PV systems that are subject to the 
effects of degradation. For other components no comparable scientific data is available. The 
structure of the document addresses different stakeholders with different backgrounds. 
Chapter 1 begins with a short introduction including a condensed overview of the state of the 
art. 

Chapter 2 follows with the definition of relevant terms and definitions. Since especially in dis-
cussions on lifetime and degradation different terms are not used coherently in industry or 
science, the authors try to improve the situation with this dedicated glossary. In addition, the 
extremely relevant term “end-of-life” is discussed with different definitions, depending on the 
point of view and perspective of the user and the typical factors impacting the PV module or 
PV system. For this “end-of-life” term, no definition which is generally applicable in all situa-
tions can be given. Since the definition is crucial for the calculated service life, yield, and all 
related parameters, through to LCOE it is important to be aware of this when evaluating 
power plants and PV investments.  

Climatic factors play a major role in degradation and are by nature location specific. It is pre-
condition for the creation of meaningful service life prediction or degradation data to know 
about the relevant (climatic) stressors. Therefore Chapter 3 introduces the different relevant 
climatic stressors as well as classification schemes and methodologies to handle and ana-
lyse them. The chapter also describes differences and relations of the so called macro-
climatic stressors, describing the climatic conditions in the ambience of the modules, and the 
situation at material level, the so called micro-climatic stressors. The latter describes the rel-
evant parameters for degradation processes and so also the mathematical models address-
ing module degradation and service life prediction. The ambient macro-climatic conditions at 
specific locations can be estimated using data for the climatic regions or adapted climatic 
maps and so be classified using climatic classification schemes which exist also specified for 
PV purpose like e.g. the Köppen-Geiger PV scheme. For the determination of microclimatic 
loads - which are typically input parameters for degradation models, further calculations are 
necessary. The report presents possible ways to determine the necessary data for the most 
important micro-climatic parameters which are temperature and humidity. This data is also 
very important for the definition of accelerated tests, which can deliver module specific pa-
rameters for the service life and degradation prediction. Chapter 3 also describes basic ac-
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celerated ageing tests, as described in the respective IEC standards, and how they can sup-
port degradation and service life prediction and modelling as well as their limitations.  

Chapter 4 addresses general degradation and service-life modelling approaches including 
related issues. It starts in section 4.1 with general issues of empirical modelling one has to 
be aware of when working on mathematical modelling solutions for service life and degrada-
tion prediction and interpreting results. There are very different approaches for empirical 
modelling of the lifetime performance prediction and service life of products such as PV 
modules empirical statistical modelling, and empirical physical modelling. Physical empirical 
models are those that utilize analytic or numerical forms to represent the fundamental phys-
ics and chemistry of the phenomena. Statistical models, often referred to as data driven 
models, use mathematical forms which are able to fit the (measured) data without direct rela-
tion to physical or chemical processes. Both approaches use empirical (measured) data to 
determinate parameters which can be used for predicting future behaviour.  

Section 4.2 introduces on one hand models for specific degradation modes or phenomena of 
modules (e.g., backsheet or cell cracking or electrochemical corrosion). On the other hand, 
modelling approaches for degradation effects of components and materials are presented. A 
special focus is here on degradation of polymeric materials since these materials are known 
to be sensitive to degradation effects causes by typical climatic stressors like high tempera-
ture, humidity and UV radiation. The modelling approaches using predictive models and in-
ferential mechanistic models are presented using polyethyleneterephtalate (PET) degrada-
tion as catchable example. It is shown that different modelling approaches are necessary to 
describe all degradation effects. Weak points of modules can be identified and focussed op-
timization of products can be supported.  

Performance degradation models are addressed in Section 4.3 which are the core models for 
the prediction of degradation of modules over time for specific types and locations. Com-
bined with defined end-of-life conditions, these models can be used for service life prediction. 
Different approaches which have been specifically developed for PV modules are presented. 
Starting with an approach focusing on physical and chemical processes and the specific ap-
plication. An approach to develop performance loss rate (PLR) models following the statisti-
cal methodology is presented as well including the processes to determine the relevant pa-
rameters from field data.  

The modelling approaches are presented including the methodological approach to the prob-
lem the used input data, and parameters related to specific module types or local climatic 
conditions, down to calculations of degradation rates over time or remaining useful lifetime 
(RUL) or total expected lifetime.  

The latest scientific work shows that service lifetime and degradation models for PV modules 
are of specific use if they combine different modelling approaches and include know-how and 
modelling parameters of the most relevant degradation effects. Such models can differentiate 
between the behaviour of different module types and to include the situation at different ser-
vice locations. For some modules, it is also necessary to use multi-step modelling approach-
es to enable meaningful results. 

Advanced approaches of data analysis and modelling also enable the determination of deg-
radation signatures which can be related to specific degradation effects. This approach is 
expected to be very helpful in future work to identify failures based on operational data.  

Since uncertainties of input parameters can have significant impact on the results but are 
often not totally avoidable, these topics are addressed in Chapter 4.3. 
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 INTRODUCTION 

The economic success and environmental impact of PV power plants depends crucially on 
the degradation and service life of the PV modules and other components of the PV power 
plants. The behaviour of PV modules is especially relevant since they typically show gradual 
degradation effects over time. The useful service lifetime and degradation of PV modules 
directly influences the lifetime yield of electricity, and therefore, the levelized cost of the elec-
tricity (LCOE) produced [1]. Degradation and service life are influenced not only by the mate-
rials used and the quality of module manufacturing, but also by local environmental effects 
that dictate the exposure conditions of the PV modules. Therefore, the lifetime and degrada-
tion of PV modules cannot be determined easily and are not valid for all locations and appli-
cations. Since both are dependent on local and operational conditions, the prediction of ser-
vice lifetime from PV module degradation rates must be taken into consideration all of these 
factors and incorporate them into mathematical models. 

 Purpose 
The report introduces the influencing factors for service life and degradation of PV modules 
and components as well as the modelling of degradation effects and service life prediction. It 
describes relevant stresses and load effects in section 3 and different modelling approaches, 
as well as models which have shown to fulfil the requirements of PV stakeholders in section 
4. The descriptions are written in a way to address the needs of readers from all stakeholder 
groups, so on one hand people with no background in mathematical modelling who are inter-
ested in the influencing factors, potential of service life prediction, and interpretation of given 
data, as well as experts in reliability and degradation modelling. The chapters therefore brief-
ly describe the approaches and background as well as examples and list relevant literature 
for further reading. 

 Overview / State of the Art 
The increasing deployment of PV worldwide is a clear indication that PV will play a big role in 
the worldwide energy mix. This increasing trend in the inclusion of PV is exciting, but also 
comes with several challenges. They include the following: reliability issues, reliable integra-
tion of PV power in electrical grids, end-of-life issues (how to deal with out of service PV 
modules or PV components), and many others. To address these issues, two main ap-
proaches are being used: 1) experimental investigations and 2) mathematical modelling.  

In the experimental approach, usually different testing conditions are applied according to 
established standards to accelerate the ageing of PV modules. According to the applied con-
ditions, different degradation modes can be induced and through different characterization 
techniques the physical/chemical kinetics of the induced modes can be understood. This 
understanding helps the manufacturers to improve the different PV materials and compo-
nents and hence the reliability of PV modules. The understanding also helps to develop deg-
radation rate models used in lifetime estimations. Although this area is highly studied by dif-
ferent research groups, it is also among the still challenging topics in the field. This is be-
cause the current standardized testing procedures are designed to induce specific degrada-
tion mechanisms that cannot directly be used to evaluate the reliability of PV modules in real-
world operations [2].This challenge is well known, and some research groups are designing 
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testing procedures that can induce several degradation mechanisms using more combined 
stress conditions [3]–[5]. 

To evaluate and predict the service lifetime of PV modules in real-world operating conditions, 
mathematical approaches are usually utilized [2], [6], [7]. Physical and statistical methods 
have been commonly used and recently machine learning approaches are being applied. 
The basic concept of mathematical approaches is to extract the degradation rates from his-
torical PV performance or climatic data and use the extracted degradation rates to extrapo-
late the performance until the PV module “lifetime”. Indeed, it is also crucial to understand 
how the lifetime is defined in the PV performance context. Excluding catastrophic events 
(such as fire) it is unlikely that a PV module drops its power generation to zero. However, 
even though a PV module is still generating power, its power output might be too low to be 
economically viable to continue its operation. Therefore, for economic viability of PV projects, 
most PV module manufacturers guarantee a power reduction of less than 20%, referenced at 
standard test conditions (STC), modules tested under 25°C temperatures, 1000 W/m2, irradi-
ance, and air mass 1.5, within 25-30 years of operation. Therefore, in the manufacturers’ 
context, the lifetime of a PV module is often defined as the time required for a PV module to 
lose its initial STC power by 20% (so-called degradation limit) [8].  

For outdoor degradation evaluations, statistical methods are commonly used. Therefore, dif-
ferent statistical methods are available and are being proposed [9]–[11]. Although the meth-
ods are based on similar principals, that is, to determine the trends in the historical data, they 
differ in their accuracy. In this report, the commonly used statistical methods as well as the 
recently proposed methods are presented. The major drawback of statistical methods is the 
lack of a direct correlation of the evaluated degradation rates to the climatic variables and 
degradation processes. In this regard, physical models are utilized to capture these correla-
tions. Different physical models have been proposed for different degradation mechanisms 
especially for indoor applications [9]. For outdoor degradation rate evaluation, little has been 
done in this direction with only a few authors that proposed physical models limited to the 
dominating stressors (temperature, UV irradiance, relative humidity, and temperature cycling) 
[6], [7]. Although these models can provide a representation of combined outdoor effects, 
more generalized models that considers all the influencing factors (including additional or 
specific stressors, e.g., corrosive salt mist) in addition to the so-called dominating factors are 
still needed. Such models will provide a good estimation of the degradation rates under dif-
ferent operating conditions. Additionally, most physical models are proposed based on the 
assumption that the degradation kinetics follow an Arrhenius temperature dependence. Due 
to the different degradation mechanisms, it is unlikely that all the mechanisms obey the Ar-
rhenius temperature behaviour; therefore, an investigation of which degradation mechanisms 
follow the Arrhenius law and which ones do not can help to improve the accuracy of the deg-
radation rate models. 

For lifetime prediction, usually a linear approximation with a constant degradation rate is 
used. Although this can be a sufficient approximation depending on the performance degra-
dation trend, it is not usually applicable and can lead to increased uncertainty in lifetime pre-
dictions. In this regard, different authors have recently investigated and proposed models for 
the non-linearity in performance degradations [12], [13]. Such studies will aid to improve the 
accuracy and reliability of service lifetime predictions [14]. 

 



Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Service Life Estimation for Photovoltaic Modules 

15 

 TERMS AND DEFINITIONS 

Since some relevant terminologies for the topic of the report have no standard definitions or 
are usually interchangeably used, in Table 1, the definitions of the different terms are pre-
sented as used in this report.  

Table 1: Definitions of terms as used in this report. 

Term Definition 
Acceleration Increased rate of degradation in respect to a shorter time frame than i real-

world conditions (definition for this report). 
Acceleration 
Factor 

Multiplier indicating the factor by which the degradation rate is increased. An 
acceleration factor is defined for a specific degradation mechanism in a 
specific material under a specific exposure condition. Otherwise accelera-
tion factors tend to be crude approximations or inaccurate or incorrect. 

Back sheet Polymeric multi-layer foil; outermost sheet of the PV module on the rear-
side. It is designed to protect the photovoltaic cells and electrical compo-
nents from external stressors and to act as electric insulator. The back sheet 
typically consists of a multi-layer polymer laminate (or co-extrudate) that has 
high dielectric properties. 

Climate The average weather in a given area over a longer period of time. A descrip-
tion of a climate includes information on, e.g. the average temperature and 
humidity in different seasons, precipitation, wind, and sunshine/irradiation. A 
description of the (chance of) extremes is often included. 

Climate Zone Areas with distinct climates, can be classified using different climatic param-
eters. Climate classifications are the basis for detailed geozonal models of 
climate zones. The most popular classification scheme is the Köppen-
Geiger climate classification scheme [15], but other classifications more 
specific to PV were developed (including the relevant correlation between 
climatic stressors and effects on PV). 

Concentration In chemistry: the amount of a substance in a defined volume or mass. As a 
ratio, the mass ratios (mass concentration) or the volume ratios (volume 
concentration) can be used. 

Corrosion The reaction of a material with its environment, which causes a measurable 
change in the material. Corrosion can impair the function of a component or 
system. An irreversible interfacial chemical reaction of a material with can 
result in consumption or in dissolution into the material. 

Degradation / 
Ageing 

The gradual process of change in characteristics with operational time of a 
material/component/system triggered by stress impact. Typically for PV this 
aging process causes a decrease in performance (power loss). 

Degradation 
Rate 

A parameter that quantifies the magnitude of a PV module power decay of 
its initial maximum output power. 

Effects Reactions, alterations, or changes of state, due to causes. Here typically 
due to the impact of stressors. 

  

https://en.wikipedia.org/wiki/K%C3%B6ppen_climate_classification
https://en.wikipedia.org/wiki/K%C3%B6ppen_climate_classification
https://en.wikipedia.org/wiki/K%C3%B6ppen_climate_classification
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Encapsulation Polymeric film embedding the solar cells and electrical circuits to prevent 
mechanical damage to the solar cells and to prevent water, water vapour 
or oxygen ingress to the electrical contacts. 

Evaluations The experimental measurements to be made at each exposure step in a 
study. 

Exposure The exposure conditions to be used in a study, include the specific stress-
ors and stressor levels, and the times of each exposure step, between the 
experimental evaluations. 

Homogeneous 
Material 

Uniform materials; consisting of one substance in one defined state. 

Homogeneous 
Load 

Same mechanical load applied to all parts / sections of a material, compo-
nent, or system. 

Homogeneous 
Stressor Level 

Same stressor level of a stressor applied to all parts / sections of a materi-
al, component, or system. 

Hotspot Localized heating of a PV module due to a) reverse biasing and junction 
breakdown of a solar cell, b) at a solder bond due to increase of contact 
resistance or fatigue, c) at contact points of separated parts of a cell. 

Lifetime Period of Usability of a Product. 
Load The stressor level for an applied mechanical stress as a load on a material 

/ component / system. 
Macroclimate The general stressors (e.g., temperature, irradiance, humidity, rainfall) that 

a PV module is operating under which are often defined by climate zones 
(e.g., Köppen-Geiger). 
The sum of the general environmental and climatic stressors (e.g., tem-
perature, irradiance, humidity, precipitation) at a location of interest; often 
given by the climate zone. For the report: describing the climatic conditions 
around the PV module. 

Mass Transfer Net movement of mass from one location, usually meaning stream, phase, 
fraction, or component, to another. Mass transfer occurs in many process-
es, such as absorption, evaporation, condensation, drying, precipitation, 
distillation or induced by concentration gradients of a given substance. For 
PV modules, especially moisture and oxygen ingress is of relevance [16]. 

Material  
Moisture 

Water contained in a water absorbing material can be relative or an abso-
lute value. 

Microclimate The local stressors that a PV module is operating under that are specific to 
its exact location (e.g., albedo, stress induced from mounting, variations in 
temperature, irradiance due to location in a PV field). 
The sum of the local stressors that an object, e.g. a PV module experienc-
es during operation; is specific to its exact location and surrounding (e.g., 
albedo, stress induced from mounting, variations in temperature, irradi-
ance due to location in a PV field) and design. The microclimate can be 
inhomogeneous even within a PV module (different humidity or cell tem-
perature). 

  

https://en.wikipedia.org/wiki/Absorption_(chemistry)
https://en.wikipedia.org/wiki/Absorption_(chemistry)
https://en.wikipedia.org/wiki/Evaporation
https://en.wikipedia.org/wiki/Drying
https://en.wikipedia.org/wiki/Precipitation_(chemistry)
https://en.wikipedia.org/wiki/Distillation
https://en.wikipedia.org/wiki/Distillation
https://en.wikipedia.org/wiki/Distillation
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Performance 
Loss Rate 

A parameter which assesses the performance evolution of a PV module or 
PV system based on a performance metric (e.g., electrical, or empirical 
metrics) [17]. 

Performance 
Ratio 

A measure of the quality of a PV module, expressed as the ratio of the 
actual and theoretical PV module energy outputs [18]. 

Relative  
Humidity 

The amount of water vapour present in air expressed as a percentage of 
the amount needed for saturation at the same temperature. 

Reliability Probability that a product, system, or service will perform its intended func-
tion adequately for a specified period of time or will operate in a defined 
environment without failure. 
PV Materials/Components/Systems, reliability means the probability that 
the material/component/system will operate adequately for a specific envi-
ronment and time without failure. This is related to the specifics of service 
life and end of life definitions. 

Reliability 
Model 

A time dependent function that describes the evolution of PV modules 
power with increasing operation period. 

Service Life Period of use under operating conditions defined specifically for each 
module or installation. For PV modules, it can be often related to the ex-
pected business plan. 
Life Cycle: Description of all stages of a product; The life-cycle stages of 
photovoltaics involve (1) the production of raw materials, (2) their pro-
cessing and purification, (3) the manufacture of modules and balance of 
system (BOS) components, (4) the installation and use of the systems, 
and (5) their decommissioning and disposal or recycling. 
End of Life (EoL); Depends on many factors such as technology, opera-
tional, and economical factors. In PV EoL is often related to warranty con-
ditions (e.g., time required for a PV module to lose 20% of its initial STC 
power). For more details on the specifics see section 2. 

Soiling The deposition of airborne particles, including, but not limited to, mineral 
dust (silica, metal oxides, salts), pollen, and soot. Soiling also includes 
snow, ice, frost, various kinds of industry pollution, sulfuric acid particu-
lates, bird droppings, falling leaves, agricultural feed dust, and the growth 
of algae, moss, fungi, lichen, or biofilms of bacteria. In PV, soiling is meant 
to be the accumulation of material on light-collecting surfaces in solar 
power systems [19]. 

Stress Mechanical stress applied to a material / component / system from physi-
cal loads.  

Stressor Level Magnitude of a stressor applied to a material, component, module, or sys-
tem. For example, if irradiance is the stressor, the level could be 0.5 suns. 
Stressor level x Time = stressor dose. 

Stressor Physical, chemical, mechanical, or biological stress which is acting on a 
material/component/system. Examples include temperature, irradiation 
(UV, VIs, NIR), water/moisture, electrical potential as well as mechanical 
stresses such as compressive or tensile impact. 

  

https://en.wikipedia.org/wiki/Deposition_(aerosol_physics)
https://en.wikipedia.org/wiki/Airborne_particles
https://en.wikipedia.org/wiki/Mineral_dust
https://en.wikipedia.org/wiki/Mineral_dust
https://en.wikipedia.org/wiki/Silica
https://en.wikipedia.org/wiki/Oxides
https://en.wikipedia.org/wiki/Salts
https://en.wikipedia.org/wiki/Pollen
https://en.wikipedia.org/wiki/Soot
https://en.wikipedia.org/wiki/Frost
https://en.wikipedia.org/wiki/Pollution
https://en.wikipedia.org/wiki/Sulfuric_acid#Stratospheric_aerosol
https://en.wikipedia.org/wiki/Sulfuric_acid#Stratospheric_aerosol
https://en.wikipedia.org/wiki/Feces
https://en.wikipedia.org/wiki/Animal_feed
https://en.wikipedia.org/wiki/Algae
https://en.wikipedia.org/wiki/Moss
https://en.wikipedia.org/wiki/Fungi
https://en.wikipedia.org/wiki/Lichen
https://en.wikipedia.org/wiki/Biofilms
https://en.wikipedia.org/wiki/Bacteria
https://en.wikipedia.org/wiki/Solar_power
https://en.wikipedia.org/wiki/Solar_power
https://en.wikipedia.org/wiki/Solar_power
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Study Protocol The complete definition of an experimental study, including definitions of 
the exposure conditions, the experimental evaluations used to characterize 
changes, the measurement plan for when the data of each evaluation will 
be acquired and analysed, and the results interpreted. 

Thermal 
Shock 

Thermal shock is caused by a type of rapid transient mechanical load. By 
definition it is a mechanical load caused by a rapid change of temperature. 
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 Service Life Prediction 
The methodology used to calculate the end-of-life of a product is called Service life prediction 
(SLP) [20], [21]. This methodology involves predicting the life of PV modules through the 
modelling of degradation as a function of impacting environmental and operational stressors 
[20]. Such calculations require adapted mathematical models which are able to include all 
relevant stressors and also specific parameters of the specific module type. So, the models 
can be rather complex and often require a lot of (experimental) work to supply all relevant 
data. Pickett [22] notes, "there is a fundamental difference between the SLP process and a 
standard test protocol. Evaluating and qualifying materials for commercial applications re-
quires testing under standardized, agreed-upon conditions to generate pass/fail criteria. It is 
engineering. The problem comes in the question of how those test results correlate to the 
real world. SLP requires doing many experiments, constructing a model consistent with the 
data, and making the prediction with a range of uncertainty. It is science."  

Service life prediction as it is applied in the present report is modelling the development of 
gradual degradation effects leading to a reduced functionality, in the case of PV modules, to 
a reduced maximum output power. Catastrophic failures resulting for extreme events like 
hailstorms, fire, human impacts etc cannot be included in such SLP models.  

Pcritical is the minimum required functional property level that must be defined in quantifiable 
terms to implement SLP, see definition of end-of-life below. These failure criteria can be se-
lected to examine different failure modes for different products. It is common to redefine the 
critical value defining failure several times over the course of SLP experiments as one re-
ceives more insight into the system under study [20]. Each specific failure mode will generate 
a SLP model that predicts the time-to-failure limited by that particular failure mode. When a 
single SLP model is able to predict several types of failure within an experiment, this is evi-
dence that the different failure modes share the same degradation pathways. 

 Definition of End-of-Life 
Service Life calculation requires a clearly described status of the product which defines the 
end-of-life. If a product reaches an unserviceable status the decision is clear but for PV-
modules this is a very rare case and if it occurs, it is usually linked to extreme impacts like 
e.g. hailstorms or fire events. Such events are not included in the service life prediction ap-
proaches and models described in this report since they are not depending on intrinsic pro-
cesses in the modules and not following gradual changes. An overview of potential module 
failures, influencing factors and effects can be found in a previous report of IEA PVPS Task 
13 [23]. 

End-of-life is defined differently for PV modules, depending on the specific context or issue. 
The end-of-life is typically dependent on the use of the PV module and the specific conditions 
of the PV power plant. Current levelized costs of energy (LCOE) compared to replacing the 
modules or the operation and maintenance costs of modules are often influencing factors. 
The following chapters describe different terms and definitions related to the end of life of PV 
modules as well as influencing parameters.  

The International Electrotechnical Commission (IEC) defines accelerated testing procedures 
by which to ensure a defined quality level of PV modules, summed up in so called “Type Ap-
proval Testing” standards such as the IEC 61215 series for terrestrial PV modules [24]. Un-
fortunately, these tests are linked in many people’s minds to specific service lifetimes or war-
ranty times but is has to be clearly mentioned that this is not the case. The standards have 
been developed to identify specific weaknesses of modules and ensure a basic quality level 



Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Service Life Estimation for Photovoltaic Modules 

 

20 

but do not address the issue of defined service lives. They especially do not differentiate be-
tween different climatic conditions where the modules will be operating in. These "Type Ap-
proval Tests" use four pass/fail criteria to determine if the module satisfies the requirements 
of a particular testing standard: First, the measured module power output (Pmax) must not 
degrade by more than 8% of the initial power before testing. Additionally, there should be no 
open circuit or ground fault detected. There should be no evidence of major visual defects, 
and finally, the insulation test requirements are met [25]. It has to be mentioned that the test 
requirements have to be seen as minimum requirements and the tests are aimed to identify 
early faults (infant mortality) or product series defects, so all these simple pass/fail criteria 
are only defined to identify specific quality issues in these tests but cannot be interpreted as 
end-of-life conditions. So, neither the tests nor the pass/fail criteria can be used to perform 
service live prediction calculations and even more do not allow for a correlation of passing 
the standardized tests with specific service lives at a specific location. 

2.2.1 End of Functional Life 
A more general description of the end of functional life is required for PV modules in the field.  

The functionality of products degrades over time. This degradation is described by mathe-
matical models correlating influencing factors, in the case of PV modules typically environ-
mental and operational stressors, with a reduction of a selected property, for PV modules the 
selected property is usually the module power. As described in section 2.1, the end of func-
tional life is reached when the critical property has fallen below a certain value. Then the 
functional end of life is reached. From a purely technical viewpoint, the end of functional life 
of a PV module is only reached when the module does not deliver any electricity at all or 
electrical safety is not guaranteed anymore. This is from the practical viewpoint not reasona-
ble and therefore often much higher levels of the critical parameter are chose, which can be 
influenced also by non-technical reasons (as warranty levels). 

2.2.2 End of Economic Life 
Depending on the economic situation of a specific PV system, the end-of-life can be reached 
due to changing contractual conditions (e.g., changing electricity prices) or if it comes eco-
nomically attractive to replace PV modules by new ones with higher efficiency. In such cas-
es, the end-of-life can be reached at all stages of degradation, but usually the degradation is 
influencing the decision since it influences performance and yield, see also description of end 
of functional life. For optimizing these decisions, using appropriate degradation models which 
can predict degradation is key. 
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 CLIMATIC STRESSORS 

3.1 Introduction to Climatic Stressors 
Degradation of PV modules is controlled by the materials and components of the PV module, 
and the stressors (irradiance, temperature, humidity) the module is exposed to in the local 
climate zone. And these module and climate factors directly impact the service life of the PV 
modules. The term “Climatic Stressors” sums up all stressors which are arise from the local 
climate where the PV module is deployed.  

Regarding service life and degradation estimation for technical products, one has to differen-
tiate between macroclimatic stressors and microclimatic stressors. Macroclimatic stressors 
describe the macroscopic situation of the product, so more or less the conditions around the 
product, defined by the weather conditions etc. Microclimatic loads describe the specific situ-
ation on the very specific piece of material of interest. So microclimatic conditions describe 
the factors directly influencing degradation processes. Some of them are described by the 
same physical values as the macroclimate, e.g. temperature and humidity, others are addi-
tional, like e.g. mechanical tension within a product. There is usually a strong dependency of 
the microclimate on the macroclimate for PV modules since they operate in outdoor condition 
and so e.g. high ambient temperatures and irradiation levels (macroclimate) also lead to high 
temperatures of the module and high irradiation doses for the materials microclimate.  

The chapter gives an overview on the different stressors, as well as on possibilities to deter-
mine and classify them and handle related uncertainties. 

 

 
 

Figure 1: Schematic presentation of macroclimatic loads, e.g., irradiance, humidity, 
temperature, snow, short-term temperature changes triggered by clouds, sand. 

 Macroclimatic Loads 
PV systems are operated under almost all kinds of extreme environmental conditions. For 
example, PV modules in deserts experience high levels of solar radiation which are associ-
ated with high module temperature differences between day and night. PV modules in alpine 
regions experience high mechanical loads from wind, ice, and heavy snow loads which place 
particularly high demands on the stability of the multi-material composite PV module. In eve-
ry region, there is a very specific mix of climatic and environmental stressors. The influence 
of these stressors on the performance and reliability of PV systems is often difficult to predict. 
Synergistic effects between the stressors also occur such as moisture which can accelerate 
degradation reactions or open new reaction paths. In addition, the combination of mechanical 
loads and chemical stress can lead to drastic material degradation or failure. 
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3.2.1 Relevant Macroclimatic Stressors 
The different factors of the ambient climatic conditions, the macroclimatic stressors, are im-
pacting on the module conditions (microclimate) and influence the degradation processes in 
manifold ways. Some of the stressors can be directly linked to specific degradation process-
es, e. g. extreme snow loads to module breakage, others are linked to several or like in the 
case of temperature to more or less all processes. 

The most important macroclimatic stressors are listed below, subdivided into (i) influence 
parameters determined by the climatic conditions and (ii) environmental influences on the 
materials/composites. 

Table 2: Relevant Macroclimatic Stressors. 

Stressors Examples 
Climate induced stressors  
Temperature • Extreme values (often interrelated with high irradiance) 

• Influencing reaction rates of most chemical processes 
• Temperature cycles 

o short-term temperature changes triggered by 
clouds 

o day-night temperature differences 
o seasonal temperature fluctuations 

Humidity • Humidity (can induce chemical reactions - hydrolytic 
degradation) 

• Dew (can induce chemical reactions such as hydrolytic 
degradation) 

• High Surface Conductivity 
• Precipitation (often interrelated with mechanical impact 

or thermal shock) 

o rain 
o snow 
o ice 
o hail 

Solar irradiation • Ultraviolet (UV), Visible (can induce unwanted chemical 
reactions; C-C bond cleavage, photo-oxidative degra-
dation)  

• IR (generates temperature increase and accelerates 
degradation reactions) 
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Environmental stressors  

soiling (mostly from natural local 
sources) 

• bird droppings 
• aerosols, pollen 
• dust, sand 

human pollution - pollutants gener-
ated by local sources (industry, 
heavy traffic, agriculture, …) 

• chemical stressors 

o acidic air pollutants (e.g., NOx, SOx)  
o basic air pollutants (e.g., ammonia) 
o salt (e.g., road salt near the motorway) 
o oxygen 

stress impact induced by the local 
geographical conditions 

• near the coast 

o chemical stressor (e.g., salt) 
o mechanical stressor (e.g., high wind load) 

• in alpine regions  

o mechanical load (e.g., heavy snow load) 

• in regions prone to hail and thunderstorms 

o hail impact 
o lightning strike 
o storm-prone which manifest as mechanical 

and dynamical mechanical loads (e.g., 
storms, typhoon) 

 

The time-dependent repeated application of combined climatic and environmental stresses 
can induce material degradation effects or fatigue, performance losses and induce failure 
modes. As some stressors can have a highly accelerating impact on degradation reactions 
and some impacts can act synergistically, the development of suitable accelerated ageing 
tests to simulate and predict various climatic and environmental conditions is a demanding 
task. 

3.2.2 Classification of Macroclimatic Conditions 
In order to generalize findings from differing PV sites, a classification system is needed that 
associates the similar climatic variables under a singular classification. For many scientific 
fields, the Köppen-Geiger classification is used to relate different geographic locations by 
similar climatic conditions. This system, first introduced in 1884 by Vladimir Köppen [26], was 
improved upon by Rudolf Geiger in 1961 [27]. The Köppen-Geiger classification divides the 
world into five main climatic groups, A, B, C, D, E (Tropical, Dry, Temperate, Continental, 
and Polar, respectively). These main climatic groups are based on the type of foliage that 
can grow in a specific region [26]. This climate classification is updated regularly to represent 
current climatic conditions [15].  

Recently, groups have been designing specific classifications for certain applications. For 
example, the American Society of Heating, Refrigerating, and Air-Conditioning Engineers 
(ASHRAE) have developed their own climate zones. The ASHRAE system was designed 
around the usage of heating, ventilation, and air conditioning (HVAC) systems, relying on the 
number of ‘heating degree days’ or a measurement of how much heating would need to be 
applied to warm a space to room temperature [28]. Motivated by supplementing the com-
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monly used Köppen-Geiger climate system, Ascencio-Vásquez et al. [29] have added irradi-
ance based climatic conditions. The new system, named KGPV, only uses the main climatic 
classification (A - Tropical, B - Desert, C- Steppe, D – Temperate, E - Cold, F - Polar) and a 
category based on the average annual irradiance. The irradiance categories have been di-
vided into 30th, 50th, 80th percentiles. Of the 24 climatic zone possibilities, 12 have been 
selected based on land coverage and population density. Photovoltaic degradation climate 
zone (PDCZ) is a new system based on the specific level of stressors that a module would 
be exposed to at a specific location [30]. PDCZ is specifically designed for use in the PV in-
dustry. The climatic classification consists of three categories: module temperature (T1-T8), 
mean specific humidity (H1-H5), and wind speed (W1-W5). The temperature category has 
been divided up into equal land area portions, whereas the humidity group has been binned 
for equal data distribution. To capture the performance and degradation of a PV site, a cli-
mate classification needs to be designated. Climatic categories elucidate the conditions 
modules operate under. A robust classification schema enables site owners/operators to ca-
ter their installations to the specific climate location. Using the KGPV classification system, 
Ascencio-Vásquez et al. [31], have mapped the amount of predicted degradation of modules 
for each climate zone. Alternatively, Karin et al. [30] have specifically selected the criterion 
for their climate classification to be stressors that affect the degradation of PV systems. A 
climatic classification combined with in-depth understanding of module degradation is critical 
to affirming manufacturing warranties and predicting module lifetime [32]. 

 Conditions in Accelerated Testing 
This section describes stressors and stress levels frequently applied for the testing of PV 
modules, and current research directions being pursued to increase the relevance of accel-
erated testing for PV. Accelerated stress testing involves applying stressors that PV modules 
experience in their field use conditions but at higher stress levels than the PV modules expe-
rience in the field. These include temperature (e.g., high temperature, low temperature, tem-
perature cycling), solar irradiation, mechanical stress, humidity, impacts (e.g., hail, stones, 
projectiles), electrical discharge, acid, basic, and corrosive fluids. Indirect factors as a result 
of light include current, bias on the p-n junction, and system voltage. Tests should be applied 
to materials, components, mini-modules, and full-size modules. Stressors may be applied in 
single factor tests, steady state, multi-factor tests, sequential stress factor, and combined 
stress factor tests. A major challenge that accelerated testing has yet to address, is the fact 
that the response of a material to a five or ten time increase in the particular stress level for 
that stressor, may not be a linear function of the stress level. So, for example a material ex-
posed to one sun irradiance vs. exposed to five suns irradiance, may not obey reciprocity, 
and may not degrade a factor of five times faster. This makes many, if not most, accelerated 
tests, while useful, not activating the same degradation mechanisms as real-world exposure 
conditions [33]. 

Most of the commonly applied stress tests originated in military and electronics test specifica-
tions which include the Commission of the European Communities (CEC), the European So-
lar Test Installation (ESTI), the Jet Propulsion Laboratory (JPL), and the IEC [8]. In the fol-
lowing sections tests and testing methods are described which are used in PV industries. 
Most tests are based on the type approval standard IEC 61215. These tests are also varied 
in several specific methods in different ways. Some of the methods mainly multiply the test 
durations or cycles of IEC 61215, grouped, and named as “extended IEC 61215 testing”. 
Other methods do not define specific test durations but apply the tests until a failure occurs. 
This approach is named “test to failure”. Both approaches can even be used to generate 
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rankings of samples, but it must be clearly mentioned that the results cannot be linked to 
expectable service life times of modules. 

3.3.1 Damp Heat 
Damp heat testing, otherwise known as high-temperature, high-humidity testing, examines 
the ability of the module to resist environmental factors such as corrosion of materials, water-
vapour intrusion, hydrolysis, and delamination of encapsulant materials. The most common 
damp heat condition is 85°C and 85% relative humidity. The appropriate testing regime de-
pends greatly on the PV module design and the mechanism to be accelerated. A conven-
tional encapsulated c-Si cell using a polymeric backsheet experiences moisture ingress 
quickly in the field and in the damp heat chamber because typical backsheets are not mois-
ture barriers. The relation between hours of damp heat testing with a 20-year module life at 
site-specific conditions and estimated 20 years exposure in Miami, Florida, is correlated with 
144 h at 85°C, 85% relative humidity ion driven by the resistivity of polymeric encapsulants 
[34]. In contrast, in a glass–glass module with edge seal performing as a moisture barrier, it 
takes more than 3000 h at 85°C, 85% relative humidity condition to test for moisture ingress 
that would occur in 25 years in the Miami environment [35]. 

3.3.2 Temperature Cycling 
The purpose of temperature cycling, or thermal cycling (TC) is to induce stress associated 
with diurnal and climatic temperature excursions. CEC Specification No. 201 [8], [36] defined 
a temperature cycling test alternating between -40°C to 85°C. The JPL Block V Buy included 
a test sequence with up to 200 thermal cycles [37]. Based on field results, 200 cycles of tem-
perature cycling between -40°C and 85°C has been extrapolated to survive ten years in the 
field [38]. This type of failure is still observed in the field in hot climates [39]. In a modelling 
study for lead tin (PbSn) solder joints, the number of thermal cycles (-40°C to 85°C) required 
ranged 100 to 630 for various use environments for an equivalent 25-year exposure [40]. 

3.3.3 Humidity Freeze 
Humidity Freeze is designed to evaluate delamination of encapsulant, junction box adhesion, 
and inadequate edge seal [41]. It generally reveals destructive effects caused by humidity 
penetration and subsequent expansion at below-zero temperatures. The current IEC 61215 
qualification test requires at least 20 h at 85°C 85% relative humidity and 0.5 h freeze at -
40°C, in ten repetitions [24]. 

3.3.4 Full Spectrum Light and UV Testing 
Testing of PV modules has generally been unrepresentative and insufficient for outdoor life-
time prediction. Light produces various light-induced degradation (LID) effects, including 
those associated with bill of material (BoM) complexes, metallic impurities, and hydrogen. It 
also may contribute to delamination as a secondary effect caused by material degradation 
like embrittlement of encapsulants [41]. Correlation between the total UV exposure dose and 
module short circuit current (Isc) for all exposures showed that UV radiation caused losses of 
0.25%–0.6% per year [42]. Contributions to the degradation include degradation of pas-
sivation of the cells [43] and yellowing of the polymer [44]. UV light sources for the test in-
clude sunlight, Xenon arc lamps, metal-halide lamps, and fluorescent UV lamps in the UV-A 
and UV-B ranges. UV exposure at higher temperature accelerates the degradation in poly-
mers as found in a study of PV module backsheets [45]. 
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3.3.5 Mechanical Load 
Mechanical loading, such as by static loading or cyclic dynamic mechanical loading can pre-
cipitate failure modes such as broken Interconnect, cell breakage, solder bond failures, glass 
breakage, and other structural failures. Load levels for static loading in IEC 61215 [24] quali-
fication testing are 2,400 Pa, or optionally 5,400 Pa, for static loading, and per IEC 1000 Pa 
for cyclic dynamic mechanical loading in IEC TS 62782 [46]. It is frequently sought to alter-
nate mechanical loading with environmental stress tests such as temperature cycling and 
humidity freeze cycles to grow cracks, precipitate delamination, and abrade the crack inter-
faces. 

3.3.6 System Voltage 
System voltage produces the class of phenomena called potential-induced degradation (PID) 
[47], these include PID-shunting, polarization, corrosion, and delamination abbreviated as 
PID-s, PID-p, PID-c, and PID-d, respectively. Shunting is most commonly understood to oc-
cur when cells are in negative potential with respect to the grounded module frame and exte-
rior and Na+ ions of the glass front migrate into the cell causing a shunt at the junction and a 
loss of the cell fill factor (FF). Polarization occurs when charge collects on the passivating 
dielectric layers of the cell of polarity such that minority carriers are attracted to the surfaces 
and recombine, leading to loss of open circuit voltage and generation of photocurrent. Elec-
trochemical corrosion usually happens over a longer term in crystalline silicon technologies, 
especially with respect to cell metallization interface with silicon, the metallization surface, 
and the anti-reflective coating. The nature of the degradation by the corrosion reactions and 
the pH resulting from the reactions depends on the polarity. System voltage also contributes 
to loss of adhesion and causes the formation of bubbles [48] . 

3.3.7 Weathering Tests 
Weathering tests typically involve application of temperature light and moisture. ASTM G155 
“Standard Practice for Operating Xenon Arc Light Apparatus for Exposure of Non-Metallic 
Materials” and D7869 “Standard Practice for Xenon Arc Exposure Test with Enhanced Light 
and Water Exposure for Transportation Coatings” are standards with cyclically applied stress 
factors. Such cyclic tests, e.g., exposure in a xenon device with front-side water spray (3500 
hours xenon 123 W/m2 300 nm - 400 nm, 90°C BPT, 102 minutes UV dry, 18 minutes dark 
with water spray) have been used to manifest failures in backsheets [49]. Weathering Tech-
nical Standard IEC 62788-7-2 “Measurement procedures for materials used in photovoltaic 
modules - Part 7-2: Environmental exposures - Accelerated weathering tests of polymeric 
materials” specifies several steady state weathering conditions including factors of tempera-
ture, humidity UV exposures with Xenon source, also applied to evaluate backsheets and 
other polymeric materials [50]. A commonly applied IEC 62788-7-2 called A3 implements 
65°C chamber air temperature with 20% relative humidity, 90°C black panel temperature, 0.8 
W m-2 nm-1 at 340 nm. 

3.3.8 Climate Specific Accelerated Ageing Tests 
Based on the definition of the four climate profiles 1) dry and hot - arid, 2) moderate 3) humid 
and hot - tropical and 4) high irradiation - alpine, within the Austrian R&D project INFINITY 
(https://energieforschung.at/projekt/climate-sensitive-long-time-reliability-of-photovoltaics/) 
[51] a programme was worked out with 14 climate specific test conditions for accelerated 
ageing tests [52]. The big challenge in this respect was the adaption/advancement of existing 
standard procedures (e.g., PV module design qualification and type approval IEC 61215, PV 

https://energieforschung.at/projekt/climate-sensitive-long-time-reliability-of-photovoltaics/
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module safety requirements IEC 61730 [53], or salt mist corrosion testing IEC 61701 [54]), 
for PV modules/components testing in a way that reliable testing for certain climatic condi-
tions optimized PV modules is possible [3], [38], [52]. The time-dependent repeated applica-
tion of combined climatic and environmental stressors (e.g., temperature, temperature cy-
cles, humidity, irradiation, mechanical load, salt mist) was used to induce performance loss, 
material degradation, and failures in test modules which resemble those effects occurring in 
real-world PV installations under comparable climatic and environmental conditions [55], [56]. 
The advanced analysis of the data and first approaches of advanced data treatment have 
already clearly shown that the electrical and material degradation of the test modules is de-
pendent on (i) the type and combination, (ii) duration, and (iii) mode (sequential versus con-
stant) of the stresses applied [57].The failures and performance losses observed in PV-
plants installed in various climate zones worldwide [58], [59] were compared to the failure 
modes and degradation effects detected upon the climate specific accelerated ageing test-
ing. The simulation of environmental stresses like heavy snow- and wind load and, enhanced 
frequency of temperature cycling resulting in cell cracks and cell connector breakage could 
be demonstrated. The accelerating effect of enhanced temperature, humidity, or additional 
irradiation on the degradation of power and especially the polymeric materials could be 
shown. 

3.3.9 Combined Accelerated Stress Testing 
While most of the above test methods have been optimized to replicate particular failure 
modes after they have been characterized in the field, here, the stressors of the natural envi-
ronments are combined: humidity, temperature, light, rain, wind/snow loads, as well as volt-
age stress, into a single Combined-Accelerated Stress Test (C-AST) for PV modules [3]. This 
approach requires fewer modules and with fewer parallel tests and is designed to discover 
potential weaknesses that are not known a priori in new or changed module designs by ap-
plying the stressors of the natural environment at levels corresponding to their statistical tails 
in diurnal and seasonal sequences [60]. In addition to backsheet cracking, degradation 
modes were observed including solder/interconnect fatigue, various light-induced degrada-
tion modes, backsheet delamination, discoloration, corrosion, and cell cracking. The ability to 
simultaneously apply multiple stressors may allow many of the test sequences within the 
standardized design qualification procedure to be performed using a single test setup [3]. 

 Microclimatic Loads for Modules 
While the above described macroclimatic stressors which are measured in the (close) vicinity 
of the PV power plant and describe the local climate and environmental conditions, the tem-
perature, humidity, and irradiance at the multilayer composite of a PV module can deviate 
strongly from the macroclimate. Thus, the term “microclimatic load” mainly describes the 
conditions (thermal impact, the humidity, and the radiative input) inside a PV-module (e.g., in 
the encapsulant, at the interface solar cell/polymer). These conditions are the relevant pa-
rameters for processes taking place in the module (e.g., chemical degradation reactions). 
Therefore, it is essential to be able to estimate the microclimatic conditions to estimate the 
reaction rates of degradation processes and so also degradation effects and service life. 

3.4.1 Relevant Loads for Degradation Effects / Processes 
Microclimatic loads are defined as a local (meaning in / at a specific piece of material of the 
module) / temporal specific climatic factor affecting the degradation of PV modules during 
their long-term operation. Microclimatic loads do not only depend on the macroclimatic fac-
tors, which are subjected by climate-classification schemes, such as Köppen-Geiger climate 
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classification [15], but also on operational conditions (e.g., electrical potential within the mod-
ule). From this perspective, typical microclimatic loads related to degradation of PV modules 
are summarized in Table 3: 

Table 3: Degradation Effects of Microclimatic Loads. 

Climatic Factor Microclimatic Loads Degradation Effects 
Temperature Extreme High / Low 

Temperature 
 
Rapid temperature change 
 
Non-uniform temperature 
elevation 

Physico-chemical property 
changes of polymeric materials 
(e.g., creep) 
Thermo-mechanical fatigue in 
soldered portions 
Hot Spot formation 
Bypass-diode failure 

Irradiation Non-uniform irradiation 
 
(Shading) 
 
High content of UV radiation 
 
Differences in albedo 

Hot Spot formation 
 
Bypass-diode failure 
 
Loss of encapsulant integrity 
 
Yellowing of polymeric materials 

Dust / Soil Non-uniform accumulation of 
dusts 

Hot Spot formation 
 
Bypass-diode break 
 
PID risk increase 

Humidity Non-uniform penetration of 
moisture into PV module 

Corrosion (interconnectors / 
gridlines) 

Salt mist / Gas Penetration of salts / gases into 
PV module 

Acceleration of Corrosion 
Processes and PID 

Wind / Snow Non-uniform mechanical / 
thermal loads 

Cell cracks / Frame brake / 
Demounting 

Hail Instantaneous mechanical 
impact 

Cell cracks / Glass break 

 

On the basis that PV modules are operated in places with an ambient temperature range of 
at least -40°C to +40°C, almost all of them have been designed and type-approved, in ac-
cordance with the international standards (IEC 61215 / 61730 series). This ambient tempera-
ture range is equivalent to the module temperature having a 98th percentile temperature of 
70°C or less. However, when PV modules are mounted on a roof with only a small gap be-
tween modules and the roof under high-temperature conditions, the module temperature 
often exceeds 70°C in the 98th percentile temperature. Although the degradation caused by 
the temporal high-temperature is evaluated with the new test specification (IEC TS 63126: 
2020 its effect in PV modules during long-term operation under the environments would be 
prudently considered in the modelling of service life prediction, while the temporal (and re-
peated) high-temperature modestly affects the physico-chemical properties of polymers in 
PV modules [61]. 
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Furthermore, the module temperature is temporally changed by the shadow of moving 
clouds, as well as by the diurnal cycle with day and night. Indeed, by the shading, the module 
temperature can oscillate over 20K range within a short-term on a cloudy-hot day. The ther-
mo-mechanical damage is consequently accumulated in the soldering bonds (in particular, 
the contacts between interconnector and busbar on the individual PV cells) [40], [62]. In a 
similar way thermo-mechanical damage leads to backsheet cracking (e.g., for Polyamide 
(PA)-backsheets [63]). This degradation effect has been included in a physical model for ser-
vice life prediction [6], [9], as well as the evaluation procedure on this effect is published as 
IEC 62892:2019. 

In addition, the diurnal shading with trees, buildings, and other obstacles for solar irradiation 
(including the non-uniform accumulation of dust / soil on PV modules) would induce not only 
the non-uniform temperature elevation within PV cell/module, but also the current mismatch 
of cells within the PV module. This spatial difference in temperature accelerated by the cur-
rent mismatch could be a cause of the accumulation of thermo-mechanical damage in the 
soldering bonds, and the bypass-diode could eventually fail. Therefore, degradation due to 
shading should also be considered in estimating service life in certain situations. Another 
specific degradation can appear in locations having radiation spectrum with high UV content 
(e.g. high mountain). In those circumstances, the organic encapsulants have a heavier dam-
age and it exists the risk of early loss of their properties giving rise to humidity ingress and 
further module degradation. The backsheet is impacted by differences in irradiance depend-
ing on differences in the albedo from ground covering (e.g., soil compared to vegetation) and 
the position of the backsheets in the field (e.g., top row compared to bottom row, edge of a 
row or the middle of a row) [64], [65]. 

Humidity works as a key stressor to degrade PV modules. Metal parts (especially in front 
metallization on the respective PV cells) are corroded by the moisture and the organic acids 
released from the encapsulant. Since the dynamic behaviour of moisture ingress mainly de-
pends on the penetration kinetics from ambient moisture (from rear side through the inter-cell 
spaces) [66], [67], an inhomogeneous spatial distribution of moisture on each PV cell is ob-
served [32]. Consequently, the non-uniform degradation within each PV cell is resulted by 
this behaviour of moisture ingress which is depending on some parameters (ambient tem-
perature / humidity with diurnal cycling, water vapour transmission rate of backsheet, diffu-
sion constant of water in encapsulant, width of inter-cell space, and others). In PV modules 
installed on a floating body on a water surface (e.g., lake or sea), the high-humidity atmos-
phere around them could continuously affect the degradation, for example, the leakage cur-
rent between the frame and cells could be elevated in those of the floating PV system [68]. 
PV modules installed in coastal areas or on the roof of livestock barn could be excessively 
degraded by the corrosion facilitated with salt mist or ammonia gas, respectively, as the ac-
celeration of potential-induced degradation (PID) has been reported under the salt-mist 
spraying on PV modules [69]. 

High-velocity wind due to a tropical cyclone and storm triggers the fracture of solar cells 
which would be a major cause of the hot-spot formation, by the cyclic loading of non-uniform 
mechanical pressure to PV modules installed in these regions [70]–[72]. Cell cracks can be 
caused by instantaneous hail impacts. Since the time of emergence and the intensity of 
these loads could not be easily predicted, the effects on the degradation of fielded PV mod-
ules is generally difficult to be included in a physics model on the degradation of PV modules 
operated in a field. However, newly proposed data-driven statistical and machine learning 
methods could provide a good solution to include these effects based on historical data.  
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3.4.2 Determination / Calculation of Microclimatic Loads 
Usually SLP models (especially physics-based models) require microclimatic loads as inputs 
(e.g., module temperature instead of ambient temperature or humidity inside the PV module 
instead of ambient humidity). To provide the microclimatic data, several models are used to 
calculate microclimatic loads from macroclimatic conditions. 

A. PV Module Temperature Models 
Temperature is the macroclimatic impact factor, which has probably the biggest impact on 
degradation rates and Service Life of modules, since it is not only causing temperature driv-
en processes, but it also acts as an acceleration factor for most degradation processes. The 
calculation of microclimatic temperature loads is therefore of highest importance for the esti-
mation of degradation of modules. Several models have been developed to estimate micro-
climatic PV module temperature using ambient temperature, irradiance, and wind speed as 
input factors [73] [74]. Usually the specific module design and material properties are repre-
sented by PV module specific parameters.  

Here are presented two commonly used models, one by Ross [75] (1) which is a function of 
ambient temperature and irradiance, and the other one by Faiman [76] (2), which takes the 
cooling effects due to wind into account: 

● Ross model  

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑇𝑇𝑎𝑎𝑚𝑚𝑎𝑎 + 𝑘𝑘𝑅𝑅𝑚𝑚𝑅𝑅𝑅𝑅 × 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃 (1) 

● Faiman model  

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑇𝑇𝑎𝑎𝑚𝑚𝑎𝑎 +
𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃

𝑈𝑈0 + 𝑈𝑈1 × 𝑤𝑤𝑤𝑤
 (2) 

 

where Tmod and Tamb [°C] are the PV module and ambient temperature, EPOA [W/m2] is the 
incident solar irradiance on the module, and ws [m/s] is the wind speed. kRoss is the Ross 
coefficient, which is related to the heat transfer properties of the materials [77]. U0 [W/(°C 
m2)] and U1 [W s/(°C m3)] are the coefficients describing the effect of the radiation on the 
module temperature and the cooling by the wind, [78] respectively. 

B. Models for Humidity Ingress 
Humidity is a very important parameter for the microclimatic conditions influencing degrada-
tion processes in PV modules. Heat transfer in PV modules is a fast process, usually faster 
than a change of the climatic conditions. The environmental conditions determining the mod-
ule temperature can therefore usually be directly used as input in SLP models. However, 
moisture diffusion is a comparably slow process. The type of module, its layout, and materi-
als used have a large impact on the speed of diffusion and possible moisture ingress path-
ways. For example, it can take several days for moisture to penetrate a backsheet, but sev-
eral years to diffuse to the encapsulation in front of a crystalline silicon cell [79], [80]. The 
moisture content at different positions inside the module can thus vary strongly at any given 
time, as shown in Figure 2. 
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Figure 2: Moisture ingress measured with miniature RH sensors at various places in a 
1-cell crystalline silicon mini-module mounted in Bolzano, Italy [80]. The module con-
sists of an ethylene-vinyl acetate (EVA) encapsulant and a polyethylene terephthalate 
(PET) backsheet. 
Simple analytical relations, equivalent to (3) and (4) for the temperature, are thus hard to find 
and specific to the type of module, the materials, the location of the installation and the posi-
tion of the material within the module. SLP models therefore currently do not include all these 
factors and use e.g. an average moisture content inside the module, commonly linked direct-
ly to the relative humidity in the air. However, their accuracy could be increased in the future 
by correlating them to the spatially resolved moisture profile over time in the modules. This 
profile is usually calculated with finite element method (FEM) simulations. To combine the 
additional insights delivered by FEM simulations with SLP models the development of the 
moisture content at a selected position in a module over time can be calculated by FEM and 
used as input data set for SLP. Such data is relatively independent of short-term changes 
and therefore can be combined with e.g. temperature data with higher temporal resolution. 
Examples for such simulations to determinate the humidity content inside PV modules can 
be seen in Figure 3 and Figure 4. For both calculations the identical module design and ma-
terial parameters have been used. In addition, measured ambient climatic data of two test 
sites, one on the island of Gran Canaria, Spain (Figure 3) with maritime climate and one in 
the Negev desert, Israel (Figure 4) with arid climate have been used. The humidity follows 
relatively fast the ambient conditions at the positions in the backsheet (named “Backsheet”) 
and in the interface between backsheet and encapsulation (named “Interface). In the encap-
sulation in the spacing between two cells (named “EVA centre”) also seasonal effects can be 
seen. For positions with longer diffusion way from the backsheet like in the encapsulation 
between cells and the glazing above the centre of the cell (named “EVA top”) or half way 
between the edges of the cell and the centre of the cell (named “EVA mid”) seasonal effects 
are negligible. The humidity levels within the modules, which are approached on the long 
term depending on materials and climatic conditions and can vary significantly or even be 
very similar, even in very different climates, as the examples in Figure 3 and Figure 4 show. 

For service life prediction (SLP) modelling often humidity data is used representing long term 
average (for positions with high fluctuations) or long term stabilized (for positions with low 
fluctuations) values. The examples show that the microclimatic humidity conditions are far 
away from being homogeneous in a PV module and therefore working with only one value for 
SLP calculations leads to uncertainties, depending on the location of the different degrada-
tion processes in PV modules. This has especially to be considered if calculations shall ad-
dress specific failure modes or specific materials or components. 
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Figure 3: Development of humidity at different positions in a PV module over time us-
ing maritime ambient climatic data of a test site on Gran Canaria, Spain. 

 
Figure 4: Development of humidity at different positions in a PV module over time us-
ing arid climatic data of a test site in Negev, Israel. 
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The governing equation for humidity diffusion is Ficks Second Law of Diffusion [66]. The 
change of the water concentration C [kg/m3] over time is 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷 × ∆𝜕𝜕 (3) 

where D [m2/s] is the diffusion coefficient. Such simulations have led to some non-intuitive 
results. For example, while initial sorption is much faster in a tropical climate, moderate and 
alpine climates can lead to a constantly higher moisture content in the front of crystalline sili-
con cells after several years of installation [79]  

Deviations from Fickian behaviour have been reported in various encapsulants, for example 
thermoplastic polyolefins (TPO) or ionomers [81]. More complex models are better suited to 
describe these materials. An example is the dual-transport model presented in [82]. It solves 
equation (3) in FEM simulations and implements such deviations as an inhomogeneity in the 
material. The boundary conditions on each material interface can be derived from Henry’s 
law, describing the equilibrium state on the boundary.  

𝜕𝜕 = 𝑆𝑆 × 𝑝𝑝 (4) 

Here, p [Pa] is the partial water vapour pressure and S [kg/m3Pa] the solubility of water in the 
material. The temperature dependency of both D and S are described by an Arrhenius law, 
for example 

𝐷𝐷 = 𝐷𝐷0 × 𝑒𝑒𝑒𝑒𝑝𝑝 �
𝐸𝐸𝑃𝑃,𝐷𝐷

𝑘𝑘𝐵𝐵 × 𝑇𝑇
� (5) 

where D0 [m2/s] is the pre-exponential factor of D and EA,D [kJ/mol] is the activation energy. D 
and S can span many orders of magnitude in different encapsulants, backsheets and edge 
seals [35], [83]. Deviations from Henry-type sorption have been observed in polyvinyl butyral 
(PVB) [84], EVA and PET [85]. The Engaged Species Induced Clustering (ENSIC) model of 
Perrin and Favre [86], [87] can describe the absorption isotherms more accurately in these 
materials, using two fitting parameters k1 and k2. 

𝜕𝜕 =
𝑒𝑒𝑒𝑒𝑝𝑝[𝑅𝑅𝑅𝑅 × (𝑘𝑘1 − 𝑘𝑘2)] − 1

(𝑘𝑘1 − 𝑘𝑘2) 𝑘𝑘2⁄  
(6) 

It results in a higher moisture content inside the module in a humid environment compared to 
the Henry sorption model. 

3.4.3 Cross-Correlation of Accelerated Exposure and Real-World Operational 
Conditions 

The exposure conditions used in indoor accelerated tests generally consist of simple control-
lable stressors. However, installed PV modules are subjected to multiple, complex environ-
ment stressors that vary in time, which make understanding PV module real-world degrada-
tion behaviours and failure complicated. Recently, studies have started to link the degrada-
tion observed in indoor accelerated exposure to degradation observed in outdoor exposure 
[6], [88], [89], [90]. Accelerated sequential indoor exposures are being used to evaluate PV 
module performance under synergistic stressors more similar to real-world PV modules [6]. 
This section focuses on module level studies to bridge the gap between accelerated indoor 
and multi-climate zone outdoor exposure conditions. Physics-based models and statistical 
models were used in these module level studies. An example of a physics-based modelling, 
Kaaya et al. [6] used multiple transformed Arrhenius equations to link indoor and outdoor 
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exposure by using the exposure conditions and module performance. In their study, three 
degradation mechanisms, hydrolysis, photo-degradation, and thermomechanical degrada-
tion, are assumed to be necessary for service lifetime prediction. The assumption was based 
on three indoor exposures: damp heat, damp heat with UV light and temperature cycling. 
Using indoor exposure data, the physics-based models of the three degradation mechanisms 
were calibrated, validated, and analysed as a first step. The second step was to derive a 
combined/total degradation rate model from the three specific degradation mechanisms rate 
models. The combined model was calibrated and validated using performance data of identi-
cal PV modules installed in three climatic zones, namely arid, maritime, and alpine. Severe 
degradation was predicted in arid due to higher temperatures in this zone that determines the 
reaction rates for other degradation mechanisms caused by other stressors such as hydroly-
sis by humidity and photo-degradation by UV dose. In correlation with indoor exposure, it 
was predicted that the hydrolysis mechanism has the lowest contribution to the total degra-
dation rate compared to photo-degradation and thermomechanical mechanisms. 

A statistical model uses module performance to answer the question of how similar and how 
fast the module degrades in different exposed conditions. This model is useful to get the deg-
radation constant rate and determines module performance. A study by Liu et al. [89] uses 
stepwise I-V measurement for five brands of modules under two types of indoor accelerated 
test and eight modules installed in three climate zones. The performance of modules under 
different indoor and different climate zones outdoor exposures is modelled. In the next step, 
normalization is applied to get an optimal solution as cross correlation scale factor (CCSF). 
CCSF is calculated to be the sum of squared error by rescaling the time in the indoor model 
and the cross-correlation coefficient (CCC) for the overlapping time range of the outdoor 
model and scaled indoor model is determined. CCC is used to evaluate the similarity of the 
trend of module performance under different exposures, and CCSF indicates the ratio of deg-
radation rate under different exposures. These are the two methods to correlate degradation 
in indoor and outdoor modules. Because different degradation mechanisms may cause simi-
lar change in overall performance, it is important to include more characterization results 
such as I-V features to obtain more cross-correlation coefficients. The result shows which 
indoor exposures induce more similar changes for each outdoor system. The results ob-
tained from maximum power and I-V features analysis show good consistency. In particular, 
the modules installed in the Bwh (arid climate, desert climate, hot desert) Köppen-Geiger 
climatic zone correlate well with the two models.  
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 MODELLING APPROACHES 

There are two broad classes of empirical modelling approaches used in degradation studies: 
statistical models and mathematical (analytical or numerical) models incorporating equations 
for physical and chemical phenomena. Empirical modelling is the generic term for activities 
that create models by observation and experiment [91]. The distinction between statistical or 
physics\chemistry mathematical models is an important distinction because of the difference 
in perspective of these two approaches. Statistical models, often referred to as data-driven 
models and based in statistical inference, are empirical models that embody a set of statisti-
cal assumptions concerning the generation of the sample data (and similar data from a larger 
population), and in an idealized form, the data-generating process [92], [93]. Mathematical 
models, for example in the physical sciences, “start with most of the following elements: 
Governing equations for the physical or chemical processes being considered, supplemen-
tary sub-models with their defining equations and constitutive equations and associated as-
sumptions and constraints such as Initial and boundary conditions and classical constraints 
and kinematic equations” [94]. These physical/chemical mathematical models can be based 
on closed form equations (an analytical model), or numerical approximations such as finite 
element or difference methods [95]. So statistical models and mathematical models are ap-
proaching degradation phenomena, modes, and mechanisms from opposite ends. The statis-
tical models are closely tied to the measured data for the system, while the mathematical 
models are closely tied to the degradation mechanisms that the researcher believes are ac-
tive in the system. By coupling both data-driven statistical modelling approaches and physi-
cal\chemical mathematical modelling approaches, we have the best opportunity to elucidate 
what is happening in the degrading system [9]. We can confirm the activation of mechanisms 
whose physics are well understood, and by comparing with the data-driven results, we can 
identify the gap between our mathematical model and the total sum of degradation mecha-
nisms that are actually active in the system, enabling the identification of previously un-
identified degradation phenomena [96]. 

 Issues in Empirical Modelling: Bias versus Variance Trade-Off 
Empirical modelling involves fitting models to data, and since data contains both noise and 
information, all modelling methods need to address issues of models that either overfit or 
underfit the data [97]. The case of overfitting corresponds to having a model (consider a sta-
tistical model with a polynomial functional form) with too many degrees of freedom, so that it 
fits not only the information present in the data, but it also fits the actual noise, the variance, 
present. Therefore, the fitted coefficients (the βi) of this overfitting model, will be reporting the 
noise, in addition to extracting the information; the model has gone too far in fitting the data, 
it is fitting the variance in the data. An underfitting model is the opposite case, where the 
model has too few degrees of freedom and therefore is unable to extract all the information in 
the data. For example, fitting a simple straight line, to a phenomenon that is fundamentally 
exponential or quadratic in its nature, means that our “model”, the straight line, has too much 
“bias” to extract the information from the data. This model can only be a straight line, so we 
are unable to extract the parabolic or exponential coefficients, and therefore are “underfitting” 
this model. This is a simple illustration of the bias versus variance trade-off that is faced by 
all empirical models, be they statistical or mathematical in nature. One of the main practices 
used in statistical data-driven modelling, is to initially split the experimental dataset into two 
parts, a training set, and a test set. With this, one is now able to fit many possible models, by 
“training” each model using the training dataset, and then the quality of the model fit, and the 



Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Service Life Estimation for Photovoltaic Modules 

 

36 

bias versus variance trade-off, can be assessed using a learning curve, as shown in Figure 
5. The trained models, with their fitted coefficients, are used to predict the y-axis response for 
all x data points in the test dataset, and the error (e.g. RMSE) is plotted for each model as a 
function of that model’s degrees of freedom. The “best” model will have the minimum predic-
tion error, when evaluated on the test dataset, since it will balance, or trade-off, the bias and 
variance present in the modelling of this dataset. 

 
Figure 5: Performance of a model on the training dataset and the test dataset, as a 
function of model complexity, which is the number of degrees of freedom of the mod-
el, and the prediction error of the model. The learning curve for the test dataset, de-
fines the optimal model, as being the model that minimizes the trade-off between vari-
ance and bias of the model [97]. 
As can be seen from the prior discussion, all empirical modelling can be considered as an 
attempt to use modelling to extract information from datasets, while leaving the noise behind 
in the data. In this sense, the resulting model, that optimally balances bias and variance, is 
the best tool for extracting the information we are interested in. Statistics has used hypothe-
sis testing, and mathematical models use our chemical and physical understandings of phe-
nomena to prescribe the functional forms used in models. Shannon’s theory of Information 
Entropy, represents a third approach to model and variable selection, and this information 
theoretic approach has become very appealing in modern modelling approaches [98]–[101]. 

The third consideration in empirical modelling is the difference between predictive and infer-
ential models. Inferential models are designed to infer the mechanisms that cause the re-
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sponse; why does the system respond in this way. While a predictive model focuses on pre-
dicting the magnitude of the response. For inference, one wants a parsimonious model, de-
fined as having a small number of degrees of freedom, and typically an additive model, in 
which the terms have coefficients that are associated with each term in the model. For accu-
rate prediction, one can have a model that is very complex, and this many times will serve to 
produce more accurate predictions. To the user, knowing the desired utility of the model, 
helps define what characteristics, such as the number of degrees of freedom, the model 
should have.  

 Degradation Models of PV Module Materials, Components and 
Specific Degradation Modes 

The current PV market has a need to address variations in climate-related and weather-
related issues as well as to understand the underlying degradation mechanisms occurring in 
PV modules and module components, such as backsheets and solar cells, to improve the 
reliability and lifetime of modules. The topic of degradation of polymeric materials used in PV 
applications due to environmental weathering has been well researched. But there are still a 
significant number of areas with open questions which need future work to address.  

Degradation of polyethylene terephthalate (PET), used as the core layer in many back-
sheets, has been studied under the stressors of temperature and humidity. The degradation 
of other polymeric materials under the stressors of UV irradiation, temperature, and humidity 
has also been studied, but the uncertainties are significant when the details of the particular 
polymer and the additives are not clear. Corrosion studies may be divided into those not in-
volving the factor of voltage bias (e.g., acetic acid effects on the contacts between Si and Ag 
grid fingers) and those that involve leakage currents promoting charge migration, oxidation, 
or reduction at various components in the PV module. Solder bonds degrade by thermome-
chanical fatigue and depending on the alloy, formation of brittle intermetallic accelerated by 
temperature. Many degradation processes are not easily modelled considering multiple 
stressors (synergist effects) and sometimes a sequence of stressors leading to the degrada-
tion. Current understanding of these cases is presented. 

It is useful to explore lifetime and degradation science (L&DS), which is based on the devel-
opment of network modelling and structural equation models (netSEM), to gain insight into 
the mechanisms of degradation in modules [20], [96], [102]. Data-driven netSEM models, are 
statistical models which can be classified into two types: predictive and inferential. Predictive 
models make use of a stressor (S) and a response (R), represented by <S|R> while inferen-
tial models take mechanistic (M) variables, or variables that track specific degradation mech-
anisms, into account (written as <S|M|R>). netSEM models are based on linear response 
theory [51] and utilize the bra-ket notation (<S|M|R>) [103] to easily represent the important 
stressors, mechanisms and responses. The modelling incorporates statistical tools and met-
rics such as Aikake Information Criterion (AIC) [104], Adjusted R-squared (Adj.R2), Network 
Science [105], and Graph Theory [106] and appropriate functional forms and Markovian and 
multiple regression methods to compare and study the responses of PV components during 
accelerated and real-world exposure. Using the netSEM R package developed [107], this 
can be accomplished.  

By using netSEM and L&DS, it is possible to discern the underlying degradation mechanisms 
under the influence of applied stressor conditions. In this methodology, relationships between 
stressors, mechanisms and responses can be mapped using statistical data analysis. Often, 
these results can be viewed in the form of a network degradation pathway model for materi-
als, components, or full systems. Figure 6 shows the elements of PV L&DS. 
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Figure 6: Different steps involved in PV lifetime and degradation science. 

4.2.1 Predictive Model Example: PET Degradation 
As an example of a predictive <Stressor|Response> (<S|R>) model we will consider PET 
degradation and predict the responses of yellowness index (YI) and haze. Using netSEM we 
can gain a better perspective of the active pathways and degradation mechanisms occurring 
in PET under exposure [20], [96]. 

Gok et al. [108], exposed three PET grades were analysed under four different exposures 
and performed an in-depth analysis of which quadratic and linear terms play a key role in 
modelling these degradation patterns with <S|R> models. Haze can be considered a re-
sponse variable and so can be predicted using stressors. It has been observed that based on 
the exposure type, the trend varies. CyclicQUV (UV light with condensing humidity) has a 
dominant cubic trend while the rest of the exposures have a quadratic variation with very little 
haze formation. Figure 7 shows the results of this predictive modelling. 
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Figure 7: <S|R> models of the change in yellowness index (YI) for all material and ex-
posure types as a function of exposure step. HydStab is hydrolytically stabilized PET; 
UnStab is unstabilized PET; UVStab is UV stabilized PET. All samples were evaluated 
stepwise over time every 168 hours (one week) for a total of 1176 hours for seven 
steps. Each exposure is plotted on a free scale. 

4.2.2 Inferential Mechanistic Model Example: PET Degradation 
In addition to studying how the response is impacted by the stressor using predictive 
<Stressor|Response> (<S|R>) models, in this example we will investigate how the mechanis-
tic variables (M) are related to the stressor (S) and response (R) using inferential <S|M|R> 
models. <S|M|R> models connect these variables in a pairwise fashion using one of the sev-
en model types: SL (simple linear), Quad (quadratic), SQuad (simple quadratic), Log (loga-
rithmic), Exp (exponential), CP (change point) and nls (nonlinearlizable exponential). Adjust-
ed R-squared values are included between pairwise relationships to indicate the strength of 
the relationships.  

As an example, <S|M|R> inferential models of PET degradation studied by Gok [11] provide 
quantitative insights into active degradation mechanisms and degradation pathways of three 
PET grades under four accelerated conditions. Figure 8 shows this inferential <S|M|R> mod-
el for PET films exposed to ASTM G154 Cycle 4 (cyclic exposure with UVA light at 1.55 
W/m2, 340 nm and 70°C with dark humidity at 50°C). In this study, yellowness index (YI) was 
chosen as the response variable, which is also a sensitive indicator of degradation in PET 
films. The mechanistic variables were chosen as UV-Vis optical absorption and FTIR fea-
tures measured spectroscopically. 
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Figure 8: netSEM degradation pathway model of PET degradation with an explanation 
of mechanism in Table 4. 
Figure 8 shows the PET degradation pathway under the ASTM G154-Cycle 4, with cyclic 
heat, humidity, and UV light (8 h of UVA light at 1.55 W/m2 at 340 nm at 70˚C and 4 h of 
condensing humidity at 50˚C in dark). Time tracks the stressor (hours of exposure) <S| and 
yellowness index (YI) is the response |R>. The experimentally measured “tracking variables” 
for each mechanism are in yellow boxes, and the degradation mechanism they are correlat-
ed with are shown in blue boxes which are detailed in Table 4. These mechanisms are the 
fundamental absorption edge, the UV stabilizer peak, chain scission and crystallinity of the 
PET. For each pair-wise relationship in the network the functional form of the mathematical 
model (Model) that best fits the data is named and the adjusted R2 values (adj-R2 or adj-R-
Sqr) for each of these model fits for the pair-wise relationship are given along the connection 
lines. The models are SL (simple linear), SQuad (simple quadratic), Quad (quadratic), Exp 
(exponential), Log (logarithmic), CP (change point), and nls (non-linear least squares regres-
sion).  
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Table 4: Explanation for degradation mechanisms for Figure 8 netSEM model. 

Mechanistic variable Description Method Represents 
Yellow 
Box 

Meaning Blue Box Meaning   

abs312 Absorption 
at 312 cm-1 

FundAbsEdge Fundamental 
absorption 
edge 

UV-Vis Fundamental ab-
sorption edge shown 
by absorption at 312 
cm-1 

abs340 Absorption 
at 340 cm-1 

UVStabBl Bleaching of 
the UV stabi-
lizer 

UV-Vis Bleaching of the UV 
stabilizer shown by 
absorption at 340 
cm-1 

ftir975 Infrared 
signal at 
975 cm-1 

Cryst Change in 
crystallinity 

FTIR Infrared signal at 975 
cm-1 indicating 
change in crystallini-
ty 

 

The formation of haze was also observed under cyclic heat and humidity along with UV-Vis 
light as illustrated in Figure 7. Age-induced crystallization can be tracked using IR absorp-
tions at 975 cm-1. Yellowing was found to be accelerated with a combination of humidity and 
UV light. Changes in haze correspond to variations in crystallization as evident from the 
<S|M|R> model and domain knowledge. Hence, one of the most important degradation 
pathways found in this study is the yellowing in UV exposure and haze formation in humidity 
[11]. 

4.2.3 Degradation Models of Polymers 
Polymer weathering, or ageing, processes and their complex interactions result in polymer 
degradation and can be studied and described by measuring changes in a specified and de-
fined physical or chemical property over time [109]. Relevant physical properties for polymer 
backsheets and encapsulants can be mechanical (tensile strength, elongation at break, 
modulus), thermomechanical (melting and crystallisation behaviour, thermal expansion coef-
ficient) or optical (transmittance, reflectance, yellowing or colour index) [110]. Chemical 
properties include chemical interactions and the reactive behaviour which leads to further 
degradation such as the permeability of gases through the polymers [111], [112] and the de-
gree of crosslinking of the encapsulant [113], [114]. Chemical changes of polymers induced 
by ageing can be monitored spectroscopically (FTIR peak ratios or carbonyl index, Raman, 
UV-VIS, NIR) and by thermal analysis [110], [112], [114]. Additional materials evaluations 
that have a relevant meaning for the performance and reliability of PV modules can also be 
monitored (see Figure 9). An overview over common polymer aging mechanisms and its ef-
fects are summarized in Table 5. 
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Table 5: Aging mechanisms of polymers [115]. 

Mechanism Stressors Additional accelerating 
factors 

Effect 

Thermo-oxidation Temperature, 
Oxygen 

Other oxidizing reactants 
(e.g. ozone, nitrogen 
oxide) 

Embrittlement, discolora-
tion, formation & outgas-
sing of low molecular deg-
radation products 

Photo-oxidation UV radiation, 
Oxygen 

Temperature, oxidizing 
reactants 

Embrittlement, fluores-
cence, dis-coloration, 
bleaching, formation & 
outgassing of low molecu-
lar degradation products 

Hydrolysis Humidity Temperature, catalytic 
effective acids and bases 

Embrittlement 

Post-
crystallization 

Temperature - Shrinkage, warpage and 
crack formation 

Relaxation Temperature - Shrinkage, warpage and 
crack formation 

 

Any change, an increase or decrease, of a defined property over time could in principle be 
simply fitted using existing mathematical functions such as linear, exponential, logarithmic, 
linear-linear change point etc. These mathematical functions can be used to make extrapola-
tions to calculate when in time, a physical (or chemical) property reaches a certain value or 
threshold, in which the studied material, in this case a polymer, is not useful or it can be con-
sidered degraded. Of course, extrapolating results of a model beyond the range of variables 
and data used in fitting the model, can be inaccurate, so care is needed to validate the ex-
trapolated predictions. Furthermore, whether there is a non-destructive or destructive evalua-
tions, measurements or approaches, probabilistic models could also be derived such as the 
Weibull distribution [116]. 

Another classical and simple approach is the Arrhenius equation model (7). This model de-
rived from chemical kinetics, which is limited to temperature driven processes, can also be 
used to model polymer ageing and degradation. If a property that is measured over time and 
at different temperatures (at least three), the resulting values can be plotted as the natural 
logarithm versus the inverse of the experimental temperature, and the mathematical linear fit 
of the defined ageing process can be obtained. Linearization of the fitted values can be used 
to determine the activation energy, Ea, and pre-exponential factor, A. This model has the 
main advantage of being easy to perform and determine experimentally, requires little com-
putational power, and the possibility to interpolate or extrapolate a property value at a de-
fined temperature [117]. A good application of the Arrhenius approach is the modelling of 
thermal and thermo-oxidative degradation mode for different polymers on thermal-gravimetric 
analysis (TGA) measurements [118], [119]. The Arrhenius approach is also very helpful to 
model transport phenomena processes involving polymers such as transmission rates, diffu-
sion and solubility of water vapour, acetic acid, and oxygen [111]. Activations energies and 
pre-exponential factors are quite useful for polymer degradation simulations.  
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𝑘𝑘(𝑇𝑇) = 𝐴𝐴 × 𝑒𝑒𝑒𝑒𝑝𝑝 �
−𝐸𝐸𝑎𝑎
𝑅𝑅 × 𝑇𝑇

� (7) 

 

While it has been used in studies of the degradation of PV materials, there are many cases 
where its applicability is limited such as in glassy materials such as oxides and amorphous 
polymers [117], [120]–[122]. Due to several factors, often it is not possible to model weather-
ing or ageing behaviour using the mentioned approaches. During the ageing processes 
some non-linearities or deviations in the measurements might appear, that could be attribut-
ed to experimental errors, outliers, hidden factors, and multiple processes occurring at the 
same time. A solution for this ‘deviations’ is the Aquilanti–Mundim [OG3] deformed Arrhenius 
model (8) [123]. This model has similar mathematical terms as the Arrhenius law, but with a 
deformation parameter, d, added to account for an observed deviation or non-linearity. Devi-
ations from the Arrhenius law can be also denominated sub-Arrhenius and super-Arrhenius. 
There are also cases where more advanced forms of the Arrhenius equation are required for 
example where explicit temperature dependence of A the preexponential factor, or modifica-
tion of T in the exponent is essential to model real physical phenomena, or where the preex-
ponential incorporates other complex factors such as irradiance and humidity [124], [125]. 

 
Figure 9: Aging processes of polymers [109]. 
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𝑘𝑘𝑚𝑚(𝑇𝑇) = 𝐴𝐴 × (1 − 𝑑𝑑𝐸𝐸𝑎𝑎 𝑅𝑅⁄ × 𝑇𝑇)1 𝑚𝑚⁄  (8) 

Current experimental research in the aging behaviour of polymeric backsheets and encap-
sulants involves more variables than just temperature. UV irradiation, moisture, and mechan-
ical loads also have their share in polymer ageing and degradation. These external factors 
are sources of deviation and non-linearity. Other contributors of non-linearity or deviations 
are the polymers themselves. Polymers have characteristic time-temperature dependence of 
certain relaxation and transition processes such as creep behaviour and the glass transition 
temperature. Depending on the studied polymer, it is also possible that the experimental 
temperature of an ageing test can coincide with a transition temperature of the polymers 
used in backsheets and encapsulants causing difficulties in modelling the ageing behaviour. 
Additional polymer specific factors that could make ageing and degradation modelling difficult 
are: residual stresses, crystallinity degree, cross-linking degree, chemical resistance, mo-
lecular weight distributions, additives types and quantities, and material interactions [115]; 
Especially for backsheets, their multi-layer structure and the different compositions are a par-
ticular challenge (e.g. [110], [112], [126]). 

Modelling polymer ageing and degradation in PV modules also requires the modelling of the 
microclimatic conditions like module temperature (based on solar irradiation), moisture and 
oxygen ingress processes into the module [116]. For this reason, new and more complex 
methods and numerical approaches are required, as e.g. described in chapter 3.4.2. Exam-
ples for these methods are finite element method (FEM) [127], deep and machine learning 
[128], multivariate data and correlation analysis [129] and principal component analysis 
(PCA) [130]. Multiscale models also include: Phase-field theory models, Monte-Carlo (MC) 
and kinetic Monte-Carlo simulations [131], [132] and molecular dynamics (MD) simulations 
[133], [134]. Using MD models to describe ageing processes would require an enormous 
computing capacity, although new approaches at the nano-scale are being studied [135]. 

PET hydrolysis, a typical degradation reaction for condensation polymers and critical for PV 
reliability, has been long studied using classical kinetic approaches. Launay et al. [136], stud-
ied the changes in properties such as molecular weight and crystallinity at neutral conditions, 
they found out that PET hydrolysis corresponds to a second order reaction. No auto-catalytic 
behaviour, random chain scission, and the production of ethylene glycol and terephthalic acid 
are enough to describe this degradation process [136]. This first kinetic approach cannot be 
applied for PET hydrolysis modelling in PV modules, because it was studied under stationary 
conditions, which are in contrast with the transient conditions of which PV modules are sub-
jected. Also, from the chemical point of view, PET hydrolysis can proceed at neutral, basic, 
and acidic conditions, which is unknown for the PET in PV modules. A more PV-oriented 
kinetic modelling of PET hydrolysis study was done by Picket et. al. [137], in which the deg-
radation rate is defined as the days to brittle failure. From this, an embrittlement kinetic is 
determined using an Arrhenius approach by measuring embrittlement at different tempera-
tures and humidity levels to determine the activation and pre-exponential factors [137]. 

An example of modelling polymer degradation used in PV modules is the work of Gagliardi 
et. al. [127]. In their predictive modelling of the photo-oxidation of EVA, the degradation 
pathway is first described based on the known oxidation mechanism for polyolefins adapted 
for EVA. Each degradation step is written as a chemical reaction equation with its own tem-
perature-dependent reaction rate coefficient. As degradation proceeds, small molecules re-
act and other small molecules are being produced as degradation products, which simulta-
neously diffuse. These simultaneous processes are described as a reaction-diffusion (RD) 
system to describe the concentration of water and acetic acid. A key element of this work is 
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the discretization of the concentrations and temperature gradients as a finite element. Based 
on the concentration values of degradation from experimental photo-oxidation values, degra-
dation products can be estimated for long periods of time, since temperature and relative 
humidity values from environmental data, can be used to calculate module temperature and 
water concentration in the PV module [127]. 

In principle, this modelling approach can be used for any polymer degradation process, in 
which the main degradation mechanism is identified, and a pathway is known, as well as the 
different degradation products. In general, for polymers oxygen and water concentrations are 
constant in any polymer degradation process. The difficulty of this approach is to first find the 
actual reaction rates coefficient, k(T), which are specific to each chemical equation and are 
temperature dependent, and even though they follow Arrhenius law, these require a known 
activation energy and pre-exponential factor. Another requirement to use this approach is to 
know the diffusion, solubility coefficients, which are also temperature dependent [20]. 

4.2.4 Empirical Models of Cracking 

A. Cracking Overview 
Cracking occurs as a result of thermomechanical stresses and the origin of cracks can begin 
from different stages such as preparation of wafers, module fabrication, transportation, 
and/or external environmental conditions. These cracks are seldom visible to the eye and 
can propagate, leading to considerable mechanical and electrical degradation. 

To understand the different components that can be impacted by cracking, consider the 
glass-backsheet module architecture which has an asymmetrical stress state. Most commer-
cial PV modules use glass-backsheet module architecture. The front side glass is usually 
about 3.2 mm. This non-symmetrical architecture causes the layer of solar cells to be in be-
tween the central layer and backsheet layer. Since the frame constrains the movement of the 
module, if the load was applied to the module in the scenario of wind, hail and so on, the 
module will tend to deform. When load is applied, the backside of the module is under tensile 
stress. This stress applies to both the cell layer and the backsheet. Silicon which is used in 
solar cells is very brittle with a low tensile strength. Cracks can propagate in a preferential 
manner based on the direction of loading and can be classified based on several criteria. The 
developed microcracks in the solar cell during installation or transportation is also easy to 
expand under tensile stress [138]. 

The backsheet film contains several layers of polymer that exhibit desirable elasticity and 
plasticity, which lower the risk of developing cracks under tensile stress. The mechanical 
properties of these elastic components degrade under long-term weathering. In addition, 
outdoor PV modules also face periodic temperature changes due to the daily and seasonal 
temperature changes in the outdoor environment and due to the operating temperature of the 
modules. The multilayer construction of backsheet materials leads to a discontinuity of coef-
ficient of thermal expansion. The difference in thermal expansion coefficients cause mechan-
ical stress under heating. The mechanical stress is concentrated at places with constrained 
deformation. The mechanisms of backsheet cracking is closely related to the chemical com-
position and process technologies of the backsheet. In addition, to wind and weight load, 
backsheet materials are subjected to other points of stress not due to external loading. Any 
internally raised area such as ribbon wiring or the edge of a cell can cause internal stress in 
the backsheet material [138]. 
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B. Stochastic Weibull Models of Cell Cracking 
To cut down the material costs involved in making commercial PV modules, the silicon wafer 
thickness is being reduced in current times. This leads to a higher propensity of crack for-
mation under mechanical loading conditions. Progress is made by researchers to identify the 
components and factors that influence the initiation of cracks as well as their subsequent 
propagation which is outlined in the recent review article by Papargyri et al. [139]. 

Cracks in solar cells are generated at various stages of PV module fabrication starting from 
wafer production, soldering/lamination to transportation/installation as well as their exposure 
to various weather conditions and loads such as wind, rain, snow, etc. [140]. These process-
es generate micro cracks that are not visible to the eyes but can be seen from EL images. 
These micro cracks may lead to electrical disconnection of the affected cell region and higher 
series resistance along with reduced short-circuit current leading to power loss of the module 
[60]. The cracks formed from one or more of the stages lead to a higher probability of break-
ing and reduce the fracture strength of the PV module [141]. 

There are several classifications of cracks formulated on the basis of shape, size, direction, 
position, and criticality. The two most commonly observed crack shapes are line and star: 
line cracks are formed due to scratches and occur in the wafer production phase whereas 
star-shaped cracks originate due to point impacts in which line cracks tend to cross each 
other. Based on the size, cracks can be categorized into macrocracks and microcracks 
based on the width. A crack less than 30 μm wide is called a microcrack and anything higher 
than that is a macrocrack. There are several different directions in which cracks can form, 
including parallel and perpendicular to busbars, diagonal, +45°, -45° and multiple directions. 
Any crack that forms in the silicon solar cells can be expressed as a combination of these 
crack directions. Cracks based on cell position include facial and sub facial: facial cracks 
form on the surface on the solar cell whereas sub facial cracks propagate at the depth of the 
wafer even if they are initiated on or below the cell surface. Based on criticality or severity, 
there are three categories of cracks: A) type of cracks do not cause disconnections in cell 
regions, B) type of cracks cause some regions to crack and lead to partial isolation, and C) 
type of cracks result in complete isolation of the cell region and cause severe power loss 
[140], [142]. 

The most commonly used cell types are Al-BSF and PERC in the industry. Extensive studies 
have been done on cell cracking of Al-BSF cells and reported in the literature. It is known 
that the cell strength is dependent on loading direction [143]. Details about cell cracking and 
studies are discussed in a previous IEA PVPS report [23]. Typical crack patterns can be as-
signed to a cause: a repetitive crack from one PV string to the next which is oriented 180° 
can be attributed to production failure [144], dendritic cracks in PV modules can be associat-
ed with heavy mechanical loading or higher acceleration. There are specific cell cracking 
characteristics seen in encapsulated monocrystalline and multi-crystalline solar cells as re-
ported by Sander et al [145]. It was observed that the loading parallel to busbar direction is 
much more critical in the case of multi-crystalline cells because of a lowered fracture stress 
and has a higher probability of cracking. An additional study by the authors also showed that 
cracks prefer to propagate from existing weak points formed during soldering or lamination. 
During the four-point bending tests, it was seen that monocrystalline Si mostly showed 45° 
cracks at the cell edges without pre-existing cracks. This is because cracks propagate along 
(100) oriented 45° to the cell edges. With pre-existing cracks, it was found that there was 
deviation from the 45° crack pattern. In multi-crystalline Si under perpendicular loading, den-
dritic cracks were seen to form pre-existing cracks during the module production phase. 
From the research done by Paggi et al. [146], the conclusion is that the elastic deformation is 
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an important factor for the electrical behaviour of the crack and cracks on the cell can recov-
er electrical conductivity. 

Studies are being conducted on PERC-based modules to inspect cracking characteristics. In 
a recent study of PERC modules under thermal cycling by Braid et al., it was concluded that 
bifacial PERC with localized contacts at the openings of the rear passivation layer are more 
prone to degradation due to cracking and corrosion. Most of the cracks that were formed 
were not correlated with power loss as cracks do not always lead to electrical isolation over 
large cell areas [147]. 

Mathematical (numerical) models of cell cracking have been advancing recently and are 
playing an important role in comparing the reliability of PERC and Al-BSF PV cells. Finite 
element, structural mechanics modelling of photovoltaic (PV) modules is becoming a more 
popular tool with which to design for, and evaluate, module reliability [148]. Combining 
Weibull analysis and weakest link theory one can calculate the unique probability of crystal-
line silicon PV cell fracture when measured as bare cells and when stressed in reduced- and 
full-sized modules [149]. Experimental results indicate that the characteristic cell strength is 
reduced by ~20% once packaged into the laminate of a one-cell module and loaded in four-
point flexure (4PF). This experimental observation was shown consistent with a weakest link 
theory prediction that the strength limiting flaws reside on the surface of the cell’s edge.  

The predicted load-displacement response of the experimental bare cell loaded in 4PF is 
compared with the analytical solution according to Euler-Bernoulli beam theory. The numeri-
cal model is in excellent agreement with the experimental measurement and deviation from 
the analytical solution suggests that large deflections, such as required to achieve cell frac-
ture, are beyond the small deflection assumption of beam theory. The analysis is ultimately 
extended to describe the equivalent loading of four-cell modules loaded by uniform pressure 
and 4PF and a uniformly loaded full-sized module in terms of the cell’s probability of failure. 
A uniformly loaded full-sized module is not equivalent to smaller, representative modules. 
The smaller modules must be loaded to a much higher level than their parent full-sized mod-
ules to achieve an equivalent probability for cell fracture (Figure 10). The relatively low sensi-
tivity of characteristic stress on Weibull effective region ratio for Weibull modulus values 
above 10, the equivalency relationships are anticipated to be consistent when modelling full-
sized modules with a variety of mechanical constraints. 
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Figure 10: Calculated cell fracture probabilities for the cell within a four-cell module 
loaded uniformly and in 4PF and select cells within a uniformly loaded full-sized mod-
ule. The two x-axes scales reconcile the application of pressure in uniform loading 
and force in 4PF. For illustrative purposes, each distribution is evaluated for 80% 
probability of cell fracture. 

C. Models of Backsheet Cracking 
Backsheets are critical to provide mechanical strength and electrical insulation to the module. 
As the material ages, degradation can lead to cracking and failure of the insulative properties 
posing a serious hazard. Currently much of the research in backsheet cracks has been relat-
ed to determine the mechanisms and stressors behind the crack formation in different back-
sheet constructions and identifying crack types in real-world exposed modules [4], [63], [126], 
[150]–[152]. 

Mathematical modelling of backsheet cracking is complicated because of the multilayer na-
ture of backsheets since backsheets can be coextruded or combined by adhesive layers. 
The degradation in the backsheet is generally nonuniform through the thickness and is initi-
ated by multiple different types of mechanisms. Cracks initiate between cells on the sun-side 
layer in polyamide backsheets by the formation of acetic acid from EVA hydrolysis [63], 
[150]. Increases in the modulus of the backsheet is an indicator of future cracking by using 
the Derjaguim-Muller-Toporov (DMT) model [150]. Cracks under the busbars initiate from the 
air-side of the backsheet due to the stress induced at that point [63]. Owen-Bellini et al. 
showed that cracking in polyamide (PA or AAA) backsheets is a two-step process that starts 
with chemical degradation that then initiates microcracking and then a mechanical load to 
propagate the microcracks to form macrocracks. The authors performed finite element mod-
elling that the localized stress concentrations are present regions in between cells and that 
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the stress driving the macrocracking is thermocycling [4]. Lyu et al. calculated the fracture 
energy of the brittle layer of polyamide backsheets using the Hsueh and Yanaka model (HY’s 
model) to measure critical strains. The HY’s model is based on the cracking of brittle 
film/ductile substrate systems where an effective substrate thickness is used which is propor-
tional to the brittle layer thickness. The effective substrate is used to consider the perturba-
tion of the existence of the brittle layer on the stress field of the substrate. The HY’s model 
showed a good agreement with the measurements in terms of crack density vs. applied 
strain (Figure 11). This type of modelling informs the quantitative relationship between deg-
radation and crack formation. Additionally, it helps with materials selection by identifying the 
backsheets that may crack under real-world exposure conditions [153]. 

 
Figure 11: The Hsueh and Yanaka model results compared to the actual measurement 
of cracks per applied strain (%) for PA samples exposed to 2000 and 4000 hours of A3 
condition in IEC 62788-7-2 [153].  
Statistical modelling of backsheet cracking aides the identification of cracks is a time inten-
sive process and can be automated using a combination of analytical and modelling tech-
niques. The identification of different cracking mechanisms elucidates the different types of 
stress that the material experiences in the field. Likewise, Klinke et al. [154], developed a 
method of analysing profilometry scans of backsheet surfaces to identify and predict loca-
tions that cracking would occur (Figure 12). This method used a machine learning algorithm 
to identify the surface of the backsheet in the profilometry data and then identify outliers from 
that surface. The outliers are either cracks, bubbles, or delamination in the material. Then the 
crack width and depth are calculated for each crack that was identified. This method can 
quantify cracks over a large physical area, providing it with an advantage over techniques 
like X-ray computed tomography (XCT) and laser scanning confocal microscopy (LSCM). 
The method was also able to identify cracks before they were visually apparent in the mate-
rial which could help with material selection by reducing the time needed in exposure to iden-
tify materials that had small microcracks. Zhang et al. used a fully convolutional deep neural 
network (F-CNN) to identify different types of cracking and delamination from images of 
backsheets with great precision and at a low computation time [155]. This technique used 
images of different types of cracked backsheets that had been exposed to accelerated and 
real-world exposure [157]. The images were labelled with different types of cracks and then 
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compared to the output of the F-CNN which had a 92.8% prediction accuracy. The compari-
son is seen in Figure 13. This type of imaging technique could be useful in field survey of PV 
modules to identify and quantify the types of backsheet cracking or degradation present in 
fielded PV modules [155]. 

 

 
Figure 12: A diagram showing how the 3-D cracks are taken as 2-D optical profilome-
try data (left). The output for optical profiometry data after machine learning algorithm 
identifies the backsheet surface and the outliers representing cracks in the backsheet 
(right). The cracks only propagate into the core layer from the inner layer of backsheet 
(sun-side) [157]. 
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Figure 13: Six examples of crack inspection task performed on the test images (left 
column) using the trained F-CNN (right column). The middle column is the person la-
belled images. The different colours in the middle and right column images indicate 
different crack classes listed in the legend below [155]. 
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 Photovoltaic Performance Models 
Physical models are developed based on the physical/chemical understanding and assump-
tions of specific degradation mechanisms. The models are developed to quantify the effect of 
climatic stressors on the electrical performance of PV modules. Generally, available physical 
models for PV degradation rates evaluations are still only heuristic models which do not in-
clude the influence of all intermediate degradation steps involved. In other words, the kinetics 
of a specific degradation mode are modelled by assuming one rate dominating process. For 
indoors applications several models are available [9]. For outdoor applications, a few authors 
[6], [7] have proposed physic-based models to quantify the effects of combined climatic 
stresses on PV performance degradation. Both models use UV irradiation, relative humidity, 
and temperature as stressors, which are assumed as the main climate degradation factors 
for PV modules. The formulations of the models are described below. 

4.3.1 Degradation Model based on Bala et al. [7] 

𝑘𝑘(𝑇𝑇,𝛥𝛥𝑇𝑇,𝑈𝑈𝑈𝑈,𝑅𝑅𝑅𝑅) = 𝛽𝛽0 × 𝑒𝑒𝑒𝑒𝑝𝑝 �
−𝛽𝛽1

𝑘𝑘𝐵𝐵 × 𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚
� × �𝛥𝛥𝑇𝑇𝑚𝑚𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑�

𝛽𝛽2 × �𝑈𝑈𝑈𝑈𝑚𝑚𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑�
𝛽𝛽3 × �𝑅𝑅𝑅𝑅𝑚𝑚𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑�

𝛽𝛽4 (9) 

where 𝑘𝑘 [%/year] is the degradation rate, 𝑘𝑘𝐵𝐵 (8.62 × 10−5 eV/K) is the Boltzmann constant, 
𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚 [Kelvin] is the daily maximum temperature of the module, 𝛥𝛥𝑇𝑇𝑚𝑚𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑 is the daily cyclic tem-
perature of the module, 𝑈𝑈𝑈𝑈𝑚𝑚𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑 [W/m2] is the daily UV irradiance, 𝑅𝑅𝑅𝑅𝑚𝑚𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑[%] the daily relative 
humidity, 𝛽𝛽0[1/sec], 𝛽𝛽1 [eV], 𝛽𝛽2, 𝛽𝛽3 and 𝛽𝛽4 are the frequency factor, activation energy, param-
eters that measure the effects of cyclic temperature, UV radiation, and relative humidity, re-
spectively.  

The model was calibrated on degradation data of a mono-crystalline PV module. The cali-
brated model was applied to predict degradation rates of four different regions with different 
climatic classification as: hot and dry, cold, hot and humid, and semi-arid. The authors pre-
dicted strong degradation under hot and humid conditions. 

4.3.2 Degradation Model based on Kaaya et al. [6] 
In this approach, degradation rate models are proposed for specific degradation mecha-
nisms/processes based on the applied climatic stresses. A combined/total degradation rate 
model was derived from the specific rate models as, 

𝑘𝑘𝑇𝑇 = 𝐴𝐴𝑁𝑁 ⋅�
𝑛𝑛

𝑑𝑑=1

(1 + 𝑘𝑘𝑑𝑑) − 1 
(10) 

where 𝑘𝑘𝑇𝑇[%/year] is the total degradation rate, 𝐴𝐴𝑁𝑁 is the normalization constant of the physi-
cal quantities, n is the total number of degradation mechanisms and 𝑘𝑘𝑑𝑑 is the degradation 
rate of the ith mechanism.  

In their study, three degradation mechanism were assumed as: hydrolysis, photodegrada-
tion, and thermomechanical degradation. The total degradation rate based on these three 
mechanisms was expressed as: 

𝑘𝑘𝑇𝑇 = 𝐴𝐴𝑁𝑁 ⋅ (1 + 𝑘𝑘𝐻𝐻)(1 + 𝑘𝑘𝑃𝑃)(1 + 𝑘𝑘𝑇𝑇𝑚𝑚) − 1 (11) 

Where 𝑘𝑘𝐻𝐻, 𝑘𝑘𝑃𝑃, and 𝑘𝑘𝑇𝑇𝑚𝑚 are the degradation rates for hydrolysis, photodegradation, and 
thermomechanical degradation, respectively. 
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The degradation rates for each specific mechanism were evaluated as functions of climatic 
stresses as:  

𝑘𝑘𝐻𝐻(𝑇𝑇,𝑅𝑅𝑅𝑅) = 𝐴𝐴𝐻𝐻 ⋅ 𝑒𝑒𝑒𝑒𝑝𝑝 �
−𝐸𝐸𝑎𝑎𝐻𝐻
𝑘𝑘𝐵𝐵 ⋅ 𝑇𝑇

� ⋅ 𝑅𝑅𝑅𝑅𝑛𝑛 (12) 

 

𝑘𝑘𝑃𝑃(𝑈𝑈𝑈𝑈,𝑇𝑇,𝑅𝑅𝑅𝑅) = 𝐴𝐴𝑃𝑃 ⋅ 𝑈𝑈𝑈𝑈𝑑𝑑 ⋅ (1 + 𝑅𝑅𝑅𝑅𝑛𝑛) ⋅ 𝑒𝑒𝑒𝑒𝑝𝑝 �
−𝐸𝐸𝑎𝑎𝑃𝑃
𝑘𝑘𝐵𝐵 ⋅ 𝑇𝑇

� (13) 

 

𝑘𝑘𝑇𝑇𝑚𝑚(𝛥𝛥𝑇𝑇,𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚) = 𝐴𝐴𝑇𝑇 ⋅ (𝛥𝛥𝑇𝑇 + 273)𝑚𝑚 ⋅ 𝜕𝜕𝑟𝑟 ⋅ 𝑒𝑒𝑒𝑒𝑝𝑝 �
−𝐸𝐸𝑎𝑎𝑇𝑇

𝑘𝑘𝐵𝐵 ⋅ 𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚
� (14) 

 

where, 𝑘𝑘𝐵𝐵 (8.62 × 10−5 eV/K) is the Boltzmann constant, 𝑇𝑇 [Kelvin] is the annual average 
module temperature, 𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚 [Kelvin] is the annual average maximum temperature of the mod-
ule, 𝛥𝛥𝑇𝑇 is the annual average cyclic temperature of the module, 𝑈𝑈𝑈𝑈 [kWh/m2] is the total an-
nual UV dose, 𝑅𝑅𝑅𝑅 [%] is the annual average relative humidity, 𝜕𝜕𝑟𝑟 [cycles/year] is the annual 
temperature cycling frequency 𝐴𝐴𝐻𝐻 [1/year], 𝐴𝐴𝑃𝑃 [1/kWh/m2/year], and 𝐴𝐴𝑇𝑇 [1/cycles] are the 
exponential coefficients for hydrolysis, photodegradation, and thermomechanical rates, re-
spectively. 𝐸𝐸𝑎𝑎𝐻𝐻, 𝐸𝐸𝑎𝑎𝑃𝑃, and 𝐸𝐸𝑎𝑎𝑇𝑇 [eV] are the activation energies of power degradation due to 
hydrolysis, photodegradation, and thermomechanical mechanisms, respectively. 𝑛𝑛, 𝑦𝑦, and 𝑒𝑒 
are model parameters that measure the effect of RH, UV, and 𝛥𝛥𝑇𝑇, respectively.  

Using performance data of three identical mono-crystalline PV modules installed in three 
different regions: Negev in Israel, Gran Canaria in Spain and Zugspitze in Germany, the 
model was calibrated and validated. Figure 14 shows the annual distribution of relative hu-
midity (A) and module temperature (B) in the three regions. 
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Figure 14: Annual distribution of relative humidity (A) and module temperatures (B) in 
Negev, Gran Canaria and Zugspitze. The dotted line shows the annual average values 
in all the locations. The data corresponds to the monitoring period of the year 2013. 
Figure 15 shows the modelled power degradation prediction plotted with experimental data in 
the three locations. The classification of the regions as well as the predicted specific and total 
degradation rates are presented in Table 6. 
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Figure 15: Normalized (with initial power before exposure) power degradation predic-
tion in comparison with measured power degradation in the three locations [6]. 
 

Table 6: Climate classification as well as estimated degradation rates and failure time 
(20% loss in the initial power) in three regions [6]. 

Region Classification 𝑘𝑘𝐻𝐻 
[%/year 

𝑘𝑘𝑃𝑃 
[%/year 

𝑘𝑘𝑇𝑇𝑚𝑚 
[%/year] 

𝑘𝑘𝑇𝑇 
[%/year] 

Failure time 
[years] 

Negev Arid 0.169 0.216 0.225 0.74 21.4 
Gran 
Canaria 

Maritime (Oceanic) 0.122 0.212 0.104 0.50 31.6 

Zugspitze Alpine (cold) 0.043 0.103 0.129 0.30 52.8 
 

The authors predicted stronger degradation in Negev with hot and humid climatic conditions 
which is consistent with the predictions from the previous authors [7]. For specific degrada-
tion mechanisms, the model predicts lower impact due to hydrolysis in comparison with 
thermomechanical and photodegradation mechanisms. Indeed, very small degradation due 
to hydrolysis is predicted in Zugspitze despite the high levels of relative humidity. This could 
be explained by the low average module temperatures experienced in this region, hence 
slowing hydrolysis processes and the absolute water vapour concentration. In all cases, high 
rates are predicted in Negev. To extend the analysis, the authors applied the calibrated 
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model and the processed climatic data from ERA5 (Copernicus Climate Change Service 
ERA5) to evaluate and map the specific as well as the total degradation rates worldwide (see 
Figure 16) [31]. 

 
Figure 16: Total degradation rates based on a mono-crystalline silicon PV module [31]. 
From Figure 16 it is clear that strong degradation is predicted in AH regions (tropical with 
high irradiance) according to the newly developed KGPV zones [29]. Due to the very low 
relative humidity present in AK (tropical with very high irradiation), lower degradation rates 
were predicted in comparison to AH zones. 

4.3.3 Photovoltaic Modules Service Prediction Models 
PV modules SLP reliability models are defined as time dependent functions that describe the 
evolution of the performance of PV modules with increasing operation period. These func-
tions are used to evaluate the long-term performance degradation from the calculated or ex-
tracted degradation rates. In most cases, the PV community applies a linear regression relia-
bility model (15) to evaluate the long-term performance degradation. However, several au-
thors have reported non-linearity in performance (power) degradation in fielded PV modules 
and systems. For example, Köntges et al. reported in [23] that the loss in power can take 
different shapes, for example: exponential-shaped, linear-shaped, and step and saturating 
power degradation loss over time. In [158], it is also reported that non-linearity of power loss 
is usually observed in the field depending on the PV module technology. Recently, Virtuani et 
al. [159] observed polynomial power degradation instead of a linear behaviour in several PV 
modules after 35 years of field exposure. To model these non-linear behaviours, the authors 
in [6] have proposed a non-linear power degradation reliability model (16) with a tuneable 
shape parameter (𝜇𝜇) to optimize different degradation shapes (see Figure 17 (A)) observed 
in the field. Moreover, in their recent publication [147], the authors demonstrated that evalu-
ated energy yield of a PV module could highly depend on the degradation shape for the 
same evaluation time as shown in Figure 17 (B). 

𝑃𝑃(𝜕𝜕) = 𝑃𝑃0(1 − 𝑘𝑘 ⋅ 𝜕𝜕) (15) 
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𝑃𝑃(𝜕𝜕) = 𝑃𝑃0 ∙ 𝑒𝑒𝑒𝑒𝑝𝑝 �−�
𝜃𝜃
𝑘𝑘 ∙ 𝜕𝜕

�
𝜇𝜇

� 
(16) 

 

𝜕𝜕𝑓𝑓 =
0.2
𝑘𝑘

 (17) 

 

𝜕𝜕𝑓𝑓 =
𝜃𝜃

𝑘𝑘 ⋅ (|𝑙𝑙𝑛𝑛(0.2)|)𝜇𝜇−1
 (18) 

 

Where 𝑃𝑃(𝜕𝜕) 𝑎𝑎𝑛𝑛𝑑𝑑 𝑃𝑃0 are the power at evaluation time and initial power respectively, 𝑘𝑘 is the 
degradation rate [year-1], (𝜇𝜇) is the shape parameter and 𝜃𝜃 parameters associated with the 
material. 𝜕𝜕𝑓𝑓  in equation (17) and (18) is the failure time derived from the linear model (15) and 
non-linear model (16) respectively.  

 

 

 
Figure 17: A, Optimization of power degradation shapes by altering the shape parame-
ter µ. B, Relative energy yield corresponding to different values of µ [12]. 
For long-term performance degradation prediction, the degradation rate (k) can be evaluated 
from physics-based models described above or by fitting the model on the performance data 
after a given period of time. However, it should be noted that depending on the reliability 
model used in the calibration process, the evaluated or extracted degradation rates might 
differ for a given degradation dataset. For example, in Figure 18 (A) linear and non-linear 
models are calibrated on a PV module performance data after six years of field exposure. 
Using the linear model, a degradation rate of 1.1% per year corresponding to 18.2 years life-
time is evaluated. In comparison with the non-linear model, a degradation rate of 1.2% per 
year corresponding to 21.0 years lifetime is evaluated. From this example, despite a relative-
ly higher degradation rate evaluated using a non-linear model in comparison with the linear 
model, a longer lifetime is predicted using a non-linear reliability model. This is because the 
failure time not only depends on the extracted degradation rate but also on other model pa-
rameters as shown in equation (18). These variations in degradation rates due to the differ-
ent reliability models call for a change in degradation rates reporting and interpretation in the 
PV community. Indeed, to achieve a consistent interpretation of the reported degradation 
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rates, the best practice will be not only to report the degradation rates, as commonly done in 
the PV community but also the method used to extract them. Moreover, another concern is 
the use of a simple extrapolation after given years of field exposure to predict the long-term 
performance. A recent study has shown the pitfalls of this approach and proposed a new 
approach based on time dependent degradation rates for more reliable long-term predictions. 

 
Figure 18: (A) Calibration of linear (blue) and non-linear (red) reliability models on out-
door measured PV module performance data (black) after six years of exposure. The 
dashed lines show the long-term performance degradation predictions. (B) Simulated 
change of failure time with degradation rates of the two reliability models. 

4.3.4 Statistical Performance Loss Rate (PLR) Modelling Approaches 
Statistical data-driven modelling approaches describe the performance of PV systems and 
PV modules over time. Traditionally, the performance decline is calculated by linearizing the 
performance trend of a PV system’s performance data and commonly referred to as Perfor-
mance Loss Rate (PLR). The PLR of PV systems is unknown and different approaches are 
used to provide a calculated PLR as close as possible to the true unknown value. In general, 
the calculation of PLR follows a uniform sequence, which includes input data quality check 
and data cleaning, data filtering, the selection of a performance metric and the application of 
a statistical model to determine the final PLR, reported in %/year. Although the sequence is 
similar, a variety of approaches has been developed and different methods are used depend-
ing on the analyst’s preferences without knowing if these methods are close to the actual 
PLR of the PV system. In the recent Task 13 report “Assessment of Performance Loss Rate 
of PV Power Systems” [17], a large-scale benchmarking study has been conducted among 
leading research institutions and universities to answer the question, if a superior calculation 
approach exists today for the calculation of PLR across various PV systems. The study in-
cluded next to several modelled PV system datasets also 19 real datasets of operating PV 
systems. 32 combinations of data filter – performance metrics – statistical models have been 
tested.  

The study shows that today there is no superior uniform calculation procedure following a 
predetermined set of filters-metric-statistical model. Instead, it is suggested that a voting, or 
preference aggregation, method may represent an accurate approach for PLR evaluation. 
Averaging the results of calculated PLR using many filters, performance metrics and statisti-
cal modelling approaches does appear to provide consistent and robust PLR estimates. This 
multiple method approach may serve as an ensemble model in which inaccuracies of all the 
different approaches are minimized in the voted result. Furthermore, it is suggested to assign 
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a 95% confidence interval for each of the used approaches as uncertainty. Overlapping in-
tervals indicate if methods are statistically similar. The average of an ensemble of similar 
approaches is assumed to be close to the actual unknown PLR. Like this it is possible to se-
lect calculation methods with overlapping confidence intervals, exclude outlying approaches, 
calculate the mean of these similar approaches and thereby provide a reliable PLR estimate. 
An example for this approach can be seen in Figure 19, where the PLR of a PV system has 
been calculated using 27 different filter-metric-model combinations and the mean of statisti-
cally similar approaches is used to calculate the PLR. The reported uncertainties are varying 
across the approaches due to different uncertainty calculation approaches, an issue dis-
cussed in the report [17]. That is why the shown cloud of confidence intervals is just estimat-
ed in this example. 

 
Figure 19: Ensemble Approach for PLR estimation, combination of filter, metrics and 
statistical methods along x-axis, PLR along y-axis together with suggest confidence 
interval and outlying approaches. 
Statistical modelling approaches are usually assuming a linear, constant performance degra-
dation over time. This representation is important for possible warranty claims, a basic health 
check of the plant and can be used to intercompare similar systems in the field. Neverthe-
less, as discussed in this report, the time dependent performance evolution of PV systems is 
very complex and highly nonlinear.  

A novel approach to calculate multi-step performance losses (MS-PL) is presented [160], 
which provides a more detailed picture of the PV system performance. Here, the non-linear 
performance trend of a PV systems time series is divided into linear segments by automati-
cally detected breakpoints. Breakpoints divide the performance timeseries into subsets of 
varying performance behaviour. Like this, the performance can be assessed in greater detail 
compared to a linear evaluation. The algorithm provides a trade-off between an easily under-
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standable and at the same time fairly precise PLR rating. Multiple sublinear PLR with the 
according time period are returned. 

The dataset preparation is similar as for linear PLR calculations. After an input data quality 
check, tailored filters are applied on raw PV power and high-quality irradiance time series. 
Consequently, these data are transformed and aggregated to a monthly temperature cor-
rected PR time series. Seasonal and trend decomposition [161] is applied to separate a non-
linear performance trend from the time series by data decomposition of trend, seasonality 
and a reminder. Finally, an adapted version of 𝑅𝑅²𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑅𝑅𝑎𝑎𝑎𝑎𝑚𝑚, a parameter used in multivariate 
regression to determine the optimal number of predictors for a model to find the optimal 
number of breakpoints based on the nonlinear trend. Thereby, different multi-step perfor-
mance loss models with a varying number of breakpoints are tested and a maximized 
adapted 𝑅𝑅²𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑅𝑅𝑎𝑎𝑎𝑎𝑚𝑚, yields the best model which presents an optimum between performance 
evaluation simplicity and detail. The exact location of the breakpoints on the time axis to-
gether with the fitted linear trend-lines is. The function returns a table with an optimized num-
ber of linear performance loss values together with the corresponding breakpoint dates (see 
Table 7). The algorithm has been applied to an operating multi-crystalline PV system, in-
stalled in Bolzano, Italy. The results are presented in Figure 20 and Table 7: 

 
Figure 20: Multi-step performance fit for multi-crystalline PV system in operation for 
eight years: PR (orange - dotted), temperature corrected PR (red - straight), trend-line 
of temperature corrected PR (dark-red - straight), Linear fit (grey - dashed), multi-step 
fit (darkblue - dotdashed) and vertical breakpoints (light-grey - dashed). 
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Table 7: Optimized number of linear performance loss values together with the corre-
sponding breakpoint dates. 

Optimized 𝑷𝑷𝑷𝑷[% 𝒚𝒚𝒚𝒚𝒚𝒚𝒚𝒚⁄ ] Breakpoint 
𝑃𝑃𝐿𝐿𝑅𝑅𝑑𝑑𝑑𝑑𝑛𝑛 -1.01 February 2011 – February 2019 
𝑃𝑃𝐿𝐿𝑅𝑅1 0.76 January 2014 
𝑃𝑃𝐿𝐿𝑅𝑅2 -2.94 August 2015 
𝑃𝑃𝐿𝐿𝑅𝑅3 -0.97  
RMSE 0.33  

 

In the table, next to the overall PLR as well as the individual performance loss values and 
corresponding breakpoints, the RMSE between the non-linear performance trend and the 
modelled fit is listed. In order to present a more accurate uncertainty estimation, it is sug-
gested to add the residuals back to the non-linear performance trend before calculating the 
RMSE. It is visible that the system experiences an initial performance gain for the first three 
years of 𝑃𝑃𝐿𝐿𝑅𝑅1 = 0.76 % 𝑎𝑎⁄ , followed by a strong decrease for one and a half years and finally 
settles at a constant performance loss value of 𝑃𝑃𝐿𝐿𝑅𝑅3 = −0.97 % 𝑎𝑎⁄ , which is very close to the 
over linear PLR estimation of 𝑃𝑃𝐿𝐿𝑅𝑅 = −1.01 % 𝑎𝑎⁄ . The initial gain has also been observed for 
other systems installed under the same conditions and in the vicinity.  

It is suspected that the initial gain is based on a combination of PV technology behaviour and 
favourable weather conditions. In the summer of 2013 and winter of 2013 to 2014 high tem-
perature corrected PR values were recorded before a measurable reduction in performance 
was detected. As efficiency of crystalline systems decreases under low irradiance conditions 
due to higher related resistance losses, high average irradiance conditions under constant 
temperature yields high efficiency values and therefore an increase in performance [162], 
[163]. These high-performance values can be connected to a very sunny July, in which the 
highest monthly yield was recorded, and a mild and sunny following winter where the PR 
reaches very high values of almost 100%. 

The presented algorithm goes a step beyond the usually presented linear PLR and thereby 
allows studying performance affecting events over the course of the systems lifetime and, 
especially, close to breakpoint dates. The MS-PL algorithm can be used in combination with 
individual degradation models presented in section 4.2 and section 4.3 and on-site character-
ization methods to divide the overall performance behaviour into its root causes. Thereby, we 
could gain a greater understanding of climate stressor dependent performance in the field 
and better estimate the lifetime of PV modules and systems installed under various condi-
tions. 

4.3.5 Variations and Uncertainties in PV Modules Degradation Rates and Life-
time Prediction 

In addition to a sensitivity analysis of degradation rates in different climates, the estimated 
degradation rates using physical models should be close to realistic values in order to be 
used for service lifetime predictions. However, due to the many environmental stressors and 
factors influencing associated with physical degradation models, the accuracy of the estimat-
ed degradation rates is affected. In [14], the different sources of variations and uncertainties 
associated with physical models where explored. The authors categorized the sources of 
variations and uncertainties into two major categorises:  
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• Variations and uncertainties due to simplification of reliability and degradation rate mod-
els. They showed that the variations can be as high as 65.5%  

• Variations and uncertainties due to estimation of micro-climate variables from macro-
climate variables (e.g., module temperature from ambient conditions, UV from global ir-
radiation).  

The authors showed that estimation of module temperatures has the highest uncertainty 
compared to other climatic variables (relative humidity and UV). The uncertainties where de-
pendent on location and on the model used to estimate the module temperature, for exam-
ple, in Figure 21, the benchmark of the module temperature estimated according to Faiman 
and Ross models are presented using monthly box plots. In Table 8, the uncertainties and 
variations of different temperature ranges are presented. The minimum and maximum tem-
peratures are evaluated as the 5th and 95th percentiles of the annual temperature distribu-
tion respectively. Finally, in Figure 22, the variations in degradation rate and failure time es-
timations using measured and modelled PV module temperatures are shown.  

According to the authors, the Faiman model that considers the effect of wind speed could 
improve the prediction accuracy since it showed better prediction in comparison to the Ross 
model.  
The highest discrepancies between measured and modelled temperatures are visible in ex-
treme temperature ranges (e.g., in minimum and maximum temperatures ranges). 
A correlation of uncertainty in module temperature estimation to the uncertainty in degrada-
tion rate /failure time estimation is highly location dependent. That is, in locations with lower 
operating temperatures higher uncertainty in module temperatures estimations show less 
impact on the degradation rate accuracy in comparison with locations with higher operating 
temperatures. The authors linked this observation to the Arrhenius temperature dependence 
nature of the degradation rate models.  
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Figure 21: Monthly box plots of measured and modelled PV module temperature in the 
four locations:(a) Negev, Israel; (b) Gran Canaria, Spain; (c) Zugspitze, Germany; (d) 
Ljubljana, Slovenia. The plots correspond to the year 2014 for Negev, Gran Canaria 
and Zugspitze and 2018 for Ljubljana [14]. 
 

Table 8: NRMSE of module temperature estimation (Tmod) and the relative differences 
of measured and modelled annual; average module (Tavg), minimum (Tmin) and maxi-
mum (Tmax) temperatures in different locations using Faiman and Ross models.  

 
Location 

NRMSE and relative difference of module temperature estimation  
Faiman model Ross Model 

Tmod Tavg Tmin Tmax Tmod Tavg Tmin Tmax 
Negev 12.8% 0.8% 14.8% 2.5% 14.3% 0.8% 13.0% 3.5% 

Gran Canaria 15.9% 8.1% 11.0% 4.8% 17.0% 3.9% 10.4% 5.3% 
Zugspitze 37.6% 2.5% 37.3% 4.0% 40.8% 1.3% 49.0% 9.2% 
Ljubljana 13.5% 7.2% 77.3% 3.0% 14.7% 7.2% 76.2% 3.9% 
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Figure 22: Variations in degradation rates and failure times using measured and mod-
elled PV module temperatures. The percentages are the relative differences compared 
to degradation rates evaluated using measured PV module temperatures [14]. Failure 
time defined as a 20% loss of the initial power. 
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 CONCLUSION 

Service lifetime prediction of PV modules and components is of interest to all PV stakehold-
ers. For example, reliable service lifetime predictions aid: PV module and components manu-
facturers to provide more realistic warranties, PV project investors to make good financial 
decisions, and consumers to increase their trust in PV energy. More reliable service lifetime 
prediction of PV modules and components is still quite a challenge. This report provides the 
state-of-the-art of the different methods used for PV modules service lifetime prediction.  

The report presents the following essential aspects: main climatic stressors, degradation 
models and mechanisms, degradation pathway models, degradation rates, and reliability 
models. Different physical and statistical methods used for degradation rate estimation as 
well as service lifetime prediction are presented. According to the studies in this report, the 
following key observations establish the current state-of-the-art of service lifetime prediction:  

The main degradation stressors are well understood; however, the corresponding induced, or 
activated, degradation mechanisms are difficult to generalize. The reason for this is because 
new PV materials are being proposed frequently and usually react differently to the different 
stressors (e.g., have different degradation kinetics). The degradation mechanisms activated 
are a function of the specific materials exposed. 

Degradation pathway network models are proposed for specific degradation models using 
the network structural equation modelling (netSEM) analysis. netSEM analysis is a useful 
and robust approach to map stressors, mechanisms, and responses. It can help to under-
stand the complex interactions between variables and includes metrics that highlight statisti-
cally significant relationships. This in-depth insight into the mechanisms of degradation in PV 
modules can help to develop more reliable degradation kinetics models and hence pave the 
way to improve reliability and lifetime prediction of PV modules. 

Several physical models are proposed to evaluate the degradation rates of specific degrada-
tion modes/mechanisms for indoor applications. However, few developments are available 
for models that combine different degradation mechanisms for outdoor applications. A few 
models which are available are based on basic assumptions for example, considering few 
(so-called main stressors) and neglecting others. These assumptions limit the application of 
the available models in locations where the neglected factors have a significant impact. 
Moreover, the models also assume the kinetics of degradation to be influenced by a single 
dominant degradation mechanism. This means that the models neglect the degradation 
pathways. More complex models that consider the relevant degradation pathways could help 
to generate a clear correlation of the observed performance degradation with the active deg-
radation mechanics.  

Although traditional statistical methods such as: classical seasonal decomposition (CSD), 
autoregressive integrated moving average (ARIMA), and seasonal-trend decomposition us-
ing LOESS (STL), are applicable for PV applications to evaluate the performance loss rate of 
operational PV modules and PV systems. These models are generally used in different fields 
for time series data and not developed specifically for PV applications. New statistical meth-
ods such as Yearly Degradation Score (YDS) and Multi-step Performance Losses (MS-PL) 
are proposed specifically for PV applications. Such PV specific degradation methods could 
help to capture PV performance dependent factors that cannot be achieved using the tradi-
tional time series methods. Additionally, new approaches to identify degradation mechanisms 
signatures from fielded PV data are being proposed. These new developments could be the 
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solution to correlate the extracted degradation rates from statistical models to the degrada-
tion mechanism which has been the major drawback of time series methods.  

For service lifetime prediction, linear performance degradation with a constant degradation 
rate is an approximation or assumption that is still widely used in the PV community. Howev-
er, this assumption does not usually apply – as demonstrated in recent research. Therefore, 
using this approximation may result in high uncertainty in lifetime yield predictions. The posi-
tive news is that this issue is attracting interest from different researchers to evaluate and 
propose models for non-linear degradation rates and performance degradation. Such im-
provements are promising to improve the accuracy and reliability of service lifetime predic-
tions. Additionally, the inconsistencies in degradation rates by different methods and analysts 
is also a challenging aspect for reliable lifetime predictions. In addition, there is no existing 
standardized procedure for degradation rates estimation and reporting. Such a standardized 
procedure is necessary to have more consistent and reusable degradation rates.  

 

 



Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Service Life Estimation for Photovoltaic Modules 

67 

REFERENCES 

[1] “D. Moser, S. Lindig, M. Richter, J. Ascencio Vásquez, I. Horvath, B. Müller, M. Green, J. Vedde, M. Herz, 
B. Herteleer, K.A. Weiß, and B. Stridh, Uncertainties in Yield Assessments and PV LCOE, Report IEA-
PVPS T13-18: ISBN 978-3-907281-06-2, 2020.,” IEA-PVPS. [Online]. Available: https://iea-pvps.org/key-
topics/uncertainties-yield-assessments/. [Accessed: 19-Mar-2021]. 

[2] K. A. Weiss, G. Oreski, E. klimm, B. jäckel, I. Kaaya, S. Herceg, and S. Pinto Bautista, Photovoltaic Mod-
ules – Reliability and Sustainability, 2nd ed. DeGruyer, ISBN 978-3-11-068554-1, 2021. 

[3] M. Owen-Bellini, P. Hacke, S. Spataru, D. Miller, and M. Kempe, “Combined-Accelerated Stress Testing 
for Advanced Reliability Assessment of Photovoltaic Modules,” in 35th European Photovoltaic Solar Ener-
gy Conference and Exhibition, 2018. 

[4] M. Owen-Bellini, S. L. Moffitt, A. Sinha, A. M. Maes, J. J. Meert, T. Karin, C. Takacs, D. R. Jenket, J. Y. 
Hartley, D. C. Miller, P. Hacke, and L. T. Schelhas, “Towards validation of combined-accelerated stress 
testing through failure analysis of polyamide-based photovoltaic backsheets,” Scientific Reports, vol. 11, 
no. 1, pp. 1–13, Jan. 2021. 

[5] P. L. Hacke, M. Owen-Bellini, M. D. Kempe, D. C. Miller, T. Tanahashi, K. Sakurai, W. J. Gambogi, J. T. 
Trout, T. C. Felder, K. R. Choudhury, N. H. Philips, M. Koehl, K.-A. Weiss, S. Spataru, C. Monokroussos, 
and G. Mathiak, “Chapter 11: Combined and Sequential Accelerated Stress Testing for Derisking Photo-
voltaic Modules,” Amsterdam, The Netherlands: Elsevier, NREL/CH-5K00-72451, May 2019. 

[6] I. Kaaya, M. Köhl, A.-P. Mehilli, S. de C. Mariano, and K. A. Weiss, “Modeling Outdoor Service Lifetime 
Prediction of PV Modules: Effects of Combined Climatic Stressors on PV Module Power Degradation,” 
IEEE Journal of Photovoltaics, vol. 9, no. Nr.4, pp. 1105–1112, 2019. 

[7] A. Bala Subramaniyan, R. Pan, J. Kuitche, and G. TamizhMani, “Quantification of Environmental Effects 
on PV Module Degradation: A Physics-Based Data-Driven Modeling Method,” IEEE Journal of Photovolta-
ics, vol. 8, no. 5, pp. 1289–1296, Sep. 2018. 

[8] C. R. Osterwald and T. J. McMahon, “History of accelerated and qualification testing of terrestrial photo-
voltaic modules: A literature review,” Progress in Photovoltaics: Research and Applications, vol. 17, no. 1, 
pp. 11–33, 2009. 

[9] S. Lindig, I. Kaaya, K.-A. Weiß, M. Topic, and D. Moser, “Review of statistical and analytical degradation 
models for photovoltaic modules and systems as well as related improvements,” IEEE Journal of Photo-
voltaics, vol. 8, no. Nr.6, pp. 1773–1786, 2018. 

[10] A. Phinikarides, N. Kindyni, G. Makrides, and G. E. Georghiou, “Review of photovoltaic degradation rate 
methodologies,” Renewable and Sustainable Energy Reviews, vol. 40, pp. 143–152, Dec. 2014. 

[11] A. Gok, C. Fagerholm, R. French, and L. Bruckman, “Temporal evolution and pathway models of 
poly(ethylene-terephthalate) degradation under multi-factor accelerated weathering exposures,” PloS one, 
vol. 14, no. 2, p. e0212258, Feb. 2019. 

[12] I. Kaaya, S. Lindig, K.-A. Weiss, A. Virtuani, M. S. de C. Ortin, and D. Moser, “Photovoltaic lifetime fore-
cast model based on degradation patterns,” Progress in Photovoltaics: Research and Applications, vol. 
28, no. 10, pp. 979–992, 2020. 

[13] M. Theristis, A. Livera, C. B. Jones, G. Makrides, G. E. Georghiou, and J. S. Stein, “Nonlinear Photovolta-
ic Degradation Rates: Modeling and Comparison Against Conventional Methods,” IEEE Journal of Photo-
voltaics, vol. 10, no. 4, pp. 1112–1118, Jul. 2020. 

[14] I. Kaaya, J. Ascencio-Vásquez, K. A. Weiss, and M. Topič, “Assessment of uncertainties and variations in 
PV modules degradation rates and lifetime predictions using physical models,” Solar Energy, vol. 218, pp. 
354–367, Apr. 2021. 

[15] M. Kottek, J. Grieser, C. Beck, B. Rudolf, and F. Rubel, “World Map of the Köppen-Geiger climate classifi-
cation updated,” Meteorologische Zeitschrift, pp. 259–263, Jul. 2006. 

[16] “Mass transfer,” Wikipedia. 30-Nov-2020. 
[17] “R.H. French, D. Moser, S. Lindig, M. Herz, B. Müller, M. Richter, I. Horvath, B. Müller, M. van Ise-ghem, 

W. van Sark, J.S Stein, F. Baumgartner, L. Bruckman, and J. Ascencio Vásquez,D.Bertani, G.Maugeri, 
A.J.Curran,K.Rath, J.Liu, A.Khalilnejad,M.Meftah, D.Jordan, C.Deline, G.Makrides, G.Georghiou, 



Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Service Life Estimation for Photovoltaic Modules 

 

68 

A.Livera, B.Meyers, G.Plessis,M.heristis, W.Luo, Assessment of Performance Loss Rate of PV Power 
Systems, Report IEA-PVPS T13-22: 978-3-907281-10-9, 2020.” 

[18] J., “Bonilla Castro, M. Schweiger, D. Moser, T. Tanahashi, B.H. King, G. Friesen, L. Haitao, R.H. French, 
B. Müller, C. Reise, G. Eder, W. van Sark, Y. Sangpongsanon, F. Valencia, J.S. Stein, J. Ascencio Vás-
quez, C. Ulbrich, M.A. Sevillano Bendezú, A. Gracia Amillo, E. Dunlop, N. Taylor, R. Valckenborg, M.R. 
Vogt, J. Blakesley, and D.E. Guzman Razo, Climatic Rating of Photovoltaic Mod-ules: Different Technolo-
gies for Various Operating Conditions, Report IEA-PVPS T13-20: ISBN 978-3-907281-08-6, 2021.” 

[19] “Soiling (solar energy),” Wikipedia. 29-Jan-2021. 
[20] H. E. Yang, R. French, and L. Bruckman, Durability and Reliability of Polymers and Other Materials in 

Photovoltaic Modules. William Andrew, 2019. 
[21] C. C. White, K. M. White, and P. E. James, Service Life Prediction of Polymers and Plastics Exposed to 

Outdoor Weathering - 1st Edition, 1st ed. Elsevier, 2018. 
[22] C. C. White, K. M. White, and J. Pickett, “Service Life Prediction -Why is this so hard?,” vol. 1, pp. 1–16, 

Nov. 2017. 
[23] M. Köntges, S. Kurtz, C. E. Packard, U. Jahn, K. A. Berger, K. Kato, T. Friesen, H. Liu, M. Van Iseghem, 

J. Wohlgemuth, D. Miller, M. Kempe, P. Hacke, F. Reil, N. Bogdanski, W. Herrmann, C. Buerhop-Lutz, G. 
Razongles, and G. Friesen, “Review of Failures of Photovoltaic Modules,” IEA International Energy Agen-
cy-ISBN 978-3-906042-16-9, Report, 2014. 

[24] “IEC 61215-1:2021 - Terrestrial photovoltaic (PV) modules - Design qualification and type approval - Part 
1: Test requirements,” iTeh Standards Store. [Online]. Available: 
https://standards.iteh.ai/catalog/standards/iec/1452c391-ebde-4588-9a4a-afd9b73b1330/iec-61215-1-
2021. [Accessed: 15-Apr-2021]. 

[25] E. Dunlop, D. Halton, and H. A. Ossenbrink, “20 years of life and more: where is the end of life of a PV 
module?,” Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005., 2005. 

[26] W. Köppen, “The thermal zones of the Earth according to the duration of hot, moderate and cold periods 
and to the impact of heat on the organic world,” Meteorologische Zeitschrift, pp. 351–360, Jun. 2011. 

[27] R. Geiger, “Das Klima der bodennahen Luftschicht,” Anzeiger für Schädlingskunde, vol. 34, no. 10, pp. 
159–159, Oct. 1961. 

[28] M. C. Baechler, J. L. Williamson, T. L. Gilbride, P. C. Cole, M. G. Hefty, and P. M. Love, “Building America 
Best Practices Series: Volume 7.1: Guide to Determining Climate Regions by County,” UNT Digital Li-
brary, 30-Aug-2010. [Online]. Available: https://digital.library.unt.edu/ark:/67531/metadc827424/. [Ac-
cessed: 17-Sep-2020]. 

[29] J. Ascencio-Vásquez, K. Brecl, and M. Topič, “Methodology of Köppen-Geiger-Photovoltaic climate classi-
fication and implications to worldwide mapping of PV system performance,” Solar Energy, vol. 191, pp. 
672–685, Oct. 2019. 

[30] T. Karin, C. Jones, and A. Jain, “Photovoltaic Degradation Climate Zones,” in IEEE 46th Photovoltaic 
Specialists Conference (PVSC), 2019, pp. 0687–0694. 

[31] J. Ascencio-Vásquez, I. Kaaya, K. Brecl, K.-A. Weiss, and M. Topič, “Global Climate Data Processing and 
Mapping of Degradation Mechanisms and Degradation Rates of PV Modules,” Energies, vol. 12, no. 24, 
p. 4749, Jan. 2019. 

[32] W. Raymond, X. Arthur, F. Roger, and B. Laura, “Evaluation and Augmentation of Köppen-Geiger Climate 
Zone Based off of Real-World Satellite Weather Data,” in 47th IEEE Photovoltaic Specialists Conference 
(PVSC), 2020. 

[33] A. Gok, D. A. Gordon, D. M. Burns, S. P. Fowler, R. H. French, and L. S. Bruckman, “Reciprocity and 
spectral effects of the degradation of poly(ethylene-terephthalate) under accelerated weathering expo-
sures,” Journal of Applied Polymer Science, vol. 136, no. 22, p. 47589, 2019. 

[34] D. Otth and R. G. Ross, “Assessing photovoltaic module degradation and lifetime from long term envi-
ronmental tests,” 1983. 

[35] M. D. Kempe, D. Panchagade, M. O. Reese, and A. A. Dameron, “Modeling moisture ingress through 
polyisobutylene-based edge-seals,” Progress in Photovoltaics: Research and Applications, vol. 23, no. 5, 
pp. 570–581, 2015. 

[36] K. H. Krebs and E. Rossi-Gianoli, “Photovoltaic Testing in the European Communities,” in Photovoltaic 
Solar Energy Conference, Springer, Dordrecht, 1981, pp. 287–292. 



Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Service Life Estimation for Photovoltaic Modules 

69 

[37] D. Moore, Cyclic Pressure-load Developmental Testing of Solar Panels: Low-cost Silicon Solar Array 
Project. Jet Propulsion Laboratory, California Institute of Technology, 1977. 

[38] J. Miller, Z. Xia, J. Shaner, D. Amin, D. Cunningham, and J. H. Wohlgemuth, “Using Accelerated Tests 
and Field Data to Predict Module Reliability and Lifetime,” 23rd European Photovoltaic Solar Energy Con-
ference and Exhibition, 1-5 September 2008, Valencia, Spain, pp. 2663–2669, Nov. 2008. 

[39] A. Sinha, V. S. P. Buddha, E. J. Schneller, K. O. Davis, and G. Tamizhmani, “Solder Bond Degradation of 
Fielded PV Modules: Climate Dependence of Intermetallic Compound Growth,” in 2019 IEEE 46th Photo-
voltaic Specialists Conference, PVSC 2019, 2019, pp. 1393–1397. 

[40] N. Bosco, T. Silverman, and S. Kurtz, “The Influence of PV Module Materials and Design on Solder Joint 
Thermal Fatigue Durability,” IEEE Journal of Photovoltaics, vol. 6, no. 6, pp. 1407–1412, 2016. 

[41] J. Wohlgemuth and S. Kurtz, “Reliability testing beyond Qualification as a key component in photovoltaic’s 
progress toward grid parity,” 2011 International Reliability Physics Symposium, 2011. 

[42] C. R. Osterwald, J. P. Benner, J. Pruett, A. Anderberg, S. Rummel, and L. Ottoson, “Degradation in 
weathered crystalline-silicon PV modules apparently caused by UV radiation,” 3rd World Conference on-
Photovoltaic Energy Conversion, 2003. Proceedings of, 2003. 

[43] R. Witteck, B. Veith‐Wolf, H. Schulte‐Huxel, A. Morlier, M. R. Vogt, M. Köntges, and R. Brendel, “UV-
induced degradation of PERC solar modules with UV-transparent encapsulation materials,” Progress in 
Photovoltaics: Research and Applications, vol. 25, no. 6, pp. 409–416, 2017. 

[44] J. F. Pern, W. A. Czanderna, A. . Emery, and R. . Dhere, “Weathering degradation of EVA encapsulant 
and the effect of its yellowing on solar cell efficiency.,” Conference Record of the IEEE Photovoltaic Spe-
cialists Conference, vol. 22nd, no. Vol 1, pp. 557–561, 1991. 

[45] M. Koehl, P. Hacke, H.-S. Wu, and A. Zielnik, “Round-robin weathering test of various polymeric back-
sheets for PV modules with different ultraviolet irradiation and sample temperatures,” Progress in Photo-
voltaics: Research and Applications, vol. 28, no. 8, pp. 808–815, 2020. 

[46] “IEC TS 62782 : Photovoltaic (PV) modules – Cyclic (dynamic) mechanical load testing.” [Online]. Availa-
ble: 
https://global.ihs.com/doc_detail.cfm?document_name=IEC%20TS%2062782&item_s_key=00672456. 
[Accessed: 15-Apr-2021]. 

[47] M. Köntges, G. Oreski, U. Jahn, M. Herz, P. Hacke, and K.-A. Weiß, “Assessment of photovoltaic module 
failures in the field : International Energy Agency Photovoltaic Power Systems Programme : IEA PVPS 
Task 13, Subtask 3 : report IEA-PVPS T13-09:2017, ISBN 978-3-906042-54-1,” International Energy 
Agency, 2017. 

[48] P. L. Hacke, M. D. Kempe, J. Wohlgemuth, J. Li, and Y.-C. Shen, “Potential-Induced Degradation-
Delamination Mode in Crystalline Silicon Modules: Preprint,” National Renewable Energy Lab. (NREL), 
Golden, CO (United States), NREL/CP-5J00-67256, Mar. 2018. 

[49] W. J. Gambogi, T. C. Felder, S. W. Macmaster, K. Roy-Choudhury, B.-L. Yu, K. M. Stika, H. Hu, N. Phil-
lips, and T. J. Trout, “Sequential Stress Testing to Predict Photovoltaic Module Durability,” 2018 IEEE 7th 
World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 
28th PVSEC & 34th EU PVSEC), 2018. 

[50] T. C. Felder, W. J. Gambogi, N. Phillips, S. W. MacMaster, B.-L. Yu, and T. J. Trout, “Comparison of 
higher irradiance and black panel temperature UV backsheet exposures to field performance,” in Reliabil-
ity of Photovoltaic Cells, Modules, Components, and Systems X, 2017, vol. 10370, p. 1037002. 

[51] www.ait.ac.at, “INFINITY - AIT Austrian Institute Of Technology,” ait.ac.at, 26-May-2020. [Online]. Availa-
ble: https://www.ait.ac.at/en/research-topics/photovoltaics/projects/infinity/. [Accessed: 26-May-2020]. 

[52] G. C. Eder, Y. Voronko, S. Dimitriadis, K. Knöbl, G. Újvári, K. A. Berger, M. Halwachs, L. Neumaier, and 
C. Hirschl, “Climate specific accelerated ageing tests and evaluation of ageing induced electrical, physi-
cal, and chemical changes,” Progress in Photovoltaics: Research and Applications, vol. 27, no. 11, pp. 
934–949, 2019. 

[53] “IEC 61730-1:2016 - IEC-Normen - VDE VERLAG.” [Online]. Available: https://www.vde-verlag.de/iec-
normen/223810/iec-61730-1-2016.html. [Accessed: 16-Apr-2021]. 

[54] “IEC 61701:2020 - IEC-Normen - VDE VERLAG.” [Online]. Available: https://www.vde-verlag.de/iec-
normen/248812/iec-61701-2020.html. [Accessed: 16-Apr-2021]. 

[55] W. Gambogi, S. MacMaster, B.-L. Yu, T. Felder, H. Hu, K. R. Choudhury, T. J. Trout, and D. P. Solutions, 
“Sequential testing that better predicts field performance,” in Atlas-NIST Workshop, 2017. 



Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Service Life Estimation for Photovoltaic Modules 

 

70 

[56] G. . Ede, Y. Voronko, P. Grillberger, K. . Berger, G. Újvári, and K. Knöbl, “Development of climate specific 
accelerated ageing tests for Photovoltaic modules,” in European Weathering Symposium EWS “Natural 
and Artificial Ageing of Polymers, Basel, 2019, vol. 19. 

[57] G. C. Eder, Y. Voronko, K. Knöbl, S. Dimitriadis, G. Újvári, K. A. Berger, and L. Neumaier, “Climate specif-
ic accelerated ageing tests,” in 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), 2019, pp. 
2398–2405. 

[58] M. Halwachs, L. Neumaier, N. Vollert, L. Maul, S. Dimitriadis, Y. Voronko, G. Eder, A. Omazic, W. Mueh-
leisen, C. Hirschl, M. Schwark, K. Berger, and R. Ebner, “Statistical evaluation of PV system performance 
and failure data among different climate zones,” Renewable Energy, vol. 139, Mar. 2019. 

[59] D. C. Jordan, T. J. Silverman, J. H. Wohlgemuth, S. R. Kurtz, and K. T. VanSant, “Photovoltaic failure and 
degradation modes,” Progress in Photovoltaics: Research and Applications, vol. 25, no. 4, pp. 318–326, 
2017. 

[60] S. Spataru, P. Hacke, and M. Owen-Bellini, “Combined-Accelerated Stress Testing System for Photovol-
taic Modules,” in Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conver-
sion, 2018, pp. 3943–3948. 

[61] M. D. Kempe, D. C. Miller, J. H. Wohlgemuth, S. R. Kurtz, J. M. Moseley, Q. A. Shah, G. Tamizhmani, K. 
Sakurai, M. Inoue, T. Doi, A. Masuda, S. L. Samuels, and C. E. Vanderpan, “Field testing of thermoplastic 
encapsulants in high-temperature installations,” Energy Science & Engineering, vol. 3, no. 6, pp. 565–580, 
2015. 

[62] N. Bosco, T. J. Silverman, and S. Kurtz, “Climate specific thermomechanical fatigue of flat plate photovol-
taic module solder joints,” Microelectronics Reliability, vol. 62, pp. 124–129, Jul. 2016. 

[63] G. C. Eder, Y. Voronko, G. Oreski, W. Mühleisen, M. Knausz, A. Omazic, A. Rainer, C. Hirschl, C. Hirschl, 
and H. Sonnleitner, “Error analysis of aged modules with cracked polyamide backsheets,” Solar Energy 
Materials and Solar Cells, Dec. 2019. 

[64] Y. Wang, W. Huang, A. Fairbrother, L. S. Fridman, A. Curran, N. R. Wheeler, S. Napoli, A. W. Hauser, S. 
Julien, X. Gu, G. O’brien, K. Wan, L. Ji, M. Kempe, K. P. Boyce, R. French, and L. Bruckman, “General-
ized Spatio-Temporal Model of Backsheet Degradation From Field Surveys of Photovoltaic Modules,” 
IEEE-JPV, vol. 9, no. 5, pp. 1374–1381, 2019. 

[65] A. Fairbrother, M. Boyd, Y. Lyu, J. Avenet, P. Illich, M. Kempe, B. Dougherty, L. Bruckman, and X. Gu, 
“Differential degradation patterns of photovoltaic backsheets at the array level,” Solar Energy, vol. 163, 
pp. 62–69, 2018. 

[66] M. D. Kempe, “Modeling of rates of moisture ingress into photovoltaic modules,” Solar Energy Materials 
and Solar Cells, vol. 90, no. 16, pp. 2720–2738, Oct. 2006. 

[67] P. Hülsmann and K.-A. Weiss, “Simulation of water ingress into PV-modules: IEC-testing versus outdoor 
exposure,” Solar Energy, vol. 115, pp. 347–353, May 2015. 

[68] M. Jankovec, F. Galliano, E. Annigoni, H. Y. Li, F. Sculati-Meillaud, L.-E. Perret-Aebi, C. Ballif, and M. 
Topič, “In-situ monitoring of moisture ingress in PV modules using digital humidity sensors,” IEEE journal 
of photovoltaics, vol. 6, no. 5, pp. 1152–1159, 2016. 

[69] S. Suzuki, N. Nishiyama, S. Yoshino, T. Ujiro, S. Watanabe, T. Doi, A. Masuda, and T. Tanahashi, “Ac-
celeration of potential-induced degradation by salt-mist preconditioning in crystalline silicon photovoltaic 
modules,” Jpn. J. Appl. Phys., vol. 54, no. 8S1, p. 08KG08, Jul. 2015. 

[70] S.-T. Hsu, W.-Y. Lin, and S.-J. Wu, “Environmental Factors for Non-uniform Dynamic Mechanical Load 
Test due to Wind Actions on Photovoltaic Modules,” Energy Procedia, vol. 150, pp. 50–57, Sep. 2018. 

[71] C. Buerhop, S. Wirsching, A. Bemm, T. Pickel, P. Hohmann, M. Nieß, C. Vodermayer, A. Huber, B. Glück, 
J. Mergheim, C. Camus, J. Hauch, and C. J. Brabec, “Evolution of cell cracks in PV-modules under field 
and laboratory conditions,” Progress in Photovoltaics: Research and Applications, vol. 26, no. 4, pp. 261–
272, 2018. 

[72] C. Camus, P. Offermann, M. Weissmann, C. Buerhop, J. Hauch, and C. J. Brabec, “Site-specific assess-
ment of mechanical loads on photovoltaic modules from meteorological reanalysis data,” Solar Energy, 
vol. 188, pp. 1134–1145, 2019. 

[73] P. M. Segado, J. Carretero, and M. Sidrach‐de‐Cardona, “Models to predict the operating temperature of 
different photovoltaic modules in outdoor conditions,” Progress in Photovoltaics: Research and Applica-
tions, vol. 23, no. 10, pp. 1267–1282, 2015. 



Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Service Life Estimation for Photovoltaic Modules 

71 

[74] M. Koehl, M. Heck, S. Wiesmeier, and J. Wirth, “Modeling of the nominal operating cell temperature 
based on outdoor weathering,” Solar Energy Materials and Solar Cells, vol. 95, no. 7, pp. 1638–1646, Jul. 
2011. 

[75] R. Ross, “Interface design considerations for terrestrial solar cell modules,” in 12th Photovoltaic Special-
ists Conference, New York, 1976, pp. 801–806. 

[76] D. Faiman, “Assessing the outdoor operating temperature of photovoltaic modules,” Progress in Photovol-
taics: Research and Applications, vol. 16, no. 4, pp. 307–315, 2008. 

[77] E. Skoplaki and J. A. Palyvos, “Operating temperature of photovoltaic modules: A survey of pertinent 
correlations,” Renewable Energy, vol. 34, no. 1, pp. 23–29, Jan. 2009. 

[78] M. Koehl, M. Heck, and S. Wiesmeier, “Categorization of weathering stresses for photovoltaic modules,” 
Energy Science & Engineering, vol. 6, no. 2, pp. 93–111, 2018. 

[79] P. Hülsmann, M. Heck, and M. Köhl, “Simulation of Water Vapor Ingress into PV-Modules under Different 
Climatic Conditions,” Journal of Materials, 27-Feb-2013. [Online]. Available: 
https://www.hindawi.com/journals/jma/2013/102691/. [Accessed: 23-Oct-2020]. 

[80] S. Mitterhofer, J. Slapšak, M. Jankovec, M. Topic, A. Astigarraga, D. Moser, W. Luo, Y. Sheng Khoo, G. 
Oviedo Hernandez, P. V. Chiantore, J. Rabanal-Arabach, E. Fuentealba, P. Ferrada, and M. Trigo-
Gonzalez, “Measurement and simulation of moisture ingress in PV modules in various climates,” present-
ed at the 37th EUPVSEC, Online, 2020. 

[81] M. D. Kempe, A. A. Dameron, and M. O. Reese, “Evaluation of moisture ingress from the perimeter of 
photovoltaic modules,” Progress in Photovoltaics: Research and Applications, vol. 22, no. 11, pp. 1159–
1171, 2014. 

[82] S. Mitterhofer, C. Barretta, L. F. Castillon, G. Oreski, M. Topič, and M. Jankovec, “A Dual-Transport Model 
of Moisture Diffusion in PV Encapsulants for Finite-Element Simulations,” IEEE-JPVc, vol. 10, no. 1, pp. 
94–102, 2020. 

[83] P. Hülsmann, K.-A. Weiß, and M. Köhl, “Temperature-dependent water vapour and oxygen permeation 
through different polymeric materials used in photovoltaic-modules,” Progress in Photovoltaics: Research 
and Applications, vol. 22, no. 4, pp. 415–421, 2014. 

[84] R. Meitzner and S.-H. Schulze, “Method for determination of parameters for moisture simulations in pho-
tovoltaic modules and laminated glass,” Solar energy materials and solar cells, vol. 144, pp. 23–28, 2016. 

[85] N. Kyranaki, “Corrosion in crystalline silicon photovoltaic modules and the influence on performance,” PhD 
thesis, Loughborough University, 2020. 

[86] L. Perrin, Q. T. Nguyen, D. Sacco, and P. Lochon, “Experimental Studies and Modelling of Sorption and 
Diffusion of Water and Alcohols in Cellulose Acetate,” Polymer International, vol. 42, no. 1, pp. 9–16, 
1997. 

[87] E. Favre, R. Clément, Q. T. Nguyen, P. Schaetzel, and J. Néel, “Sorption of organic solvents into dense 
silicone membranes. Part 2.—Development of a new approach based on a clustering hypothesis for as-
sociated solvents,” J. Chem. Soc., Faraday Trans., vol. 89, no. 24, pp. 4347–4353, Jan. 1993. 

[88] X. Gu, D. Stanley, W. E. Byrd, B. Dickens, I. Vaca-Trigo, W. Q. Meeker, T. Nguyen, J. W. Chin, and J. W. 
Martin, “Linking Accelerated Laboratory Test with Outdoor Performance Results for a Model Epoxy Coat-
ing System,” in Service Life Prediction of Polymeric Materials, Boston, MA, 2009, pp. 3–28. 

[89] J. Liu, A. J. Curran, J. S. Fada, X. Ma, W. Huang, C. B. Jones, E. Schnabel, M. Kohl, J. L. Braid, and R. 
H. French, “Cross-correlation Analysis of the Indoor Accelerated and Real World Exposed Photovoltaic 
Systems Across Multiple Climate Zones,” 2018 IEEE 7th World Conference on Photovoltaic Energy Con-
version (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), 2018. 

[90] D. A. Gordon, W.-H. Huang, D. M. Burns, R. H. French, and L. S. Bruckman, “Multivariate multiple regres-
sion models of poly(ethylene-terephthalate) film degradation under outdoor and multi-stressor accelerated 
weathering exposures,” PLOS ONE, vol. 13, no. 12, p. e0209016, Dec. 2018. 

[91] “Empirical modelling,” Wikipedia. 19-Sep-2020. 
[92] “Statistical model,” Wikipedia. 19-Mar-2021. 
[93] D. R. Cox, “Principles of Statistical Inference,” Cambridge Core, Aug-2006. [Online]. Available: 

https://www.cambridge.org/core/books/principles-of-statistical-
inference/BCD3734047D403DF5352EA58F41D3181. [Accessed: 22-Mar-2021]. 

[94] “Mathematical model,” Wikipedia. 15-Feb-2021. 



Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Service Life Estimation for Photovoltaic Modules 

 

72 

[95] A. R. Estabragh, M. R. S. Pereshkafti, and A. A. Javadi, “Comparison Between Analytical and Numerical 
Methods in Evaluating the Pollution Transport in Porous Media,” Geotech Geol Eng, vol. 31, no. 1, pp. 
93–101, Feb. 2013. 

[96] L. Bruckman, N. R. Wheeler, J. Ma, E. Wang, C. Wang, I. Chou, J. Sun, and R. H. French, “Statistical and 
Domain Analytics Applied to PV Module Lifetime and Degradation Science,” IEEE Access, 2013. 

[97] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning: with Applications 
in R. New York: Springer-Verlag, 2013. 

[98] C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal, vol. 27, no. 3, 
pp. 379–423, 1948. 

[99] H. Akaike, “Information Theory and an Extension of the Maximum Likelihood Principle,” in Selected Pa-
pers of Hirotugu Akaike, Springer, New York, NY, 1998, pp. 199–213. 

[100] P. A. Stephens, S. W. Buskirk, G. D. Hayward, and C. Martínez Del Rio, “Information theory and hypothe-
sis testing: a call for pluralism,” Journal of Applied Ecology, vol. 42, no. 1, pp. 4–12, Feb. 2005. 

[101] P. M. Lukacs, W. L. Thompson, W. L. Kendall, W. R. Gould, P. F. Doherty Jr, K. P. Burnham, and D. R. 
Anderson, “Concerns regarding a call for pluralism of information theory and hypothesis testing,” Journal 
of Applied Ecology, vol. 44, no. 2, pp. 456–460, Apr. 2007. 

[102] R. H. French, R. Podgornik, T. J. Peshek, L. S. Bruckman, Y. Xu, N. R. Wheeler, A. Gok, Y. Hu, M. A. 
Hossain, D. A. Gordon, P. Zhao, J. Sun, and G.-Q. Zhang, “Degradation science: Mesoscopic evolution 
and temporal analytics of photovoltaic energy materials,” Current Opinion in Solid State and Materials 
Science, vol. 19, no. 4, Jan. 2015. 

[103] P. a. M. Dirac, “A new notation for quantum mechanics,” Mathematical Proceedings of the Cambridge 
Philosophical Society, vol. 35, no. 3, pp. 416–418, Jul. 1939. 

[104] H. Akaike, “A New Look at the Statistical Model Identification,” in Selected Papers of Hirotugu Akaike, 
Springer, New York, NY, 1974, pp. 215–222. 

[105] M. Coskun and M. Koyutürk, “Link prediction in large networks by comparing the global view of nodes in 
the network,” in 2015 IEEE International Conference on Data Mining Workshop (ICDMW), 2015, pp. 485–
492. 

[106] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun, “Graph Neural Networks: A Re-
view of Methods and Applications,” arXiv.org, Dec. 2018. 

[107] W.-H. Huang, N. Wheeler, A. Klinke, Y. Xu, W. Du, A. K. Verma, A. Gok, D. Gordon, Y. Wang, J. Liu, A. 
Curran, J. Fada, X. Ma, J. Braid, J. Carter, L. Bruckman, and R. French, netSEM: Network Structural 
Equation Modeling. 2018. 

[108] A. Gok, D. K. Ngendahimana, C. L. Fagerholm, R. H. French, J. Sun, and L. S. Bruckman, “Predictive 
models of poly(ethylene-terephthalate) film degradation under multi-factor accelerated weathering expo-
sures,” PLOS ONE, vol. 12, no. 5, p. e0177614, Dec. 2017. 

[109] “Training School,” PEARL PV, 21-Sep-2020. . 
[110] Y. Voronko, G. C. Eder, M. Knausz, G. Oreski, T. Koch, and K. A. Berger, “Correlation of the loss in pho-

tovoltaic module performance with the ageing behaviour of the backsheets used,” Progress in Photovolta-
ics: Research and Applications, vol. 23, no. 11, pp. 1501–1515, 2015. 

[111] G. Oreski, A. Mihaljevic, Y. Voronko, and G. C. Eder, “Acetic acid permeation through photovoltaic back-
sheets: Influence of the composition on the permeation rate,” Polymer Testing, vol. 60, pp. 374–380, Jul. 
2017. 

[112] M. Knausz, G. Oreski, G. C. Eder, Y. Voronko, B. Duscher, T. Koch, G. Pinter, and K. A. Berger, “Degra-
dation of photovoltaic backsheets: Comparison of the aging induced changes on module and component 
level,” Journal of Applied Polymer Science, vol. 132, no. 24, 2015. 

[113] B. S. Chernev, C. Hirschl, and G. C. Eder, “Non-Destructive Determination of Ethylene Vinyl Acetate 
Cross-Linking in Photovoltaic (PV) Modules by Raman Spectroscopy,” Appl. Spectrosc., AS, vol. 67, no. 
11, pp. 1296–1301, Nov. 2013. 

[114] C. Hirschl, M. Biebl–Rydlo, M. DeBiasio, W. Mühleisen, L. Neumaier, W. Scherf, G. Oreski, G. Eder, B. 
Chernev, W. Schwab, and M. Kraft, “Determining the degree of crosslinking of ethylene vinyl acetate pho-
tovoltaic module encapsulants—A comparative study,” Solar Energy Materials and Solar Cells, vol. 116, 
pp. 203–218, Sep. 2013. 

[115] G. Ehrenstein and S. Pongratz, Resistance and Stability of Polymers. Hanser Publishers, ISBN 978-1-
56990-456-5, 2013. 



Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Service Life Estimation for Photovoltaic Modules 

73 

[116] W. Weibull, “A Statistical Distribution Function of Wide Applicability,” Journal of Applied Mechanics, vol. 8, 
pp. 293–297, 1951. 

[117] O. Haillant, D. Dumbleton, and A. Zielnik, “An Arrhenius approach to estimating organic photovoltaic 
module weathering acceleration factors,” Solar Energy Materials and Solar Cells, vol. 95, no. 7, pp. 1889–
1895, Jul. 2011. 

[118] J. H. Chan and S. T. Balke, “The thermal degradation kinetics of polypropylene: Part I. Molecular weight 
distribution,” Polymer Degradation and Stability, vol. 57, no. 2, pp. 113–125, Aug. 1997. 

[119] J. D. Peterson, S. Vyazovkin, and C. A. Wight, “Kinetics of the Thermal and Thermo-Oxidative Degrada-
tion of Polystyrene, Polyethylene and Poly(propylene),” Macromolecular Chemistry and Physics, vol. 202, 
no. 6, pp. 775–784, 2001. 

[120] M. Koehl, T.-J. Trout, T. Felder, K. Choudhury, S. Padlewski, and A. Borne, “Analysis of UV Degradation 
of PV Backsheets Using Arrhenius Formalism to Extract Intrinsic Material Characteristics and Model Life-
time Performance,” in 33rd European Photovoltaic Solar Energy Conference and Exhibition, 2017, pp. 
1349–1353. 

[121] H. S. Blanks, “Arrhenius and the temperature dependence of non-constant failure rate,” Quality and Reli-
ability Engineering International, vol. 6, no. 4, pp. 259–265, 1990. 

[122] V. Saux, P. L. Gac, Y. Marco, and S. Calloch, “Limits in the validity of Arrhenius predictions for field age-
ing of a silica filled polychloroprene in a marine environment,” Polymer Degradation and Stability, vol. 99, 
pp. 254–261, 2014. 

[123] N. J. Luiggi Agreda, “Aquilanti–Mundim deformed Arrhenius model in solid-state reactions,” J Therm Anal 
Calorim, vol. 126, no. 3, pp. 1175–1184, Dec. 2016. 

[124] M. A. Bohn, “The Connection Between the Parameters of WLF Equation and of Arrhenius Equation,” 
Propellants, Explosives, Pyrotechnics, vol. 44, no. 6, pp. 696–705, 2019. 

[125] B. X. J. Yu, R. Lv, J.-N. Jaubert, G. Xing, J. Dupuis, E. Sandré, C. Dugué, and G. Goaer, “Failure modes 
of polyolefin encapsulated double glass modules and corresponding degradation modeling — Part 1 opti-
cal durability,” in 47th IEEE Photovoltaic Specialists Conference (PVSC), 2020, pp. 1002–1007. 

[126] Y. Lyu, A. Fairbrother, M. Gong, J. Kim, X. Gu, M. Kempe, S. Julien, K. Wan, S. Napoli, A. W. Hauser, G. 
O’brien, Y. Wang, R. French, L. Bruckman, L. Ji, and K. P. Boyce, “Impact of environmental variables on 
the degradation of photovoltaic components and perspectives for the reliability assessment methodology,” 
Solar Energy, vol. 199, pp. 425–436, 2020. 

[127] M. Gagliardi, P. Lenarda, and M. Paggi, “A reaction-diffusion formulation to simulate EVA polymer degra-
dation in environmental and accelerated ageing conditions,” Solar Energy Materials and Solar Cells, vol. 
C, no. 164, pp. 93–106, 2017. 

[128] W. Nash, T. Drummond, and N. Birbilis, “A review of deep learning in the study of materials degradation,” 
npj Materials Degradation, vol. 2, no. 1, pp. 1–12, Nov. 2018. 

[129] E. Smidt, M. Schwanninger, J. Tintner, and K. Boehm, “Ageing and Deterioration of Materials in the Envi-
ronment – Application of Multivariate Data Analysis, Multivariate Analysis in Management, Engineering 
and the Sciences, Leandro Valim de Freitas and Ana Paula Barbosa Rodrigues de Freitas, IntechOpen, 
DOI: 10.5772/53984 [Titel anhand dieser DOI in Citavi-Projekt übernehmen] . Available from: 
https://www.intechopen.com/books/multivariate-analysis-in-management-engineering-and-the-
sciences/ageing-and-deterioration-of-materials-in-the-environment-application-of-multivariate-data-
analysis,” 2013. 

[130] H. Song, P. Xu, Z. Wu, Y. Xia, and M. Yun, “Annual Degradation Rates of Crystalline Silicon Photovoltaic 
Modules in Different Climatic Zones in China,” in 35th European Photovoltaic Solar Energy Conference 
and Exhibition, 2018, pp. 1189–1191. 

[131] E. V. Bystritskaya, O. N. Karpukhin, and A. V. Kutsenova, “Monte Carlo Simulation of Linear Polymer 
Thermal Depolymerization under Isothermal and Dynamic Modes,” International Journal of Polymer Sci-
ence, 08-Jun-2011. [Online]. Available: https://www.hindawi.com/journals/ijps/2011/849370/. [Accessed: 
21-Sep-2020]. 

[132] K. Binder, “1.17 - Monte Carlo Simulations in Polymer Science,” in Polymer Science: A Comprehensive 
Reference, K. Matyjaszewski and M. Möller, Eds. Amsterdam: Elsevier, 2012, pp. 461–474. 

[133] H. Makki, K. N. S. Adema, E. A. J. F. Peters, J. Laven, L. G. J. van der Ven, R. A. T. M. van Benthem, 
and G. de With, “Multi-scale simulation of degradation of polymer coatings: Thermo-mechanical simula-
tions,” Polymer Degradation and Stability, vol. 123, pp. 1–12, Jan. 2016. 



Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Service Life Estimation for Photovoltaic Modules 

 

74 

[134] M. R. Nyden and J. W. Gilman, “Molecular dynamics simulations of the thermal degradation of nano-
confined polypropylene,” Computational and Theoretical Polymer Science, vol. 7, no. 3, pp. 191–198, Jan. 
1997. 

[135] A. Morshedifard, S. Masoumi, and M. J. A. Qomi, “Nanoscale origins of creep in calcium silicate hy-
drates,” Nature Communications, 2018. 

[136] A. Launay, F. Thominette, and J. Verdu, “Hydrolysis of poly(ethylene terephthalate): a kinetic study,” Pol-
ymer Degradation and Stability, vol. 46, no. 3, pp. 319–324, Jan. 1994. 

[137] J. E. Pickett and D. J. Coyle, “Hydrolysis kinetics of condensation polymers under humidity aging condi-
tions,” Polymer Degradation and Stability, vol. 98, no. 7, pp. 1311–1320, Jul. 2013. 

[138] A. Omazic, G. Oreski, M. Halwachs, G. C. Eder, C. Hirschl, L. Neumaier, G. Pinter, and M. Erceg, “Rela-
tion between degradation of polymeric components in crystalline silicon PV module and climatic condi-
tions: A literature review,” Solar Energy Materials and Solar Cells, vol. 192, pp. 123–133, Apr. 2019. 

[139] L. Papargyri, M. Theristis, B. Kubicek, T. Krametz, C. Mayr, P. Papanastasiou, and G. E. Georghiou, 
“Modelling and experimental investigations of microcracks in crystalline silicon photovoltaics: A review,” 
Renewable Energy, vol. 145, pp. 2387–2408, Jan. 2020. 

[140] X. Gou, X. Li, S. Wang, H. Zhuang, X. Huang, and L. Jiang, “The Effect of Microcrack Length in Silicon 
Cells on the Potential Induced Degradation Behavior,” International Journal of Photoenergy, 18-Feb-2018. 
[Online]. Available: https://www.hindawi.com/journals/ijp/2018/4381579/. [Accessed: 22-Sep-2020]. 

[141] M. Köntges, M. Siebert, A. Morlier, R. Illing, N. Bessing, and F. Wegert, “Impact of transportation on sili-
con wafer-based photovoltaic modules,” Progress in Photovoltaics: Research and Applications, vol. 24, 
no. 8, pp. 1085–1095, 2016. 

[142] M. Köntges, I. Kunze, S. Kajari-Schröder, X. Breitenmoser, and B. Bjørneklett, “The risk of power loss in 
crystalline silicon based photovoltaic modules due to micro-cracks,” Solar Energy Materials and Solar 
Cells, vol. 95, no. 4, pp. 1131–1137, 2011. 

[143] F. Kaule, W. Wang, and S. Schoenfelder, “Modeling and testing the mechanical strength of solar cells,” 
Solar Energy Materials and Solar Cells, vol. 120, pp. 441–447, Jan. 2014. 

[144] U. Jahn, I. Kunze, S. Kajari-Schröder, and M. Köntges, “Crack Statistic of Crystalline Silicon Photovoltaic 
Modules,” 26th European Photovoltaic Solar Energy Conference and Exhibition, pp. 3290–3294, Oct. 
2011. 

[145] M. Sander, S. Dietrich, M. Pander, M. Ebert, and J. Bagdahn, “Systematic investigation of cracks in en-
capsulated solar cells after mechanical loading,” Solar Energy Materials and Solar Cells, vol. 111, pp. 82–
89, Apr. 2013. 

[146] M. Paggi, I. Berardone, A. Infuso, and M. Corrado, “Fatigue degradation and electric recovery in Silicon 
solar cells embedded in photovoltaic modules,” Scientific Reports, vol. 4, no. 1, p. 4506, Mar. 2014. 

[147] J. L. Braid, A. J. Curran, J. Sun, E. J. Schneller, J. S. Fada, J. Liu, M. Wang, A. J. Longacre, J. Dai, B. D. 
Huey, K. O. Davis, J.-N. Jaubert, L. S. Bruckman, and R. H. French, “EL and I-V Correlation for Degrada-
tion of PERC vs. Al-BSF Commercial Modules in Accelerated Exposures,” in 2018 IEEE 7th World Con-
ference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th 
PVSEC 34th EU PVSEC), 2018, pp. 1261–1266. 

[148] N. Bosco, M. Springer, and X. He, “Viscoelastic Material Characterization and Modeling of Photovoltaic 
Module Packaging Materials for Direct Finite-Element Method Input,” IEEE-JPV, vol. 10, no. 5, pp. 1424–
1440, 2020. 

[149] N. Bosco, M. Springer, J. Liu, S. Nalin Venkat, and R. H. French, “Employing Weibull Analysis and Weak-
est Link Theory to Resolve Crystalline Silicon PV Cell Strength Between Bare Cells and Reduced- and 
Full-Sized Modules,” IEEE journal of photovoltaics, vol. 11, no. 3, pp. 731–741, 2021. 

[150] Y. Lyu, A. Fairbrother, M. Gong, J. H. Kim, A. Hauser, G. O’Brien, and X. Gu, “Drivers for the cracking of 
multilayer polyamide-based backsheets in field photovoltaic modules: In-depth degradation mapping anal-
ysis,” Progress in Photovoltaics: Research and Applications, vol. 28, no. 7, pp. 704–716, 2020. 

[151] R. Wieser, Y. Wang, A. Fairbrother, S. Napoli, S. Julien, A. W. Hauser, L. Ji, K. Wan, G. S. O’Brien, R. H. 
French, M. D. Kempe, X. Gu, K. P. Boyce, and L. S. Bruckman, “Characterization of Real-World and Ac-
celerated Exposed PV Module Backsheet Degradation,” Piscataway, NJ: Institute of Electrical and Elec-
tronics Engineers (IEEE), NREL/CP-5K00-78482, Oct. 2020. 



Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Service Life Estimation for Photovoltaic Modules 

75 

[152] T. Jared, C. K. Roy, G. William, F. Thomas, G.-I. Lucie, H. Hongjie, T. T. John, K. Rahul, J. Xia, and H. 
Yushi, “Survey of Material Degradation in Globally Fielded PV Modules,” IEEE Conference Proceedings, 
vol. 2019, no. PVSC, pp. 874–879, 2019. 

[153] Y. Lyu, J. H. Kim, A. Fairbrother, and X. Gu, “Degradation and Cracking Behavior of Polyamide-Based 
Backsheet Subjected to Sequential Fragmentation Test,” IEEE journal of photovoltaics, vol. 8, no. 6, pp. 
1748–1753, 2018. 

[154] A. G. Klinke, A. Gok, S. I. Ifeanyi, and L. S. Bruckman, “An Automated Algorithm for Quantifying Cracks in 
Photovoltaic Backsheets Under Accelerated and Real-World Exposures,” in 2018 IEEE 7th World Confer-
ence on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC 
34th EU PVSEC), 2018, pp. 1295–1300. 

[155] B. Zhang, J. Grant, L. S. Bruckman, O. Wodo, and R. Rai, “Degradation Mechanism Detection in Photo-
voltaic Backsheets by Fully Convolutional Neural Network,” Scientific Reports, vol. 9, no. 1, pp. 1–13, 
Nov. 2019. 

[156] S. Zhang, Y. Zhang, and J. Zhu, “Residual life prediction based on dynamic weighted Markov model and 
particle filtering,” J Intell Manuf, vol. 29, no. 4, pp. 753–761, Apr. 2018. 

[157] A. G. Klinke, A. Gok, S. I. Ifeanyi, and L. Bruckman, “A non-destructive method for crack quantification in 
photovoltaic backsheets under accelerated and real-world exposures,” Polymer Degradation and Stability, 
vol. 153, pp. 244–254, 2018. 

[158] D. C. Jordan, T. J. Silverman, B. Sekulic, and S. R. Kurtz, “PV degradation curves: non-linearities and 
failure modes,” Progress in Photovoltaics: Research and Applications, vol. 25, no. 7, pp. 583–591, 2017. 

[159] A. Virtuani, M. Caccivio, E. Annigoni, G. Friesen, D. Chianese, C. Ballif, and T. Sample, “35 years of pho-
tovoltaics: Analysis of the TISO-10-kW solar plant, lessons learnt in safety and performance—Part 1,” 
Progress in Photovoltaics: Research and Applications, vol. 27, no. 4, pp. 328–339, 2019. 

[160] S. Lindig, D. Moser, B. Mueller, and K. Keifer, “Application of Dynamic Multi-Step Performance Loss Algo-
rithm,” in 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 2021. 

[161] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning, “STL: A seasonal-trend decomposi-
tion,” Journal of official statistics, vol. 6, no. 1, pp. 3–73, 1990. 

[162] F. Mavromatakis, F. Vignola, and B. Marion, “Low irradiance losses of photovoltaic modules,” Solar Ener-
gy, vol. 157, no. C, Sep. 2017. 

[163] I. D. L. Parra, M. Muñoz, E. Lorenzo, M. García, J. Marcos, and F. Martinez-Moreno, “PV performance 
modelling: A review in the light of quality assurance for large PV plants,” undefined, 2017. [Online]. Avail-
able: /paper/PV-performance-modelling%3A-A-review-in-the-light-of-Parra-
Mu%C3%B1oz/23743bbaac4e4c7f02c3e549f98825c637562587. [Accessed: 22-Mar-2021]. 

 

 

 

 

 

 



Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Service Life Estimation for Photovoltaic Modules 

 

76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Acknowledgements
	List of Abbreviations
	Executive Summary
	1 Introduction
	1.1 Purpose
	1.2 Overview / State of the Art

	2 Terms and Definitions
	2.1 Service Life Prediction
	2.2 Definition of End-of-Life
	2.2.1 End of Functional Life
	2.2.2 End of Economic Life


	3 Climatic Stressors
	3.1 Introduction to Climatic Stressors
	3.2 Macroclimatic Loads
	3.2.1 Relevant Macroclimatic Stressors
	3.2.2 Classification of Macroclimatic Conditions

	3.3 Conditions in Accelerated Testing
	3.3.1 Damp Heat
	3.3.2 Temperature Cycling
	3.3.3 Humidity Freeze
	3.3.4 Full Spectrum Light and UV Testing
	3.3.5 Mechanical Load
	3.3.6 System Voltage
	3.3.7 Weathering Tests
	3.3.8 Climate Specific Accelerated Ageing Tests
	3.3.9 Combined Accelerated Stress Testing

	3.4 Microclimatic Loads for Modules
	3.4.1 Relevant Loads for Degradation Effects / Processes
	3.4.2 Determination / Calculation of Microclimatic Loads
	A. PV Module Temperature Models
	B. Models for Humidity Ingress
	3.4.3 Cross-Correlation of Accelerated Exposure and Real-World Operational Conditions


	4 Modelling Approaches
	4.1 Issues in Empirical Modelling: Bias versus Variance Trade-Off
	4.2 Degradation Models of PV Module Materials, Components and Specific Degradation Modes
	4.2.1 Predictive Model Example: PET Degradation
	4.2.2 Inferential Mechanistic Model Example: PET Degradation
	4.2.3 Degradation Models of Polymers
	4.2.4 Empirical Models of Cracking
	A. Cracking Overview
	B. Stochastic Weibull Models of Cell Cracking
	C. Models of Backsheet Cracking

	4.3 Photovoltaic Performance Models
	4.3.1 Degradation Model based on Bala et al. [7]
	4.3.2 Degradation Model based on Kaaya et al. [6]
	4.3.3 Photovoltaic Modules Service Prediction Models
	4.3.4 Statistical Performance Loss Rate (PLR) Modelling Approaches
	4.3.5 Variations and Uncertainties in PV Modules Degradation Rates and Lifetime Prediction


	5 Conclusion
	References

