Ggayrg w’ L

e




ENGI NEERING ASTRONOMY
Grover W. Hughes = 5323

£ -172g

Sandia Nationzl Labaratories
Albuquercue, W.M,

©

1385 February 1



FOREWORD

The name "Engineering Astronomy" refers to that blend of
selected topics from the closely-related disciplines of
positional astronomy, astrometry, and celestial mechanics
which I have found necessary for the solution of certain
problems with which I have been confronted over the past
quarter-century or so as a practicing mechanical design en-
gineer. The material contained in this text is intended to
introduce the student to the fundamental nomenclature and
methods of these disciplines, as appliied to engineering prob-
lems at Sandia National Laboratories. Since we at Sandia

are not primarily, if indeed at all, interested in the navi-
gational aspects of astronomy, references to sextants, dip

of the horizon, and 1ike matters are omitted; the discussion
of observing instruments is limited to transits, theodolites,
and tracking telescopes which we would expect to use in the
field.

In addition to the text, there are several other publications
which we will find necessary to consult for data required
in the solution of various problems. These include:

(a) "The Astronomical Almanac," an annual publication
of the Nautical Almanac Office, United States Naval
L&a@éwééfiﬁl Observatory, Washington, D.C. This volume, com-
monly referred to as simply "the Almanac," or abbre-
Ve viated as "A.A.," is the basic reference source for
< ZQ%WS%MQQAWW““ fundamental constants, data, and methods of compu-
tation for our class. Until 1981, this publication
was entitled "The American Ephemeris and Nautical
Almanac," often called "the Ephemeris" for short,
and abbreviated as "A.E." The student should bear
this relatively recent name change in mind, as
references to the older title appear in many re-
lated publications, including the present text.

(b) "The Nautical Almanac," another and quite different
publication issued by the same office as above.
This volume, which is often abbreviated as "N.A.,"
contains material drawn from the Astronomical Al-
manac but presented in a form to render it more
readily usable by navigators of ships at sea. We
shall use portions of it, but we shall depend upon
thedAstronomical Almanac to meet the most of our
needs.

(c) "Explanatory Supplement to the Ephemeris," copy-
right 1961, which gives detailed explanations of
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the tables in the Astronomical Almanac, sample
calculations to illustrate their use, and a con-
siderable amount of information on related topics
such as the calendar.
(d) "Apparent Places of Fundamental Stars," issued on
an annual basis by the Astronomisches Rechen-
.Institut at Heidelberg, containing the positions
of over 1,500 stars given at intervals of ten days
or less during the current year.

(e) wvarious star charts, atlases, and catalogs.

It would certainly be best to provide each student with his
own copy of each of the above publications, but high cost

and long delivery times preclude this approach. Instead,
necessary portions of the above materials will be reproduced
and handed out in class from time to time so that each of
you will gradually accumulate a number of pages, about 150

to 200 in all, which should be filed in a manner suitable

for rapid information retrieval as well as for ease of carry-
ing. This material should be brought to each class meeting
for possible reference use.

The data tabulated in the Almanac and in "Apparent Places"
are given to a precision commensurate with that required

for first-order survey work or for observatory use; the data
in the Nautical Almanac are given to a much lower precision,
typically to the nearest tenth of a minute of arc, which is
usually good enough for the navigator and in many cases for
the land surveyor. For class problems, a general rule is

to carry out all calculations to the same degree of precision
as that of the tabular data, so as to make it easy to check
your answer and method.

While it is my hope that the knowledge you will gain in this
course will enable you to attack and solve such problems in
astronomy as may come to be part of your work at the Labora-
tories, I will be happy to consult with you on any such prob-
lem either during this "semester" or thereafter.

Grover W. Hughes
1985 February 1
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PART I

FUNDAMENTAL PRINCIPLES



CHAPTER 1

INTRODUCTION

1,1 Practical Astronomy, "Practical Astronomy" is traditionally
defined as that branch of astronomy which deals with the theory and use
of astronomical instruments, methods of observing, the reduction of
observations, and the prediction of future positions of the various
heavenly bodies, The term "Engineering Astronomy" will be taken to mean
that part of practical astronomy in which we here at Sandia Laboratory
are interested, concerning the determining of time, latitude, longitude,
and azimuth, together with the circumstances of solar eclipses, the
apparent track of missiles and artificial satellites, and the positions
of the heavenly bodies at any time,

1, 2 Heavenly Bodies, Astronomy in general includes the study and
description of different bodies such as the sun and the moon that are
commonly known &s heavenly bodies, These are:

The stars, which are extremely remote, but immense, bodies giving
off light and heat by means of their internal thermonuclear processes,
and which appear to shine in the sky as points of light of various bright-
nesses, To the unaided eye not more than about 2,500 are visible at one
time, but it has been estimated that the 5 m (200 1nch) telescope on Mt. Palomar
could reveal over 1 billion, The stars (with the exception of our own sun)
are so far away that we are hardly able to detect their relative motions,
and for this reason they are often called fixed stars,

The sun, which is a star without which life on the earth, at least
as we know 1 it, would be impossible, It is an average-size star about
1,392,000 kilometers (865,000 miles) in diameter with a mass 333,000 times
that of the earth,

The planets, nine in number, which are opaque spheroidal bodies revolving
about the sun in orbits which are ellipses with the sun at one of the foci,
The orbits of the planets are nearly in the same plane, As viewed from a
far-off northern point in space, the planets move about the sun in a counter-
clockwise direction, They shine by reflected light from the sun and to the
unaided eye look much like stars,

Natural satellites, which in physical constitution resemble the planets
and revolve about them in elliptic orbits; the moon is the natural satellite
of the earth,

Comets, which are bodies of small mass and very low density compared
with the planets, revolving about the sun in elliptic or parabolic orbits,
The radiation from the sun makes them shine, Bright comets appear in the sky
a8 hazy spots with tails of pale light streaming from them,

Asteroids, also known as planetoids, which are small and usually irregularly

shaped solid bodies revolving about the sun in independent orbits lying mainly
between those of Mars and Jupiter. About 50,000 of these objects have been dis-
covered; orbits of about 1,800 of them have been determined, The asteroids vary
in size from about 1 kilometer to about 760 kilometers in diameter,
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Table 1.1 Orbital Data of the Planets

(A.A, 1985, p. E3)

;rf.?@.o”

Mean distance Eg::;:zé:l 3:3§1§§§oi Orbital Orbital Number of

Planet ([Symbol from sun around sun | eccentricity | inclination |satellites
AU, [10P km |10° mi. m | miles

Mercury | 9 0.39 58 36| L,878] 3,13 88 days 04206 7200 0
Venus ? T2 108 67 12,104 17,521 225 " .007 3.39 0
Earth @ 1,00 150 931 12,756 7,926 365 " <017 0 1
Mars 3 1,52 | 228 W2 | 6,794 L,222 687 " .093 1.85 2
Jupiter | 24 5,20 778 L8k | 142,796| 88,730 | 11.9 yrs -0L8 1.30 16
Saturn 1) 9.56 | 1,426 887 | 120,000 7k,565 29.5 " .057 2.L8 15
uranus | & | 19.3 | 2,870 | 1,78 | 50,800| 31,566 | 84.0 " 047 0.77 5
Neptune | ¢ 30,3 | 4,496 | 2,797 | LB,600| 30,200 | 164.,8 " 007 1.79 2
Pluto 2 - 39.6 | 5,900 3,675 5,000| 3,100 | 2u8,L4 " .252 17.13 !

oy , ‘
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The sun (astronomical symbol (9)), the planets with their satellites,
the comets, and the asteroids form the solar system. Some characteristics of
the planets are given in Table 1, 1,

In addition to the natural bodies described above, we must also consider
man-made objects which, although very much smaller and less massive than most
of the other natural bodies, may appear as star-like or meteor-like, These
include; ‘

Artificial satellites of the earth, around which they revolve in elliptic
orbits of various sizes and with the earth at one of the foci., About 5,000
such objects were in orbit as of 1982 Jamiary 1,

Missiles and rockets whose lifetimes are relatively short, being launched
from the surface of the earth, possibly leaving the atmosphere and reentering,
with ground impact occurring less than one earth circumference away,

1.3 The earth is the third planet from the sun and the fifth largest of the
nine planets., Its shape is nearly that of an oblate spheroid, rotating on its
shorter (polar) axis in a counterclockwise direction as seen from a far-off
northern point in space. The Astronomical Almanac contains, in Section K, a number
of fundamental constants pertaining to the earth and its figure (shape). A few
of these constants are:

(a) the equatorial radius is 6,378.140 km
(b) the flattening reciprocal is 298.257
(c) mean distance from the sun is 149,597,870 km

In addition, the earth revolves about the sun in an orbit which is an ellipse
having the sun at one of the focij; the direction of this revolution is, like

its rotation, counterclockwise as viewed from a remote northern point in space,
The average orbital speed is about 30 km/sec. About January 2 of each year the
earth is at perihelion (the point in its orbit which is nearest the sun) and its
orbital speed is a maximum; about July 2 it is at aphelion (farthest from the sun)
and its speed is a minimm (see Fig, 1, 1),

The orbital plane of the earth is called the plane of the ecliptic, taking
its name from the fact that eclipses can occur only when the moon is on or very
near this plane, The equatorial plane of the earth is tipped at an angle of
about 23%° to the ecliptic plane; this angle is formally known as the obliquity
of the ecliptic, ‘Daily values of this angle are given in the "Nutation, Obliquity,

Day Mumbers" table in Section B of the Astronomical Almanac.

The earth's rotational (polar) axis is tipped from the perpendicular to
the ecliptic plane by the same angle, For the present discussion, the earth's
axis will be considered to point always in the same direction in space, which
is very nearly true, since the real motions of the axis are very slow, with the
effects of such motions not being noticed by the casual observer for many
decades, if at all., Referring to Fig 1,1 with the above assumption in mind, it
will be seen that when the earth is at A, the sun shines vertically downward
on points 23%° north of the earth's equator., This occurs about June 21 of each
year and marks the beginning of summer for the Northern Hemisphere, About



September 21, the earth is at B, the sun shines vertically downward on points
on the equator, and oblique rays just reach the north and south poles, This
position marks the beginning of autumn, Three months later, the earth is at

C, where conditions are opposite to those at A, that is, the sun shines
vertically downward on points about 23%‘ south of the equator, This occurs
about December 21 and marks the beginning of winter for the Northern Hemisphere,
On March 21, the beginning of spring, the north and south poles again Just
receive light as they did at B,

The exact instants of time, or epochs, corresponding to the points just
discussed are called the summer solstice, the autumnal (fall) equinox, the
‘winter solstice, and the vernal (spring) equinox, respectively, The average
dates are as given above; the exact values for the current year are given in

Section A of the Astronomical Almanac,

) March2l  Spring (versal) eguines

APHELION [—————=—— — — ==

(July2) PERIHELION

(-Jan.23)

Dze.2l Winter solstice

7all (awtummel) equimox Sept. 21 &
Fig, 1,!. ‘The seasons.

1,4 The Moon, The diameter of the moon is about 3,480 lm (2,160 miles),
somevhat greater than one-fourth of the diameter of the earth about which it
revolves in an elliptical path in 27 1/3 days sidereal period (referred to
the star field) or 294 days synodic period (referred to the earth-sun line),

The plane of the orbit of the moon about the earth is inclined to the plane of
the earth's orbit about the sun (the ecliptic) at an angle of about 5°, While
the earth is revolving about the sun, the moon is revolving about the earth

in the same direction at an average distance of about 384,000 km (239,000 miles),

Like the planets, the moon shines by reflected light of the sun, When the
moon, during its revolution about the earth, is between us and the sun, or
nearly so, its dark hemisphere is toward us and the moon is invisible, This
phase is known as the new moon, About one week later, at first quarter, the
moon has moved £ of the way around the earth, so that half of the sunlit
hemisphere 1is visible from the earth; and two weeks later, when the earth is
between the sun and the moon, the entire sunlit hemisphere of the moon is facing
the earth and we have full moon, Third gquarter occurs about a week later than
this, when again only half the sunlit hemisphere is visible,



The times corresponding to the various phases of the moon are given in
the Almanac, in Section A, "Phenomena",

%
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1,5 The Celestial Sphere, As we look at the heavens on a clear night,
the stars appear to be fixed on the inner surface of a vast sphere known as
the celestial sphere and we appear to be at the center of this sphere, In
reality, the stars are scattered in space, and we, in their midst, project
their images on this imaginary sphere, The stars are so remote from the observer
that the celestial sphere is assumed infinite in radius, with its center at the
observer on the surface of the earth, or at the center of the earth, or at the
center of the sun,
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Fig. 1.2 Apparent pogitions of the heavenly bodies.  To the observer at O, the heavenly &
bodies a, b, and ¢ appear on the eole<tial sphere at A4, B, and €, respectively; a and  appear
very close to each otner, though in reality they are ~cparated by a vast distance.

After watching the sky for some time, we see that some stars have dis-
appeared below the western horizon and others have appeared above the eastern
horizon, but the relative positions of the stars visible remain the same,

Hence we conclude that the celestial sphere apparently rotates on an axis,

This apparent rotation of the celestial sphere, making stars rise in the east and
set in the west, is due to the actual rotation from west to east of the earth on its
axis, The celestial poles are the two points where the axis of rotation of

the earth, extended, pierces the celestial sphere, Each star appears to

describe a circle having its center on the line joining the celestial poles;

these circles are known as diurnal circles, Diurnal circles are illustrated in
Fig, 1,3, Work in practical astronomy is immensely simplified by making use of

the apparent rotation of the celestial sphere in preference to the actual

rotation of the earth,
Fig, 1.3 Diurnal circles traced by

the Big Dipper and the Little Dipper,

The initial positions of the stars _

are indicated by the dots; arrows

indicate the direction of apparent :

- v

r



1,6 Apparent Path of the Sun among the Stars, The circle KIM in Fig,1.4
represents the intersection of the celestial sphere with the plane of the
earth's orbit ABC, Let K, L, and M be the projections of stars on the
celestial sphere, S' is the projection of the sun S on the celestial sphere
vhen the earth 1s at A, Twenty-four sidereal hours later, the earth will be
at a position such as B, the stars will appear in the same position as before,
but the projection of the sun will be S", Hence, because of the motion of
the earth in its orbit about the sun, the sun appears to move among the stars
from west to east, The ecliptic is the intersection of the plane of the
earth's orbit with the celestial sphere, or the great circle described by the
sun in its apparent motion during the year,

AUTUMNAL
EQUINOX

WINTER
SOLSTICE

Fig, 1.4 The sun projected on the celestial sphere” s the carth moves from 4 to B,
the sun appears {o move from S to 8. This motion is toward the east and about 1°

e day.

Since the earth completes one revolution in about 365% days, the apparent
motion of the sun among the stars is about 1° per day, This motion is 11lus~
trated inFig, 1,5, which is a portion of a star chart with the sun's position

shown for three different deys,

X1

TY T T T Y rrY

-
-
L West
East [ X *¢
3 {
L
L LY}
TO
r * -
Cd
-
Pt
’/’ C
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X1 X! Equatm-
South
Fig, 1.5 Apparent mation of the sun among the stars.  The sun has moved in the intervai

of 10 diys about 10° toward the cust




1,7 Apparent Path of the Moon and Planets among the Stars, Owing to
the rotation of the earth on its axis the moon rises and sets like the rest
of the heavenly bodies, But the moon revolves about the earth and hence
moves in an easterly direction at about 13° per day (360 + 27.3). Thus it
rises later each day, Just as the sun appears to move among the stars about
1° per day, the moon appears to move about 13° in the same direction, This
motion relative to the stars is shown in Figs, 1,6a and 1, 6b,

)

S

Fig, 1,6a Appearance of tke western sky st sunset, Fig, 1,6b Appearance of the western sky at sunset,
6o a particular day, im lat. BO°N. The moco is 2 days 2 days later. The star coufigurstions ressis the

old and is about 26° from the sun, The Plelades same in the two figures, but the stars arc nearer
are chown adove the sun; Aldebaran is jJust below the western horizon, wkich shows the apparent

the moon; the corstellation Orion is to the left, easterly wotion of the sun with resfect to the stars,

This is more apparent in the case of the moon.

The apparent motion of the planets on the celestial sphere is somewhat
analogous to the motion of the sun and the moon but is more irregular, The
movement of the earth around the sun is combined with that of the planet in
such & way that sometimes the planet appears to move westward among the stars,

edli LI T - T T —TT T T
l ..,
[ ]
"le o
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. URANUS IN 1970 i
_2 —
-3’ -
[ ]
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L . J
Jon 1971 . °
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Fig. 1,7 The chart above shows the path of Uranus in Virgo, with stars p|ouc(l to about
) magnitude 73: north is at the top, 1o agree with the view in binoculars,



1,8 Constellations, The stars as they appear on the celestial sphere
have been divided into groups that are known as constellations, At present,
the entire surface of the celestial sphere is divided into 88 areas, or
constellations, ;

Most of the names of the constellations come to us from the ancients,
Many names are those of animals; others represent characters in Greek
mythology., The stars in a constellation are designated by letters of the
Greek alphabet, Usually the brightest star in the constellation receives
the letter a, the second brightest B, and so on, For example, in the con-
stellation Ursa Minor (the Little Bear), the North Star is the brightest
and is named a Ursae Minoris (the genitive case being used); the second
brightest is 8 Ursee Minoris, A few prominent stars have individual names;
for example, a Lyrse is known as Vega, and B Orionis as Rigel, When the
naked-eye stars of a constellation are so numerous as to exhaust the letters
of the Greek alphabet, the Roman letters are used, It is apparent that this
method will fail in the case of telescopic stars, In this case, a star is
referred to by its number in some catalogue, For example, GCl353 means the
star so numbered in Boss's "General Catalogue',

Fig. 1,8 shows a familiar grouping of stars commonly called the "Big
Dipper," which is actually just a portion of the constellation Ursa Major,
the Great Bear; the complete constellation includes even more stars than are
shown here,
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1,9 Magnitude of Stars, Inasmuch as distances of the stars from the
observer are different and their intrinsic brightness is different, their
apparent brightness is different, To classify the stars according to their
‘brightneu" the ancient astronomers adopted an arbitrary scale known as
"magnitude” of stars, A modified form of this scale used at present may be
explained as follows:

A star of fifth magnitude isaloo, or 2,512, times as bright as a
star of sixth magnitude,

A star of fourth magnitude is ( il 100)2, or 6,31 times as bright as
a star of sixth magnitude,

A star of third magnitude is ( il 100)3, or 15,85, times as bright
as a star of sixth magnitude,

A star of second magnitude is ( \5/ lOO)h, or 39.81, times as bright
as & star of sixth magnitude,

A star of first magnitude is 100 times as bright as a star of the
sixth magnitude,

The scale may be extended above and below the limits given, That is, a
star of zero magnitude is 2,512 times as bright as a star of first magni-
tude, Vega is about zero magnitude, Fractional and negative magnitudes
may likewise be introduced, Table 1,2 gives apparent visual magnitudes of
a few celestial objects, for comparisonj the "Bright Stars" table in
Section H of the Almanac lists 1,475 stars and their visual magnitudes.

Table 1,2 Visual Magnitudes of a Few Heavenly Bodies

Sun 26,7 Uranus +7
Moon (full) 12,7 Neptune +8
Mercuryl -1 Pluto3 +15
Venus? 4,5 )

Mars -2 Sirius -1N6
Jupiter -2 Vega +0,03
Saturn 0 Polaris +2.,02

The faintest star which can be seen with T7X50 binoculars is about +9,
The faintest star which can be seen with the 200-inch Hale telescope
on Mount Palomar is about +23,

1l the magnitude of a planet varies with its phase and distance; values
given are for the brightest apparition,

can be seen in daylight with the unaided eye,

requires about a li-inch telescope,

wn




The apparent visual magnitudes of two bodies are related by the
expression

m - m, = 2.5 10531'(')‘]3—f (1-1)

where m = megnitude
B = brightness
b = subscript denoting the
brighter body
f = subscript denoting the
fainter body

Example: An artificlal earth satellite passes near a star whose
visual magnitude is known to be +3,2; the star is
estimated to be twice as bright as the satellite, The
approximate visual magnitude of the satellite is then
calculated as follows:

Bb

m, - Bp = -2,5 log,y §-

£
B*
Px ~ Pgay T 25 19810 F—
+3.2 - Beot = 2.5 loglo 2
43.2 -m . = -2,5(0,30103) = -0.75 ~ -0.8
m,. = *3.2 + 0.8

+4,
msat = °

10



1,10 Units of Angular Measurements, The apparent separation of one
heavenly body from another is usually measured on the celestial sphere in
units of degrees, minutes, and seconds of arc, denoted by the symbols ° * "
respectively, For emple,' referring to Fig, 1,8 we say that the distance
between the "pointer stars" Merak and Dubhe is approximately 5°, (The real
distance between them is disregarded; see Fig, 1,2 ,)

Another system of angular measurement which is very convenient in
astronomy is that of hours, minutes, and seconds of time, denoted by the
symbols N1 B & respectively; in this system, the circle is considered to be
divided into 24 units called hours,

The relation between the two systems is as follows:

1P corresponds to 15°
1@ corresponds to 15°
18 corresponds to 15"

1° corresponds to 4™

1! corresponds to LS
1" corresponds to 05067

Tables B~l and B=-2 in the Appendix permit rapid conversion from one
system to the other.

Example 1: Convert 55° LO' LLU6 to time units.

From Table B=2 in the Appendix , the following correspondence

of values is obtained:

55° is equivalent to 3h Lot
Lo is equivalent to 2" 1o°
LL" is equivalent to 2;933
26 is equivalent to «0L0

E§° LO' LLU¥6 is equivalent to 3h 42" 423973

Example 2: Convert 17? 27" 4337L to angular units,

From Table B-l in the Appendix, the following correspondence

of values is obtained:

12: is equivalent to 180°
57 27" is equivalent to 81° )5
13®  is equivalent to 10" L5¢
874 is equivalent to 11110

I;ﬁ 2T hj?;h is equivalent to 261° 55' 56910

11
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Exercises

Calculate the radius of the sun in kilometers, using the semidiameter
and itrue distance (given in Astronomical Units) as tabulated in the
Almanac for:

gag Feb, 13
b) June 10
(¢) Oct. 31

Compare the results with the value given on page 1 of the text. (Note: the
value of the A,U. in km is given in the Almanac', on page K6.
other necessary data are given in the Almanac tables of the Sun, Section C.

Referring to Table 1,1 of the text, verify the mean distance of

(a) Mercury (e) saturn
(b) Venus (£f) Uranus
¢) Mars (g) Neptune
(d) Jupiter (h) Pluto

from the sun (in kilometers),

Find the mean time required for a radio transmission to travel from the
earth to the sun; necessary data are given in the Almanac.

Using the earth's equatorial radius and flattenlng factor from page K6 of the
Almanac, calculate the polar radius.

Give the dates in the current year corresponding to:

(a) perihelion (e) summer solstice

(b) aphelion (fg winter solstice

(cg vernal equinox (g) Easter

(d) autumnal equinox (h) full moon in September

On what dates in the current year is the sun on:
(a) the ecliptic? (b) the celestial equator?

On the average, what is the daily difference in the time of moon rise,
and is it earlier or later each day?

The star Vega (X Lyrae) has a measured brightness of 416 units on a certain

photometric scale. On the same scale, a nearby star has a brightness of
173 units. Give the visual magnitude of this second star.

On the same scale as that described in the exercise preceding, what would
be the expected brightness of the star ¢ Scuti (3rd entry following Vega)?

Express each of the following angular measurements in the opposite system

Of U.nits: l«irﬂ" ,
(a) 4P 20" 168 = (e) 82 gy = /122 2 "5
(b) 166° 37° 11%"/% 622533 (£) 20h o3m oS = 335° 1/
(c) L4s5° 20' =3 h [m aos (g) 346° 2' 50" =234 anllxsz

(a) 197 21™ LTS = 190" 16" 457 (h) 69° 58" L6" =y 19, <5067

270

) - -
- ¢ 45 of
3h 57° 1 H> . s
y . V; 70 5 >
%6 /{ ' 1.3 ,/{ ?2— fL s MJ .
oY 08 L

e ~T";' Ry % -
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Exercises

Calculate the radius of the sun in kiiometers, using the semidiameter
and true distance (given in Astronomical Units) as tabulated in the
Almanae for:

?a Feb, 13
b) June 10
(c) oect. 31

Compare the results with the value given on page 1 of the text. (Note: the
value of the AU, in km is given in the Almanac , on page K5,

other necessary data are given in the Almanac tables of the Sun, Section C,
Referring to Table 1,1 of the text, verify the mean distance of

¥ (a) Mercury 5% (57,%%) h.(e) saturn /726

? (b) Venmus ,ox 5(f) Uranus agvyo
g fc; Mars 22% W igg Neptune 74 9¢
2% (d) Jupiter 77% £(h) Pluto <90

from the sun (in kilometers),

Find the mean time required for a radio transmission to travel from the
earth to the sun; necessary data are given in the Almanac. K6 - <
Y99 oo = T 19 aze
Using the earth's equatorial radius and flattening factor from page Ké of the
Almanac, epd-foy= vetwe—given—there~fer the polar radius,
cALEILAT €35 é,?f',fkm ALY m /(*/*/%/\-bmg

Give the dates in the current yiar corresponding to: :
(ag perihelion /-3 - 20 (e) summer solstice ¢-z, /o 44

aphelion 7-¢ /0 , (f) winter solstice ,:»-:, 22 o»
¢) vernal equinox 3-2 /% /v (g) Easter 4.5 N
d) autumnal equinox 7-23% 7 (h) full moon in September 24-:« &%

On what dates in the current year is the sun on:
(a) the ecliptic? (b) the celestial equator?

Y/ ey : ‘“’?W/’wx )
On the average, what is the daily difference in the time of moon rise,
and is it earlier or_later each day? £6 pe

The star Vega (o Lyrae) has a measured brightness of Ll6 units on a certain
photometric scale, On the same scale, a nearby star has a brightness of
173 units. Give the visual wmagnitude of this second star.

On the same scale as that described in the exercise preceding, what would
be the expected brightness of the star ¢ Scuti (3rd entry following Vega)?

Express each of the following angular measurements in the opposite' system
of units:

a LB 227 168 - (e gh g® 1n®

b %66. 37 14" gf 2ﬁ16= 23m 28
c 5 20¢ - (g) 3u6° 2* 50"
a) 1ob 21® 478 (n) 69° 58' Lg"
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CHAPTER 2
SPHERICAL COORDINATE SYSTEMS

2,1 Terminology and Definitions, A sphere may be defined as a closed
surface every point of which is equidistant from a fixed point within called
the center, A radius of the sphere is any straight line drawn from the center
to the surface, A diameter of the sphere is the line formed by any two radii
which are oppositely directed, A circle is the intersection of the spherical
surface with any plane which cuts that surface; when the cutting plane passes
through the center of the sphere, a great circle is formed; a small circle
is formed when the cutting plane does not pass through the center of the sphere,
The axis of the circle is the line which is perpendicular to the cutting plane
and which passes through the center., The poles of the circle are the two points
at which the axis pierces the surface of the sphere, Fig, 2,1 illustrates the

above terms,

Fig., 2.1 Terms used in spherical geometry,

2,2 Points and Circles of Reference, To determine the position of a
point on the surface of a sphere we imagine eircles and points of reference
as follows (see also Fig, 2.2):

the fundamental circle, an arbitrary great circle of the sphere,

the poles of this fundamental circle,
a family of secondary great circles all of which pass through the
poles and are therefore perpendicular to the fundamental circle,

e the origin, an arbitrary point on the fundamental circle,

Two coordinates are necessary and sufficient to locate a point on the
surface of a sphere, One coordinate of the point is measured from the origin
along the fundamental circle to its intersection with the secondary circle
passing through the point; the other is measured along this secondary circle,
from the intersection to the point, Observe that a complete definition of a
coordinate of a point must include four things: (1) the circle on which it is

i
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¥ig, 2,2 Sphericel coordinate system,

measured, (2) the initial point on that circle, (3) the direction of the
measurement, and (4) the terminal point,

By assuming different spheres, fundamental circles, and origins we
obtain different systems of coordinates, There are five systems which we
will use in our work: the geographic, horizon, dependent eguatorial,
independent equatorial, and ecliptic systems; these are described in detail in the
following sections, Only the first of these, the geographic, is a terrestrial
system; the other four are celestial,

2,3 The Geographic System, In this system, illustrated in Fig, 2.3,
the reference sphere is the earth, which to a first approximation may be
considered as a true sphere, The fundamental circle is the earth's equator,
and the axis is the rotational axis of the earth; the poles are the earth's
geographic north and south poles, The secondary great circles are called
meridians of longitude, or simply meridians, The origin is the point of
intersection of the equator and the meridian which passes through a specific
point in the Royal Observatory in Greemwich, England,

The longitude of a point is the angular distance measured from the
Greenwich meridian either eastward or westward along the equator to the

2 * 1
meridiagh of the polnt., It is also Een to be the angle at the pole

from the Greenwich meridian to the meridian of the point, The symbol for
longitude 1s the Greek letter 2,

For the sake of systematic procedure and unique definition, it would
be better to define the sense in which longitude is measured as always
eastward (or else always westward) from Greenwich, counting from 0° to 360°;
traditionally, however, the practice is to measure in either direction as

# The pumbers appesring below the underlining refer to the corresponding pumbers
in section 2.2,
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convenient, so as to keep the numerical value to 180° or less, and to specify, by
adding either the letter E or W, the direction of measurement from the Greenwich
meridian., For example, the longitude of a particular place would be expressed in
the traditional manner as 145°19'L8"E,

€ q uod’or

Origin

Fig, 2.3 The geographic system of coordinates,

The latitude ¢ of a point on the surface of the earth, here considered to
be truly spherical, is the angular distance from the equator measured

*
northward or southward along the meridian of the point tg the point, The sense
3 1 n
of measurement is denoted either by adding the letter N or S after the numeri-
cal value, or by preceding the numerical value with an algebraic sign, + for
north and - for south latitude, For example, the latitude of a certain place
might be expressed either as 17° 12' 33"S or as -17° 12' 33",

The definition of latitude as given in the paragraph above is a simplified
one based on the assumption of a spherical, non-rotating, homogeneous earth.
Depending upon the accuracy required in a particular situation, it may become
necessary to recognize the departure of the actual earth from these idealized
conditions, and to distinguish between three different kinds of latitude, as:
described on the following pages.

# The rumbers appearing below the underlining refer to the corresponding numbers
in section 2,2,




2.3.1 The earth-ellipsoid, The actual shape of the earth's surface is extremely
irresular when the various physical features such as mountains and valleys are

taken into account. In geodesy, the mean free surface of the oceans, being a surface
of equilibrium, is used as the datum to which the heights of various points are
referred, This surface, including its imaginary extcnsion under the continents
(assuming the continental material to be porous so that the ocean can percolate
through it) , is called the geoid, Since the geoid is not a simple mathematical
shave, its use for the calculation of geometric positions is unwieldy, so that the
usual oractice is to refer measurements to an exact ellipsoid of revolution whose
size and shave are chosen to coincide as nearly as possible with the geoid. Two

parameters are necessary and sufficient to define a rotational ellipsoid; the ones
cormonly specified are:

e the size parameter 2g) which fixes the equatorial radius, also called
the semi-major axis, of the ellipsoid,

e the shape parameter f, called the flattening, which fixes the ellipti-
city of the cross-section, The flattening f is related to the eccen-
tricity e by the formula

(1-£)2 = 1-€° .

Over the past several decades, a number of reference ellipsoids have been
proposed by different researchers; some of these are given in Table 2.1 .
In all cases, the departure of the ellipsoid from a sphere is not large. The
ellipsoid to be used in all work involving data from the Astronomical Almanac
1s the one adopted by the International Astronomical Union (1976). Fig. 2.k shows,

to scale, the relation of the IAU-1975 ellipsoid to a sphere which has the same
equatorial radius,

" Table 2,1 Reference Ellipsoids

a
Name Year e _}[{__

Bessel 1841 6,377,397 meters 299.15
Clarke 1866 6,378,206 294,98
Hayford 1909 388 297.0
Heiskanen 1926 397 297.0
Jeffreys 1948 099 297.10
Hough 1956 260 297.0
Fischer 1960 155 298.3
Kaula (IAU-1964) 196U 160 298,25
Veis 1964 169 298.25
SPACETRACK 1968 145 298.25
WGS-72 1972 135 298.26

IAU-1976 1976 140 298.257
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2.3.2 Geodetic and geocentric latitudes. When the earth is considered as an
ellinsoid, rather than as a sphere, it becomes necessary to distlngulsh between
two different kinds of latitude, as defined below,

Fig. 2.5 reoresents a portion of a meridional cross-section of the earth-ellipsoid
with C as the center, CP the polar axis (axis of rotatlon), and CQ the plane of
the equator, The geocentric latitude, denoted by ¢’, is the acute angle formed at
the center of the earth between the equatorial plane and the line joining the center
and the observer at O, This definition holds even if the observer is above or below
the local terrain,

F):
; —~—=ZT 77 ellipsoid
|
|
| terrain
Fig. 2.5 Geocentric and :
Geodetic Latitudes, |
| .
’ \\?9 geoceptric latitude ‘\
\# = geodetic latitude
C e __'______ J Q
N }

Now let a line be drawn from O so as to cut the ellipse at a right angle; extend
this line to intersect the equatorial plane at the point N. The line ON is called
the geodetic vertical of O, The geodetic latitude, denoted by ¢ , is the acute
angle formed at the equator between the equatorial plane and the geodetic vertical
of the observer, As in the case of geocentric latitude, this definition holds even
if the observer is above or below the local terrain,




2.3.3

Relation between geodetic and geocentric latitudes.
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Case 1:

Consider the meridional cross-section of the earth-ellipsoid as shown in Fig. 2.6,
in which C is the center, CQ represents the plane of the equator, and CP the polar
axis, The semimajor axis of the elliptical cross-section is denoted by a and

. Point O represents an observer at a geocentric radius
r, = CO and a geocentric latitude ¥’ . Point O lies at a geodetic height H, = 00"
above the ellipsoid, as measured along the geodetic wvertical ON, which is normal
to the ellipsoid at the geodetic subpoint O". The Cartesian coordinates of O are

the semiminor axis by b

X, sy, and those of O" are x" , y" .

From ellinse geometry, we know that
& -

The equation of the ellipse is
ExX+dy=ab

Trom eq. 2.3-1,
b= a° (1 - ez)

so that we may write the equation of the ellipse as

a’ (1 - )X+ a’y*= a*-a’(1 - &?)
(1 -e*)x’+ y'= a*(1 - &)

Differentiating this expression,

'”“”5(1 - e*)x+2y g% = 8
dy _-(1 - e®)x

dx ~ y

(2.3-1)

Geodetic coordinates given, geocentric coordinates required.

e

/-/9. 2.6 0

NA?

L

a=23x

(203'2)

(2-3'3)

The slope of the normal to the ellipse at any point is the negative reciorocal,

R

(203’b)

At the peodetic subpoint 0", the slope of the normal is equal to the tangent of

the geodetic latitude, that is,

dx "
T et e

y" = x"(1 - e?)tan 74

(y") = (x") (1 - &) tan ¢

(2.3=5)

(203‘6)
(2.3=7)
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Using eq. 2.3~2, evaluated at point 0", in eq. 2.3=7, yields
2 2
@(l-e)-(x")(1=-e’)=(x")(1-e)tan ¢

2
(xv) [1+ (1 - *) tan" ]|

xll - a | (2.3"8)
N1+ (1 -~¢e?) tan® @

a).

From Fig. 2.6, by inspection,

x,= x"+H, cos ¢ (2.3-9)
Yo= y"+ H, sin ¥ (2.3-10)
e AT O (2.3-11)

¢'= tar (X-) (2.3-12)

Therefore the geocentric coordinates ‘-P', r, are determined from the geodetic
coordinates ¢ , H, .

“hen the observer is on the surface of the ellipsoid, H =0 , and eqs. 2.3-8 through
2.3~12 become simplified as follows:

a

%o = X1E A1+ (1 - e") tan“e (20323

Yo = ¥"= x"(1 - ) tan ¥ | (2.3-1L)
Using (13) and (1L) in (12) gives, after a little rearrangement,

tan @'= (1 =€) tan®  equi(ial) (2.3-15)

(The Almanac gives the relation between geocentric and geodetic latitudes
in the form of an alternating series which may be obtained from the rigorous
expression above by appropriate substitutions and expansions, retaining only
the first few terms of the resultant series.)

Using (13) and (1L), and by inspection of Fig. 2.6, the expression for the
geocentric radius may be put in the form

r= a 1+ (1 - e?)* tan“y (2.3-16)
1+ (1 - e*)tan’e

/Again, the Almanac gives the geocentric radius in the form of an alternating
series, obtainsble from the rigorous expression above, )

The geocentric radius in this case may be found by substituting the above
exoression for the geodetic latitude into eq. 2,3-16, to yield, after some
rearrangement and reduction, the result

,,/r a; r/l - e ’

\9/ Jl - ef cos‘y’

(2.3=17)
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Using either eq. 2.3-15 or the equivalent series formula from the Almanac,
Table 2.2 may be constructed; it is_valid o oints on the surface.of

the ellipsoid, The table shows that the geocentric latitude is always léss than
the geodetic by an amount which varies from 0° at the equator and the poles

to about 0°11'33" in geodetic latitude 45° N and S.

Table 2,2 Comparison of Geocentric and Geodetic Latitudes
for an Observer on the Surface of the Ellipsoid

P i
Geodetic Latitude Difference ¥ Geocentric Latitude

o° o' o" o° o' o"

5 -2 0 4 58 o0
10 3 56 9 56 4
15 -5 Us 14 s4 15
20 -7 24 19 52 36
25 -8 50 24 51 10
30 -9 59 29 50 1
35 -10 50 34 49 10
Lo =11 22 39 L8 38
Ls -11 33 L4 L8 27
50 -11 23 L9 48 137
55 -10 52 54 L9 8
60 =10 1 59 L9 59
65 -8 52 64 51 8
70 -7 26 69 52 34
75 -5 k7 74 5S4 13
80 -3 58 79 56 2
85 -2 1 84 57 59
90 0O O 9 O0 O

*The values of ¢'- ¢ shown in Table 2,2 are rounded to the nearest
arcsecond, for convenience; more precisely, the maximum difference

(¢'- 0 ) o, = -11'32.7hk (2.3-18)

occurs at ¢ = 45°05'16.355 ( ¢’= WL°54'137611),
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Relation between geodetic and geocentric latitudes (continued).
Case 2: Geocentric coordinates given, geodetic coordinates required.
Again referring to Fig. 2.6,‘repeated here for convenience, let the geocentric

coordinates ¢’,r, be given, and let it be desired to find the corresponding
geodetic coordinates ¥ and H, .

The equation of the geodetic normal ON is E. 9.2 A ('{‘ePek‘,'gJ)
, " e
yl= y°+ (x"- xo) . ﬁ—-—gﬂ-—i” (2.3‘19) O
using the slope expression from eq. 2.3-l,
xX"= X,
Y- =en)=%
a_ Io(l - ez )x" -
y= X,- e’x” (2.3-20)

From eq. 2.3-2, .
vz a2 (1 - e*) = ¥ (1 - &)

3

= (a- X1 - e?) (2.3-21)

Using (29) in (21) gives
2 2 t

v; (1 - e )xﬁ ( 2 l" 2

: — = (a=x")(1-¢)

(x,~ e*x)*

which leads, after a little reduction, to
a polynomial in x,
3 7L '
¢ x'- 2¢ x, X'+ ‘-x:'-«-(l - et)yl- e aZx'+ 2e"a’x,x"~ 8 x,= 0 (2.3=22)
[

Having found x" from (22), y" is then given vy (21), put in the form

y": ﬂaz- x"zl)(l - ez) (2.3-23)

The geodetic latitude may be found from eq. 2.3-5, repeated here,

tan 503(1__%'7—17 : (203'5)

By insvection of the figure, the geodetic height is

H, 24 (x,- x")+ (3, - 3"V (2.3-2L)

Therefore the geodetic coordinates ¢ ,H, are determined from the geocentric
coordinates ¢’,r_ .

When the observer is on the surface of the ellipsoid, H,= 0 , and the
geodetic latitude is given immediately by eq. 2.3-15, with slight rearrangement s as

tan ¢ = -(% ‘ (2-3'25)

R R O A 7P

500 R e
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2.3,4 Astronomic latitude ¥a. Due to the fact that the earth is not a
homogeneous mass, the direction of the gravitational attraction at a particular
point is not, in general, directed along the normal to the surface at that
same point, Further, the rotation of the earth contributes a centrifugal
effect to a plumb bob or level bubble associated with an instrument; this effect
is largely confined to the plane of the meridian. The net result is that there

‘exists a local astronomic or gravity vertical which does not coincide with the
geodetic vertical (normal to the ellipsoid), As shown in Fig. 2.7, the acute
angle between. the equatorial plane and the projection of the astronomic verti-
cal into the plane of the meridian is called the astronomic latitude, denoted

by ¢, Fig. 2,7 illustrates the three kinds of latitude: geocentric, geodetic,
and astronomic, :

Fig. 2.7 Geocentric, geodetic, and
astronomic latitudes: _The direction
of the earth's gravitational attraction,

“including centrifugal effects, is along
the line 0G; the angle EGO is the

astronomic latitude of 0.

The total angle between the geodetic and astronomic verticals is called

the deflection of the vertical, This total angle may be resolved into two
components, as follows:

® the meridional component { , called the deflection in latitude,
considered positive from the geodetic zenith Zg; toward the north

celestial pole P; in this case, the plumb bob hangs to the south
of the geodetic vertical,

@® the prime vertic ent n , considered positive from the geodetic
zenith towards the east point; in this case, the plumb bob hangs to
the west of the geodetic vertical.

The actual values of the deflections are so small that the relations

connecting them with the astronomic and geodetic latitudes and longitudes
may, with sufficient accuracy, be written as

V=¥ =% (2-3)

(Aa- A )cos Oy =7 (2—4)
Differences of 5" between the astronomic and geodetic coordinates are

common; differences of 10" are frequent, and differences as large as 20" are

not exceptional, In a few rare cases, the deflection may amount to as much
as LO", which corresponds to over a kilometer on the surface of the earth.
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2.4 The Horizon System. 1In this system, the celestial sphere is taken
as the reference sphere, The plumb line through an observer on the surface
of the earth is called the astronomic vertical. This plumb line produced
upward from the observer pierces the celestial sphere in a point called the
astronomic zenith; the same plumb line produced downward from the observer L
pierces the celestial sphere in the opposite point, called the astronomic {

nadir. The plane through the observer and perpendicular to the astronomic
vertical intersects the celestial sphere in the astronomic (or celestial) ,
horizon, !

(In similar fashion, the line passing through the observer and normal :
to the ellipsoid is the geodetic vertical, which pierces the celestial sphere !
in the geodetic zenith and the geodetic nadir. The plane through the
observer and perpendicular to the geodetic vertical intersects the celestial
sphere in the geodetic horizon. In the discussion which follows, and also
in the rest of this text, when the word "zenith" or "nadir" is used, it shall,
be understood to refer to the astronomic zenith or astronomic nadir, unless
preceded by the adjective "geodetic".)

The celestial horizon is the fundamental circle of the system; the zenith and
nadir are its poles, Since the surface of still water is always perpendicular
to the direction of the plumb line, we may define the celestial horizon for an
observer on the surface of the earth as the intersection of the celestial
__sphere and the plafie tangent to the level surface at that point, The visible

horizon is the line on the celestial sphere where the earth's surface appears
to meet the sky, For an observer on land, the visible horizon may be highly
irregular; for an observer on the sea, it is the circle where the sea and sky
seem to meet, Projected on the celestial sphere, it is a small circle below the
celestial horizon and parallel to it at a distance which depends upon the
height of the observer's eye above the surface of the water,

Vertical circles are great circles passing through the zenith and nadir;
they are secondary great circles of the system, The vertical circle that passes
through the celestial poles (see section 1,5) is called the celestial meridian or
simply the meridian, The prime vertical is the vertical circle at right angles to
the meridian, The two intersections of the celestial meridian with the horizon
are known as the north and south points; those of the prime vertical with the
horizon, as the east and west points,

Fig. 2.9 The horizon system of coordinates, The observer is at O, with his
zenith at Z, N and S are the north and south points, E and W the east and west
points, ZBF is the vertical circle through the body B,
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The azimuth A of a heavenly body is the angular distance measured clockwise

3
(as viewed from the zenith looking toward the nadir) on the horizon from the
1
north point to the foot of the vertical circle through the body. It is also

2 4
the angle at the zenith from the north branch of the meridian clockwise to the
vertical circle through the body,

The altitude a of a heavenly body is the angular distance measured upward

3

on the vertical circle through the body from the horizon to the body.
1 2 N
The zenith distance z is the complement of the altitude a, that is,
z = 90°= a, (2-8)

In some cases, it may be more convenient to work with the zenith distance of a
body rether than with its altitude,

Fig. 2.9 The horizon system of coordinates, The observer is at O, with his
zenith at 2, N and S are the north and south points, E and W the east and west
points, ZDBF is the vertical circle through the body B,

It is important to note the following:

l, The coordinates of a body in the horizon system are not
constant; that is, principally on account of the diurnal
(daily) motion, the altitude and azimuth of a body such
as a star continually change,

2, The horizon system is local; that is, the altitude and
azimuth of any body at a given instant are different for
two observers situated at different places, Just as soon
as an observer changes his position, his zenith changes;
hence, also, his horizon and usually his meridian change.

# The rumbers appearing below the underlining refer to the corresponding mumbers
in section 2,2 ,
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2.5 The Dependent Equatorial System, The celestial poles have been defined
as the two points of intersection at which the earth's rotation axis pierces the
celestial sphere. The intersection of the celestial sphere with the plane through
the center of the earth which is perpendicular to the rotation axis is called the
celestial equator; it is the great circle in which the earth's equator cuts the
celestial sphere, as suggested by Fig. 2.10 , Small circles on the celestial
sphere which are parallel to the celestial equator are known as parallels of
declination; they are also called the diurnal circles.

Fig. 2. 10 The celestial equator is the intersection
of the earth's equator with the celectial sphere,
The zelestial poles are the points at which the
earth's axis produced pierce the celestial sphere,

In the dependent equatorial system, illustrated by Fig. 2,11, the celestial
equator is taken as the fundamental circle with the celestial poles as its poles.
The secondary great circles are the great circles perpendicular to the equator and
are known as hour circles., The half of the circle lying between the poles and
containing a heavenly body is referred to as the hour circle of the body. The hour
circle through the zenith of an observer is the meridian of the observer. Note that
the meridian of the observer is both an hour circle and a vertical circle,

The upper branch of the meridian is that half extending from pole to pole which

contains the zenith; the other half contains the nadir and is called the lower branch,

The point at which the upper branch of the observer's meridian intersects the
celestial equator is referred to a&s the sigma point X .

Fig, 2,11 The dependent equatorisl system of coordinates,
The observer ig at O; P 1s the north celestial pole,
The star is located by its local hour angle and declination,

)Y AP RIS i

P AP B oL e,
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The local hour angle (h, LHA), or simply the hour angle, of a heavenly body
is the angular distance measured westward on the equator from the point of

3n 1
intersection of the meridian and equator (X point) to the foot of the hour
2
circle through the body; it is also the angle at the pole from the meridian

n
measured westward to the hour circle through the body. The local hour angle
is expressed either in degree or in hour units, For example, the local hour
angle of the west point may be given either as 90° or as 6B, The LHA of the
east point may likewise be given either as 270° or as 18h,

The declination § of a heavenly body is the angular distance measured
on the hour circle through the body from the equator to the body. It is=s
1 2 L
named north or south according as the body is either north or south of the

3
equator, Alternately, it may be designated as plus when north or minus when

south of the equator,

Fig. 2,11 The dependent equatorial system of coordinates,
The observer isc at O; P {s the north celestial pole,
The star is located by its locel hour engle and declination,

The local hour angle and declination of a heavenly body at a given instant
determine its position on the celestial sphere at that instant. It 1is important
to note that the coordinates of a body in this system are not constant; the local
hour angle contimually changes since it is measured from a point (the I point, on
the meridian of the observer) which is not carried along in the diurnal rotation

of the celestisl sphere.

# The numbers appearing belov the underlining refer to the corresponding nmumbers
in section 2.3. -
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2,6 The Independent Equatorial System, To obtain a system in which
the coordinates are not affected by the diurnal motion, we assume a point on
~the celestial sphere that is carried along by the diurnal rotation and that
is therefore fixed (as far as possible) with respect to the stars, The point
which has been chosen is the point at which the sun crosses the celestial
equator from south to northj; this point has already been discussed (sec. 1.6) and
is called the vernal equinox (it may also be referred to as the ascending node
of the apparent orbit of the sun). The symbol T is traditionally used to
represent this point, being the symbol used for the sign of Aries, the Ram,
in which constellation this point of intersection was located at the time of
the original definition, The letter V is also used to denote this point,

The right ascension a of a heavenly body is the angular distance
measured eastward on the equator from the vernal equinox to the foot of the
3* 1 2
hour circle through the body, Right ascension is usually expressed in time
n
units (hours, minutes, and seconds),

‘Fig, 2.12 shows the celestial sphere
with the equator and ecliptic
intersecting at T, the vernal
equinox, The hour circle through
the vernal equinox is called the
equinoctial colure, The star

shown is located by giving its

right ascension and declinationj

note that the right ascension is
measured eastward from the vernal Right Ascension
equinox,

Fig, 2,12 The independent equatorial system.,
The star shown is located by giving its
right ascension and declination,

The right ascension and declination of a star remain practically constant
for years, hence they are well suited for defining the position of a star on
the celestial sphere, The mean place of a star is the right ascension and
declination of the star as seen by an observer located at the center of the sun,
for an epoch (instant of time) near the middle of the current year.

Mean places for 1,482 stars are given in the /Almanac, in section H.

* The numbers appearing below the underlining refer to the corresponding numbers
in section 22,
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2.7 The Ecliptic System. In this system, the celestial sphere is the
reference sphere and the ecliptic is taken as the fundamental circle. The two
voints on the celestial sphere which are 90° from the ecliptic are called the
north and south ecliptic poles. The secondary circles through the poles are called
ecliptic meridians. The origin of coordinates is the vernal equinox T , which is
the ascending node of the ecliptic upon the celestial equator. The two spherical
coordinates required for the unique specification of position in this system are
described below and are illustrated in Fig. 2,13 ,

The ecliptic longitude A of a heavenly body is the angular distance measured

eastward on the ecliotic from the vernal equinox to the foot of the ecliptic meridian
b K 2 [] [ 3 [
through the body. Ecliptic longitudes are usually expressed in degrees, minutes, and

seconds of arc (or in decimal degrees). The choice of the symbol A for ecliptic

longitude is unfortunate, since the same symbol is also used to denote geographic
longitudes on the earth; one must depend upon the context to make it clear as to

which kind of longitude is meant in a particular situation,

The ecliptic latitude B8 of a heavenly body is the angular distance from the
ecliptic to the body measured along the ecliptic meridian through the body. It is

2% L) ]
named north or south according as the body is either north or south of the ecliptic,

3 »
Alternately, it may be designated as positive when north or negative when south of
the ecliptic. In either case, ecliptic latitudes are usually expressed in degrees,
minutes, and seconds of arc (or in decimal degrees).

,»”/;IE;;———~N“\\\\\\\\\

Fig. 2.13 The Ecliptic System
of Coordinates,

The ecliptic longitude and latitude of stars remain practically constant for
years; this is not so in the case of either the sun or the moon. The ecliptic
latitude of the sun does remain very nearly zero, within about 1" of arc, but its
ecliptic longitude increases at about 1° per day. The ecliptic longitude of the
moon increases at about 13° per day; its ecliptic latitude lies in the range of
about *5°, due to the inclination of the moon's orbit to the ecliptic.

# The rumbers appearing below the underlining refer to the corresponding mmbers
in section 2,2 ,




2.7 Summary of the Coordinate Systems, The one terrestrial and four celestial
coordinate syatems which have been described in this chapter are summarized below.
The student should clearly understand each system separately before proceeding to
the following sections of the chapter which will consider various combinations of
the systems and the relations between them,

Table 2,3 Coordinate Systems Summary

Terrestrial Celestial
Equator system
Horizon system Ecliptic system
Dependent Independent
Reference SPhere ,eccecceccecces| Earth Celestial sphere Celestial sphere Celestial sphere Celestial apheré
Fundamental circle ,..ce0¢0000000| Equator Horizon Equator Equator Ecliptic
POlOB ccccecoccncccoccccscececee| Terrestial poles Zenith and nadir Celestial poles Celestial poles Ecliptic poles
Secondary great circles ,...¢.¢.| Meridians Vertical circles Hour circles Hour circles Ecliptic meridians
Names of coordinates ...cecceees| Longitude A Azimuth A Hour engle h Right ascension o Ecliptic longitude A\
Iatitude ¢ - Altitude a .Declination § Declination § Ecliptic latitude g8
Origin .eeccececcococscscceccees | Intersection of North point Intersection of Vernal equinox T Vernal equinox T
meridian of meridian with .
Greenwich equator (Z point)
with equator .
Positive direction of first co-
ordinate ,,..cccc0000000000000e| Westward Clockwise Westward Eastward . Eastward
Positive direction of second co-
ordinate ,..ccecvceccccccccess | Northward Upward Northward Northward Northward

T°62
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2,8 Altitude of the Celestial North Pole,-- Except for observers
located on the earth's equator, only one of the two celestial poles can be
seen from any one point on the : z
earth's surface, the other being
below the horizon, The one which
can be seen, i,e,, the one which
is above the horizon, is called
the elevated pole, the other being
the degressed pole, The celestial
north pole is always elevated for _
northern hemisphere observers, but ]
is always depressed for observers
in the southern hemisphere, A
simple relation between the altitude
of the celestial north pole and the
latitude, north or south, of the
observer may be derived as shown
in the following paragraph,

Fig. 2.1L The altitude of the celestial pole P is
equal to the astronomic  latitude of tke observer
at O,

The ellipse pep'e' in Fig, 2.1l represents the terrestial meridian of an
observer at O, The direction of the plumb line makes the angle ¢ with the line
ee', where e and e' are points on the terrestrial equator, The angle ¢ has
already been defined as the astronomic latitude (section 2,3,4). Since ZO is
perpendicular to the horizon NOS and OP is perpendicular to ee', then angle NOP
is equal to ¢, that is, the altitude of the celestial north pole is egqual to the
astronomic latitude of the observer, Fig, 2.1l also suggests another definition
of astronomic 1latitude as the zenith distance of the ¥ point,

2,9 Meridian Altitude, When a heavenly body crosses the upper branch of the
meridian of an observer, its altitude is the greatest and its zenith distance
is the least, The passage of a heavenly body across the meridian is known as
its transit (referring to the act of crossing) or as its culmination (referring
to its greatest altitude), When the body crosses that part of the meridian
which is nearer the zenith, it is said to be at upper transit or upper
culmination; when it crosses the part farther from the zenith, at lower transit
or lower culmination, At a given place there are certain stars that have both
upper and lower culmination above the horizon; such stars are known as
circumpolar for that place, For example, the stars in Fig, 1, 3 are circumpolar
at the place for which the figure is drawn,

Many observations of heavenly bodies are made at the meridian, A simple
relation between the latitude of the observer, the declination of the body, and
its meridian zenith distance (and therefore its meridian altitude) will be
given here,
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Suppose in Fig, 2,15, that NZS represents the meridian of the observer, and
Bisa body;lggﬁ_g;ggfigg_the meridian, Then

gz = latitude of the observer = ¢
2B = meridian zenith distance of body = z,
8 = declination of body = §

For a body on the upper branch
of the meridian, i.e,, anywhere on
the arc PZS, and if the usual sign
convention for declination and S
latitude is followed (nmorth +, south ),
then the meridian zenith distance of the Fig. 2.15 The relation between the latitude

body is given by of a place, the meridian zenith distance of
8 body, and its declination,

zm‘6-¢o (2"9)

A positive result means that the body is north of the zenith; a negative
result means that it is south,

For a body on the_lower branch of the meridian, i.,e,, anywhere on the
arc NP, the meridian zenith distance is given by

U 2-10)

S /

The meridian altitude is given by

8 = 90 - Lzml‘ | (2-11)

2,10 Orienting the Coordinate Systems on the Celestial Sphere, It is of
great importance that the student should master the systems of coordinates and
be able to imagine readily the circles and points of reference on the celestial
sphere, One way to help the learning process is to go outside on a clear night,
preferably when the moon is not in the sky, and look at the heavens themselves,

Directly overhead is the zenith; the north celestial pole will be within
1° of Polaris, the North Star, Remember that the altitude of the pole, and
therefore Polaris (approximately), is equal to the latitude of the observer;
also, the pole lies very nearly on a line drawn through the pointer stars of
the Big Dipper(Fig, 1.8)and about 30° from them, The distance between the
pointers is about 5°, There is no other bright star besides Polaris in that
region of the sky; Polaris itself is about second magnitude,

The great circle through the zenith and (approximately) Polaris is the
meridian, The north point is nearly underneath Polaris; the south point is
opposite on the horizon, 90° on either side of these points are the east and
west points, also on the horizon, (As is usual in astronomical work, the
word horizon means the celestial horizon, unless otherwise indicated,) To
locate the 3 point, face south and look up at an angle of 90° - the latitude,

A great circle slanting across the sky Joining the east, ¥ , and west points
will detetmine the celestial equator, —

B

——

—
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There is, unfortunately, no bright star near the vernal equinox; imagine
it as being south of the Great Square of Pegasus, on the equator, The
autumnal equinox is about halfway between the bright stars Spica and Regulus,

Having thus located the circles and points of reference, the coordinates
(4, a), (n, §), and (a, §) of a heavenly body may be estimated,

2,11 Relations Among the Coordinate Systems. A useful concept to aid
in visualizing the relations among the four celestial coordinate systems is
to imagine that the celestial sphere consists of two thin concentric spherical
shells, one within the other, The outer one, the true celestial sphere, carries
upon its surface the ecliptic, equinoxes, poles, equator, hour circles,
declination circles, the stars, sun, moon, and the planets; on the inner sphere
are the zenith, horizon, vertical circles, poles, equator, hour circles and
the meridian., The diurnal rotation of the earth from west to east carries the
inner sphere with it while the outer (celestial) sphere remains motionless; or,
considering the apparent motion, the inner sphere is stationary while the outer
sphere rotates from east to west once each day,

Equations giving exact relationships between the coordinate systems will
be developed in later portions of this book, Approximate values may be
obtained by making an accurate. drawing on a convenient spherical surface or
on paper and estimating or scaling the desired values from the drawing,

2,12 Relation Between ILocal Hour Angle and Right Ascension, The two
concentric spheres discussed in the preceding article are shown in Fig. 2.16,
with the equator on the outer sphere
being graduated in hours, minutes,
and seconds of right ascension, zero
being at the vernal equinox and the
numbers increasing toward the east,
The equator of the inner sphere is
graduated for hour angles, the zero
being at the I point and the
numbers increasing toward the west,
As the outer sphere turms, the hour
marks on the right ascension scale
will pass the meridian in order of
the numbers, The number opposite
the meridian at any instant shows
how far the sphere has turned since
the vernal equinox was on the
meridian, If we read the ILHA scale
opposite the equinox, we obtain
exactly the same number of hours.
This number of hours (or angle) may

—Ppe considered as either the ri

_ ascension of the meridian or as the
LHA Of theverqu,uir{?x' Pig. 2.15 Right ascension and bour angle.
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In Fig, 2.17, the star at B has

a IHA of ZF and a right ascension
of TF; the sum of these two angles
is ZT, the IHA of the equinox,

The same relation holds for all
positions of B, so that the general
relation between these coordinates
is given by

' p_ =h + a‘7 (2-12)

2.13 Changes of the Coordinates of the Sun, - (8) Change of right
ascension and declination during the year,- On about March 21 the sun crosses
the equator from south to north (Fig.l4) at the vernal equinox, hence its
coordinates are then a= Oh, 8 = 0°, Since the sun moves eastward on the
ecliptic at about 1° per day, both its right ascension-and declination increase
so that on about June 21 the sun reaches the summer solstice; its coordinates
are then a= 6B, §= +231° (approximately), After this date, the declination
of the sun begins to decrease while its right ascension continues to increase,
The autumnal equinox is reached on about Sept, 22, the sun then having a= 12h
and &= 0°; thereafter the declination continues to decrease, becoming -233°
(approximately) at the winter solstice, on about Dec., 22, The right ascension
at this point is 18b, During the next three months, the sun moves northerly,
returning to the vernal equinox to complete the yearly cycle, The right
ascension and declination of the sun for each day of the current year are given
in the Ephemeris.

(b) Change of LHA and declination during the day,- From the preceding
paragraph, we see that the declination of the sun changes only a small amount
each day, the most rapid daily change taking place at the equinoxes; even then,
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the daily change is only about one-third of & degree, The LHA, however, increases

at the rate of about 15° per hour, from 0° at the local meridian to 360° the
next day when it returns to the same meridian,

(¢) Change of azimuth and altitude during the day,- To trace the changes
of these coordinates, the latitude of the observer and the date must be known,
For example, for an observer at the equator on March 21, the sun rises due
east, i.,e,, its azimth is 90° and its altitude is 0°, The altitude increases
to 90° when the sun reaches the zenith, while the azimuth remains the same,

In this case, sunset occurs at the west point (A = 270°, a = 0°),

For an observer at the north terrestrial pole on March 21, the sun traces
approximately the horizon throughout the 24 hours, while for the same observer
on June 21, the altitude of the sun remains approximately equal to 23%’ all day
long.

For observers at intermediate values of north latitude on June 21, the
azimuth of the sun at sunrise will be between 0° and 90°, its maximum altitude
will be reached at the meridian, and its azimuth at sunset will be between
270° and 360°, -



fFig, !2,18 shows the celestial
sphere at about June 1 of the
current year; the sun is nearly at
the summer solstice SS; the right
ascension and declination of the
sun, taken from the Ephemeris for

the date of interest, enable its
position to be plotted, Its
altitude and azimuth as seen by
an observer whose zenith is at Z
may be roughly estimated from the
figure; better values can be esti-
mated from an accurate drawing on

a sphere.
Fig. 2,18 The celestial sphere, showing
the sun's location by meens of the four
celestial coordinate systems,
€= a%aefﬂuéy_f7/zﬂ3%pztc
Exercises
2-1, The geodetic latitude of EMOS (East Mesa Optical Site, Sandia National

2-2,
2-3.

c2-4,

~ 2-5,

N -6

2-17

Laboratories, Albuquerque, NM) is 35° 3* 6" N. Using the expression
for a degree of latitude from the Almanac, Section K, calculate the
distance in meters corresponding to one second of arc at this latitude.

Same as 2-1, except for one second of longitude,

Find the geocentric latitude of the site (a) using the formula given in

the Almanac, Section K, and (b) using equation 2,3-15 from the text,
Give the azimuth corresponding to each of the following directions:

(a) SE-/35° (e) 8 —iFo°
(b) NW-3/5° (f) SW-325°
(c) E - 70° (g) W—1270"
(d) NE - ¢5° (h) N - o

A star located 15° south of the celestial equator transits (crosses) the
meridian of the observer at 19:00 on a certain day; what will be its local
hour angle and declination at 22:30 that same day? /55 3:304 ( $203 0,)

Give the right ascension, declination, ecliptic longitude, and ecliptic
latitude of the autumnal equinox and of the summer solstice.

Give the approximate right ascension, declination, ecliptic longitude, and
ecliptic latitude of the sun on March 21 and on December 21.

34
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The 'Phenomena'’ section of the Almanac contains the epochs of the
equinoxes and solstices for the current year, given to a precision of
one minute of time, By inspection of the Almanac tables of the Sun,
verify these four epochs,

2-9, On a suitable star chart, plot the sun's position at Oh E,T. each day
for the dates as specified by the instructor.

2-10, Repeat, dbut for the moon.

\\~ 2-11, Find, for latitude ¢, the meridian altitude at upper transit of stars of
given declination §, as follows: —

A ) 4 ]
(a) LO°N 20°N (e) 20°s 5°N
(v) 60°s 10°N (£) 8o°N 2°s
(c) u45°N 15°N ég; 15°S 60°N
(d) so0°s 35°S h) 30°N 89°N

\ 2-12, What is the meridian altitude of Sirius for an observer in latitude 4O°N?

' 2-13, Give the altitude of Dubhe at upper and lower transit for Lowell
Observatory,

N 2-14, The meridian altitude of Regulus above the southern horizon of an
observer is 72° 24* 44", What is the observer's latitude?
N 2-15 Determine whether or not Capella is circumpolar for Sandia Lab observatory,

N 2-18, What is the approximate meridian altitude of the sun on April 30 for
the U,S, Naval Observatory in Washington, D,C.?

\\> 2-17, The meridian altitude of the sun above the southern horizon of a ship at
sea on May 10 is 20° 17'; find the approximate latitude of the ship,

T~ 2-18, Find the azimuth and altitude of the east point for an observer at each
of the following latitudes:

(a) oO°N (a) 60°N A
(v) 30°N (e) us5°s ’
(c¢) 45°N (£) 60°s
2-19, Give the azimuth and altitude of the west point, the north celestial pole, (
ﬂnd the z POint. SR e whod . ) fa 8 ;= z FECe ,"'g;‘i,v*. f.:

™ 2-20, Give the LHA and declination of the east point, the zenith, and the south
pOint. £ § 0 ‘ L= . o < 23 +@ /&Q‘

()

» \7-70) !
\\\>2-21. Give the right ascension, declination, and LHA of the east point at the

instant when the vernel equinox is at the west point,
‘-\\ 0(5/2/1 é:()o LHA:/?A (170’)

N\ 2-22, Find the right ascension, declination, and altitude of the north point
at the instant when the autummal equinox is at the west point.

X = &4 6:7\C$§\ a z O°
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{75
2-24,

. 2-25,

36

For the following problems, make a neat sketch on an actual sphere (such as
a table tennis ball), and estimate the answers from your sketch,

An observer at 4O°N latitude observes an airplane gt 60° azimuth, 30° altitude,
The LHA of the vernal equinox at that instant is 6°, Estimate the LHA, 184 /7/, (285
r.&., and dec, e_airplane’s apparent position on the celestial sphere, -

56 10 £70° 447 fro° I$h247"
Same, but the observer is at 40°S lat, Lga= 3/ gzg}‘gx re.xee® Jooa O° —

A rocket is launched from & ship at 120°W longitude, 20°N latitude, and
shortly thereafter reaches an apparent position of 3h LHA, 10°N declination
as seen from the ship, Estimate the azimuth and altitude of the rocket

at that time, A4 » 249" fA ¢s° :

-
~ g

Same, but the ship is at 20°S lat, | 3)°

AR 300” oM A Yo°©
At a certain time, the star Capella is obssrved at an azimuth of 300°; its
LHA at that instant is 2B, Find: 30

Vs e Gg°N ] ‘
(a) 1latitude of the observer \33%1\/ 37 1,13

(b) IHA of the vernal equinox,— 7/ /5 3%%

Find the LHA, azimuth, and altitude of the sun at sunrise on May 15 of the
current year as seen from latitude 35°N,

LAR =74 A==70°
Seme, but for latitude 35°S,

L HA = TH =00
/4&700

T

)
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CHAPTER 3

SPHERICAL TRIGONOMETRY AND THE ASTRONOMICAL TRIANGLE

3,1 The Spherical Triangle, In many problems of practical astronomy
it becomes necessary to transform from one system of coordinates to another;
this transformation involves the solution of a spherical triangle, A complete
treatment of the subject of spherical trigonometry is beyond the scope of -
this text, but derivations of & few fundamental formulas will be given in the
paragraphs which follow, In addition, several other formulas which may be
useful in our work will be presented without proof, For complete derivations
and proofs of all formulas, reference may be made to any complete text on the
subject of spherical trigonometry,

When any three points A, B, and C on the surface of a sphere are joined
by arcs of great circles, eight spherical trilangles are formed, some of which
may have one or more sides or angles greater than 180°, In this text, however,
we shall consider only those triangles in which no side or angle exceeds 180°,

Fig, 3,1 shows an octant of a sphere having a radius of unity, and three
points A, B, and C lying in the surface of the sphere, forming the spherical
triangle ABC, The following statements are true, by construction:

CP 1 plane XOY z
CP'1 OB
CM 1 OA,
c
C
oL M
o X
z e
c
1l 2
B , \
P 2 0 . /!;p B
L1y
’ ,z
x ] y
c /§é°b c
M
A
X’
a . P
Y

Fig, 3.1 The oblique spherical triangle ABC,

It follows that

< COP' = a '

COM =0 since an arc is equal in measure to its central L.
« P'OM = ¢

< CP'P =«B

= CMP =.A } by projection.
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For radius unity, a study of the small plane triangles involved in
the figure shows tha.t )

X = COS & x' = cos b
Y = sin a cos B y'=sin b cos A
z = sin a sin B 2 =8inb sin A

Fig, 3,2 represents the X0Y plane of Fig. 3.1,
redrawn with a few additional construction lines;
from the figure, it is seen that

x = x'cos ¢ + y'sin ¢ Fig, 3.2
Yy =x'sin ¢ - y'cos ¢

By substitution of the first of these two sets of expressions into the second,
we get .

e  cosa=cosbcose+ sind sinc cos A (3-1)
sin a cos B=cos b sin ¢ - sin b cos ¢ cos A (3-2)
sin a sin B = sin b sin A (3-3)

Corresponding formulae may be written involving angles B and C in the right-
hand member of each of the above expressions,

Eq, 3-1 is known as the law of cosines, and may be regarded as the fundament
formula of spherical trigonometry because all others may be derived from it and
by means of it all problems in spherical trigonometry may be solved, although not
always so conveniently as with other special forms, Eq, 3-2 is called the five-parts
formula since it involves five of the six parts of the triangle, Eq, 3-3 is known
as the law of sines, which may be written with greater generality as

sina _sinbd sin ¢

- SBin A sinB _ sin C (3-4)

by writing the corresponding forms of Eq, 3-3 and rearranging,

In the preceding derivation, the sides of the spherical triangle were
taken as less than 90° for convenience, to permit the construction of the right
triangles OCP', OCM, ete, in Fig, 3,1, Reference to a complete text on the
subject will show that Egs, 3-1 through 3-3 also hold for triangles with one or
more sides or angles greater than 90° but less than 180°,

By combining and rearranging Eqs. 3-1, 3-2, and 3-3 various other
formulas may be obtained; for example, dividing Eq. 3-3 by Eq, 3-2 gives

sin a sin B - sin b sin A
sin & cos B cos b sinc - sin b cos c cos A

. sin -
- tan B = oot 5 sin ¢ - cos ¢ cos A
03 Ts Is 1A

known as the four consecutive parts formula,

m———




Egs,

Eq, 3-6 is called the analog to the cosine formula; Eqs, 3-7 through 3-12 are -

called half-angle formulas, Egs, 3-9 and 3-10 are usually solved as a pair to

3.1.1 Several other formulas which may likewise be derived from
3-1, 3-2, and 3-3 are given below, without proof:
co8 A = -cos B cos C + sin B sin C cos a (3-6)
A sin(s-b) sin(s-c) _
ten 3 =\/ sin s sin(s-a) ' (3-7)
o+
where s = 9‘% = semiperimeter
a _ |-cos S cos(S-A
ten 5 -\/cos(S-B)cos S (3-8)
where S = A+gw = sen}igonometer
cos A8
at+b -2 c
tan T = _—K"‘—B_ tan -2' (3—9)
cos ——
2
I 5 tan S (3-10)
&= s 032
sin —&
2
a=b
cos ——
A+B _ 2 c -
ta.n--é—-——a-_;s cot 2 (3-11)
cos ——
2
a-b
wnhB 202 (3-12)
2 a+b 2
sin <

yield values for the sides a and b; similarly, Eqs, 3-11 and 3-12 are solved
as a pair to give the angles A and B,

39
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3.2 Right Spherical Triangles, If, in a spherical triangle, one of
the angles is equal to 90°, the triangle is a right spherical triangle, All
of the formulas gjven in the preceding article for oblique spherical triangles
also hold for right spherical triangles; it may be more convenient, however, to
use formulas which have been developed especially for the right triangle,

Let the right angle in a right
spherical triangle be denoted by the
letter C, and let the five remaining
parts of the triangle be indicated in
the manner and order as shown in Fig,3, 3,
This is also the order in which they
appear in the triangle if the right
angle is omitted, Any one of the five
parts of the circular diagram may be
selected and called a middle
then the two parts of the diagram next
to it on each side are called
adjacent parts and the other two Fig. 3.3 Napier's Bules of Circular Parts.
opposite parts., Two fundamental rules, '
known as Napier's Rules of Circular
Parts, may be shown as true; they are
as follows:

He (1) The sine of a middle part is equal to the product of the cosines
! of the opposite parts,

2% (2) The sine of a middle part is eq_ual to the product of the tangents
of the adjacent parts,

Using these rules, ten different formulas may be written involving relations
between the various parts of the original spherical triangle,

Example, In the right spherical triangle shown in Fig, 3, 4, find the
missing side a,

Fig, 3,4

In Fig, 3.5, the shaded sections represent the known values
and the circled quantity represents the desired unknown value,
Using rule 2, with the quantity b selected as a middle part,
we may write
sin b = tan(90°-A).tan a
which after rearranging becomes
tan a = sin b tan A £
= sin 20° tan 30°
sa = 11° 10' 1218

K THC o5 = Lo prrdleck o Adpiorl sy = @W/.W%TSWfWa

x}@ (?c) A



3.3 Polar Triangles, Given the spherical A ABC as shown in Fig, 3,6,

locate A', B', and C', the poles of the sides a, b, and ¢, Draw the polar
spherical A A' B' C!,

Fig. 3.6 Polar triangles

Since A is 90° from both B' and C', it follows that A is the pole of
side B' C' = a'; thus A, B, and C are the poles of the sides of the polar triangle.

B' E = 90° since B' is the pole of the great circle ACE,
DC' = 90° since C' is the pole of the great circle ABD,
Adding, B' E + DC' = 180°
B'E + DE + EC' = 180°
But B' C' = the side a', and DE = the angle A, so that
a'+ A =180°
.. Any angle of a spherical triangle is the supplement of the corresponding
side of the polar triangle,
FC = 90°, since C is the pole of the great circle A' FB',
BG = 90°, since B is the pole of the great circle A' G C',
Adding, FC + BG = 180°
FG + BC = 180°
A'+a=180°
.. Any side of a spherical triangle is the supplement of the corresponding
angle of the polar triangle. ' - :

.. Any side or angle of a spherical triangle is the supplement of the
corresponding angle or side of the polar triangle,

The above results may be used in conjunction with Eqs, 3-1 through 3-5 to
yield new formulas. For example, the Law of Cosines (B3. 3-1) applied to the
polar triangle of Fig, 3,6 becomes

cos a' = cos b' cos ¢' + sin b' sin ¢! cos A'

cos (180-A) = cos (180-B) cos (180-C) + sin (180-B) sin (180-C) cos (180-a)

- cos A = - cos B (- cos C) + sin B sin C (- cos a)

41

cos A = - cos B cos C + sin B sin C cos a (3-13)
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- 3.4 General Remarks on Spherical Triangle Solution, A spherical
triangle has six elements, or parts: the three sides and the three vertex
angles, If any three of these parts are given, the other three can be found
by using one or more formulas of spherical trigonometry. The choice of
formula may be based upon several criteria, such as: computing power available,
vhat parts are given, what parts are to be found, and the degree of accuracy
. desired in the solution, By proper choice of formula, a direct solution canusually
be made, that is, the desired part can be solved for by means of a single formula,
In some cases it may be preferable or necessary to use the indirect method of
finding a missing, though undesired, part first and then solving for the desired
part through use of a second formula,

The following reminders and cautions may be helpful:

(13 An angle near 0° is best found through its sine or tangent,

(2 An angle near 90° is best found through its cosine or tangent,

(3) The sine of an angle is always positive for the range 0°< €= 180°,
so that it becomes necessary to resolve the ambiguity of quadrant
by independent means, when solving for the angle through its
arcsine, .

(k) The cosine and the tangent of an angle are both positive for
the range 0°< ©<90° and negative for the range 90°= ©=180°,
so that there is no ambiguity of quadrant,

(5) The sum of the angles of a spherical triangle is always greater
than 180° and less than 540°; the amount by which the sum of
the angles exceeds 180° is called the spherical excess of the
triangle, The spherical excess approaches zero when the sides
of the spherical triangle are very small compared with the
radius of the sphere; it approaches 360° when the opposite is
true,

(6) The sum of the sides of a spherical triangle is always less

than 360°,
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3.5 The Astronomical Triangle, The spherical triangle having the elevated
pole, the zenith, and a heavenly body (or an apparent point on the celestial
sphere) as the three vertices is called the astronomical triangle and is of great
importance in practical astronomy, since many of the problems encountered will
require solution by means of it, There are four possible cases to considers

(1) observer in north lagitude, body west of the meridian
1"t

( 2 ) 4] 11 " s " ea St " "
( 3 ) n " s Outh L , " L] " " " R and
( b ) 1 ' " 1" n s ” we st " n 1® .

The first of these cases is shown in Fig, 3,7, and may be considered as typical
since the basic rules for the construction and solution of all four cases are ’
the same, In the figure, P represents the elevated celestial pole (the celestial
north pole in this case); the observer's zenith is at Z, and the heavenly body
(or the point of interest on the celestial sphere) is at B,

By reference to the figure at right,
it is seen that the arc PZ is the complement
of the latitude, and the arc PB is the
complement of the declination; these two arcs
are often called the co-latitude and the co-
declination, respectively. The arc PB is also
known as the polar distance. The arc ZB is
the zenith distance z, and is the complement
of the altitude a.

The angle at the pole between the
meridian and the hour circle through the body
is called the meridian angle p . The meridian
angle is mumerically equal to the local hour
angle when the body is west of the meridianj
however, when the body is east of the
meridian, the meridian angle is equal to
360° minus the hour angle. The angle Z at the
zenith, between the meridian and the vertical
circle through the body, is equal to the
azimuth A for the case when the body is east

The astronomicel triangle for

rig. 3.7

of the meridian, but becomes 360°- A when
the body is west of the meridian.

the case of an cbserver at north latitude
with the body west of the meridian,

The parts of the astronomical triangle are:

Sides: polar distance 90°= §
zenith distance z= 90°= a
co-latitude 90°= ¢
Angles: meridian angle g at the pole
zenith angle 2 at the zenith
parallactic angle @ at the body (this angle is normally

not needed in the solution of the
astronomical triangle)

Observe that the angle at the pole is measured by the corresponding arc of the ‘
equator and the angle at the zenith by the corresponding arc of the horizon,



3.6 Solution of the Astronomical Triangle. If any three of the six
elements or parts of the astronomical triangle are known, the remaining parts
may be found by means of the formulas given in sections 3.1 through 3.3 .

Case 1: Observer in north latitude, body west of the meridian (Fig. 3.8)e

The usual situation is that the latitude, declination, and hour angle are
known, and that the azimuth and altitude are to be found.

Writing the four-consecutive-parts formula (Eq. 3-5) for the zenith angle Z,
which in this case is equal to 360°- A,

sin h (3-1L)
cos(90°= ¢) cos h

‘ban(360°-A) = sin(gﬁv_ py

tan(90°= 6 )

From plane trigonometry, the following relations are true:

+an(360°-6 ) = =~tan ©

sin(90°-8 ) = cos ©
cos(90:-9 ) = 8in © 1
tan(90 -8) = cot & = m

Using these relations in Eq. 3-1l,

’ -sin h .
tan A = o tans - sinv cos b ’ (3-15)

Writing the law of cosines (Eq. 3-1) for the side z°= 90°- a,
cos(90°=a) = cos(90°- ¢) cos(90°~ §) + sin(90°- ¢) 8in(90°~ §) cos h
sina = sine¢ sin§ + cosv cos § cos h (3-16)

Fig. 3,8 The astronomical triangle for
the case of an observer at north latitude
with the body wesat of the meridianm,



Case 2: Observer in north latitude, body east of the meridian (Fig. 3.9).

The parts of the astronomical triangle are:

Sides: polar distance 90°- ¢
zenith distance 2z = 90°- a
co-latitude 90°- ¢

Angles: meridian angle 360°= h
zenith angle A
parallactic angle B8

Agéin, suppose that the latitude, declination,
-and hour angle are known, with the azimuth and
altitude required.

Fig. 3.9 The astronomical triangle for
the case of an observer in north latitude
with the body east of the meridian,

Writing the four-consecutive-parts formula for the zenith angle, which here
is equal to the azimuth A,

sin(360°- h)

T
e - c08(90°- #) cos(360°- h)

tan A =

From plane trigonometry, sin(360°- 6) = -sin © , and cos(360°- 8) = cos 8, so
that the above expression may be written as

= -sin h ,
tan A = 5 tan & - sin ¢ cos h (3-15)

which is the same as for Case 1.

A

Writing the law of cosines for the side 2z = 90°- a,
cos(90°~ a) = cos(90°~ ¢) cos(90°~ §) + sin(90°- ¢) sin(90°~ &) cos(360°~ h)

sina = gine¢ sin § + cos ¢ cos 5 cos h (3-16)
which is the same as for Case 1.

It may be shown that the formulas for Cases 3 and ) are the same as for
Case 1, so that Eqs, 3-15 and 3-16 are valid in all cases.
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3.6.1 When working toward the solution of other astronomical triangles
which involve different combinations of known and desired quantities than
those discussed in the preceding pages, additional formulas may be needed;
several are given below, without proof. For the sake of compactness, the
meridian angle (at the pole) is in all cases denoted by the symbol p , and
the zenith angle by Z; remember that the meridian angle is equal to either
the hour angle or 360° minus the hour angle, and that the zenith angle is
equal to either the azimuth or 360° minus the azimuth, depending upon the
location of the body relative to the meridian.

From the law of sines, Eq. 3-3, we have
sin - sin 2
sini906- a) sin(90°-5)
which, using the co-function relations, may be written as

sin pcos & = cos a sin 2 (3-17)

In the solution of this formula for either p or Z, it should be noted
that the resulting angle lies either in the first or second quadrant, i.e.,
the numerical value lies in the range 0°< 8<=180° .

Again making use of the law of cosines, but writing it this time for the
side 90°- §, we obtain the formula

~sin é = sin ¢ sin a + cos ¢ cos & cos B A (3-18)
For computing p, the following additional formmlas may be
helpful:
[ cos(s+¢ ) cos(s+s )
sin 3 'J CoS ¢ CO8 o (3-19)
U
wvhere s = 270 - g“”’ 3 +a)
sin 2
ors Yy = e 8 - sin ¢ cos & (3-20)

For computing 3, ithe following formula may be used:

2 Icos(sho) cos( s+a)
sin 5 'V Cos ¢ Cos a (3-21)

where & = 270°- (© + § +a)

All the formulas presented are valid for both hemispheres; they are also
valid for the situation in which the zenith and the body are in different
herispheres, They are all based upon the north celestial pole being the pole
point in the astronomical triangle.
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3.7 Transformation from ecliptic to equatorial coordinates.

It often happens that the ecliptic coordinates >\.B of a heavenly body
are known and that the corresponding independent equatorial coordinates
o,8 are required. The transformation equations may be obtained by
considering Figure 3.10, which represents the celestial sphere, with

P the north celestial pole and Pg the north ecliptic pole. The equator
and ecliptic are shown, as are the vernal equinox T, the summer solstice
SS, the foot F of the hour angle of the solstice, and the obliquity

of the ecliptic, denoted as €. The arc F-S5 is equal to the obliquity €,
as is the arc P-Fg .

F'tg. 3.10

In the .spherical triangle PBF , the angle at Pg is equal to 90°- >\.
and. the angle at P is equal to 180°- (90°-.&). From the four
consecutive parts formula,

tan(90°+ &) = sin(90° =~ A)
sin € - cos € cos(90°-A)
tan(90°-8)
] _ cos A

tan & 7 sine tanp- cosesinA

tan ¢ = cose sinA - sine tan B (3-21)
cos A

From the law of cosines,
cos(90°- 8) = cos & cos(90°~B) + sine sin(90°-8) cos(90°=A)

sin § = cos€sin B + sine cospgsin A (3-23)
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Exercises

Three points on & sphere are located equidistant from each other, forming
an equilateral spherical triangle; as in plane trigonometry, such a
triangle is also equiangular, Derive a formula for the vertex angle as

a function of the side,

Using the formula derived for pio‘blen 3-1, find the vertex angle corresponding
to a side of (a) 90° (b)\g(_)'. Sketch these two triangles on a globe,
70 °

Again referring to problem 3-1, what is the minimum possible vertex angle,
and the corresponding side? the maximum?

o = EO° S
May a spherical triangle have one and only one of its elements to be 90°? L/cm,,
two only? three? four? five? May all six elements be 90°? &

Same as 4, but f}:r 180° elements. 7
79e0 ~ 2,3 )Y 450 — .
A spherical triangle has certain parts given ) 30
as shown in the figure at right; find side q. < 3
R

For the same figure, find the vertex angle R,

Using the value of q as found in problem 3-6, verify the value for R found
in problem 3-7,

Repeat problem 3-8, using a different formula, 25° Fo

In the figure at right, find the vertex angle Q. 3% Q

A spherical triangle has one vertex angle of 20°, another of 90°, and
the side included between them is 40°, Find all other parts of the triangle,

A spherical triangle has one side of 20°, another of 90°, and the vertex
angle included between them is 4Q°, Find all other parts of the triangle,

Given o= 55°N, LHA = 3B, and § = 36°N, find the azimuth and altitude,

Find the hour angle and declination of a star if its azimuth is 230°
and its altitude is LO® at a place in latitude LS°N,

Find the azimuth and altitude of Procyon for a place in 30° south latitude
at an instant when the LHA of the vernal equinox is 4B 308,

Solve exercise 23 of chapter 2 by the methods of the present chapter,

Same, but for exercise 2-25,

Same, but for exercise 2-26,
Same, dbut for exercise 2-27,

Find the azimuth of Betelgeuse at the time of its setting as seen from
(a) 30° S latitude (b) 30° N latitude,

A 2555



/3-210
3‘220

‘3‘230

~3‘2h¢

3‘250

Convert the eclipﬁic coordinates A = 342°13'17", @ = +7°51'22"
to independent equatorial coordinates, for Nov., 3 at 0" TDT,

A certain star is located at ok=5h 20M s 02 =7° 14" ; find its
ecliptic coordinates at the epoch Feb. 27 at 0" TIDT.

A planet is at A= 276° 19' L6" , $ =+42° L' 6"; if the hour angle
of the vernal equinox is 21h 17m 123, find the azimuth and altitude
of the glanet as seen from latitude 15“ LO' 20" S at the epoch
July 199 15h 20™ TOT,

Venus is to be observed from EMOS on April 17 at the epoch specified
by the instructor. Find its expected azimuth and altitude. The hour
angle of the vernal equinox, needed for solution of this problem, will
be furnished by the ingtructor also. ]9 T0eE

NAy = 0° y0™™ ;5051 A= 8/%/)
Convert the ecliptic longitude and latitude of the Eoon as given in
the Astronomical Almanac for the epoch October 8 Dynamical Time
to right ascension and declination. Compare your results with the
tabular values of r.a. and dec. also given in the Almanac.

Repeat the preceding problem, but for the sun,

L7a
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CHAPTER 4

TIME AND LONGITUDE

Time Systems. As was mentioned in the preceding chapter, the

celestial coordinates of heavenly bodies such as the sun, moon, stars,
and planets change with respect to time. In order to discuss these
changes in some detail, and to understand their effect on the
calculations and observations of engineering astronomy, it is necessary
to become familiar with several of the various types of time systems in
use today.

It is necessary first to distinguish between two different aspects

of time:

the epoch, which is the instant of occurrence of some

phenomenon or observation, and the interval, which is the time elapsed

between two epochs. The conventional time scale is measured in units of

years, months, days, hours, minutes, and seconds.

A fundamental requirement of any time measurement system is to
establish a relationship between the units of measurement and some
observable physical event which is either repetitive and countable, or
continuous and measurable, or both. The systems which we will use are
based either upon observable astronomical phenomena such as star
transits, the diurnal motion of the sun, etc., or upon observable
physical phenomena involving certain properties of the cesium atom.

There are three systems of the first type with which we must
familiarize ourselves, as listed below and as discussed in some detail in
the articles which follow. The first two are based upon the diurnal
rotation of the earth, with the third being based upon the annual orbital
motion of the earth about the sun. These three systems are:

(1)

(2)

(3)

Sidereal time, or time measured with respect to the apparent
motion of the stars; this apparent motion is actually due to
the diurnal rotation of the earth upon its axis.

Solar time, or time measured with respect to the apparent

motion of the sun: this apparent motion is also actually due to
the diurnal rotation of the earth.

Dynamical time, formerly called ephemeris time, which is the independent
variable in the equations of motion of celestial mechanics; its measure
is defined by the orbital motion of the earth around the sun.

The fourth, non-astronomical, time system which we will use is:

(4)

Atomic time, based upon analyses of certain physical properties
of the cesium 133 atom.
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4.2 Dynamical Considerations. Before these time systems are
described more fully, there are two phenomena which need to be understood
in principle, at least. These are (a) the motion of the equinox among
the stars and (b) variations in the rotational speed of the earth.

The vernal equinox, heretofore considered as fixed with respect to
the stars, is actually in continuous, though slow, motion because of
dynamical forces on the earth as it both rotates on its axis and revolves
about the sun, which cause the equator and the ecliptic, and hence the
equinox, to move relative to the celestial sphere.

The motion of the earth's jequator], and therefore of the celestial
poles, is due to the gravitational attraction of the sun and the moon
upon the earth's equatorial bulge, and may be resolved into two
components. The first component, th uni-solar precession, moves the
celestial poles about the ecliptic poles in é circular path with a period
of about 25,800 years and an amplitude equalﬁto the obliquity of the

. ecliptic, resulting in a westerly movement of the equinox along the
equator of about 50" per year (a more precise:value is given in the
Almanac, on page K&). The second component, called the nutation, and
caused in part by the fact that the plane of the moon's orbit about the
earth is not in the ecliptic plane, consists basically of a periodic
motion of the celestial poles (superimposed on the luni-solar precession)
having a maximum amplitude of about 9" and a main period of about 18.6
years.

The motion of the (ecliptic)is due to the gravitational attraction of
the planets upon the earth as a\whole, and consists of a slow rotation of
the ecliptic about a slowly-moving diameter, resulting in a westerly
movement of the equinox of about) 47" per century. This effect is called
‘the planetary precession. @b/”wif%

A et

The rotational speed of the earth itself is not perfectly uniform,
but is subject to irregularities of three types:

(a) seasonal or periodic variation, more or less repeatable from
year to year, probably due to atmospheric and tidal effects;

(b) a secular (non-periodic) decrease in rotational speed, due
chiefly to energy-dissipative tidal forces; and

(c) irregular fluctuations, the causes of which are only partly
understood.

It should also be pointed out that there is a continuous, although
slight, motion of the solid mass of the earth itself relative to the axis
of rotation. This effect, known as the wandering of the poles, or simply
as the polar motion, causes the geographical coordinates of the observer
to change with time.




4.3 Sidereal Time. Sidereal time is directly related to the
diurnal rotation of the earth; equal intervals of angular motion
correspond to equal intervals of sidereal time. At the instant of upper
transit of the vernal equinox over a particular meridian, the sidereal
time on that meridian is taken as o' o™ Os This epoch is called

sidereal apparent noon and is considered as the beginning of the sidereal

day, which is defined as the interval between two successive upper
transits of the vernal equinox over the same meridian. The length of the
sidereal day is not constant, nor does it precisely measure the true time
for one rotation of the earth, because of the movement of the equinox as
described in the preceding article.

The sidereal epoch is numerically equal to the hour angle of the
vernal equinox. The local hour angle of the true (apparent) equinox is
called the local apparent sidereal time (LAST). The sidereal time on the
Greenwich meridian is called the Greenwich apparent sidereal time
(GAST). The local hour angle of the mean equinox is called the local
mean sidereal time (LMST); when it is referred to the Greenwich meridian,
it is called the Greenwich mean sidereal time (GMST). These four
relations may be written as

LAST = LHA of the apparent eguinox . (4-1)
GAST = GHA " " " (4-2)
LMST = LHA of the mean equinox (4-3)

GMST = GHA " " " - ;f‘ﬁﬂzkﬁwik (4-4)
1l

The term equation of the equinoxes (EOE) is a ied to the quantity
"apparent sidereal time minus mean sidereal time," thus

EOE = LAST - LMST (4-5)
or EOE = GAST - GMST . (4-6)

The equation of the equinoxes is due to the nutation (Section 4.2). The
numerical value of EOE is tabulated for each day of the year in the
Almanac, in the table of Universal and Sidereal Times, beginning on page
BB.

All of the above relations are illustrated in Fig. 4.1, from which it is
evident that

GMST - A (4-7)
GAST - A (4-8)

LMST
LAST

1]

or, after slight rearrangement,

GMST - LMST = A (4-9)
GAST - LAST = A (4-10)

Fig. 4.1 Relation between the sidereel times
at two places and their difference in longitude,
The equation of the equinoxes is also shown,
though very much enlarged for clarity,

S bt
/70<J&7577C)73 = PV IN
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Equations 4-9 and 4-10 are specific cases of a general principle of
time measurement which may be stated thus: The difference between the
corresponding local times of two places is equal to their difference in
longitude. This principle will be shown to apply to the other kinds of
time as discussed in the following articles.

As was shown in section 2.12, the hour angle of the vernal equinox
is equal to the right ascension of a body, such as a star, at the instant
of its upper transit. It follows, therefore, that the sidereal time may
be determined by observing transits of stars, since, from Egs. 2-12 and
4-1, the local apparent sidereal time at any instant is equal to the
right ascension of a star which is at upper transit at the same instant.
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4.4 Solar Time. An apparent solar day is defined as the interval
between two successive lower transits of the sun's center over the same
meridian. The lower, rather than the upper, transit is used so that the
change of date will occur at midnight. The apparent solar day is divided
into 24 hours, beginning with the instant the center of the sun is at
lower transit (local apparent midnight). The instant the center of the
sun is at upper transit is known as local apparent noon; the local
apparent time at that instant is 1207 At any instant, the local
apparent solar time, or simply the local apparent time, is equal to the
hour angle of the sun's center plus 12 hours, that is,

LAT = LHAG + 12h (4-11)

The local apparent time on the Greenwich meridian is called the Greenwich
apparent time (GAT), and is equal to the Greenwich hour angle of the
sun's center plus 12 hours, that is,

GAT = GHAg + 12h (4-12)

The length of the apparent solar day is not constant, nor does it
measure the true time for one complete rotation of the earth, not only
because of the irregularities in the earth's rotational speed, as
described in section 4.2, but also because of the way in which the earth
moves about the sun. It was stated in section 1.6 that the sun appears
to move eastward through the stars at a rate of about 1° per day
because of the actual annual revolution of the earth about the sun. This
motion is now understood to be non-uniform, since the earth moves at
varying speeds in obedience to the laws of celestial mechanics as
formulated by Kepler. The non-uniform actual motion of the earth results
in a non-uniform apparent motion of the sun, thus causing the apparent
solar day to vary in length. Even if the sun did move uniformly, the
length of the solar day would still not be constant, since the sun moves
along the ecliptic whereas the rotation is measured along the equator,
and angles at the celestial pole measuring equal arcs on the ecliptic are
not, in general, equal.

The use of the true (apparent) sun is, for the reasons just
explained, not advisable as a means for precise timekeeping. Instead, a
fictitious fiducial point called the mean sun is imagined as moving
eastward at a uniform rate along the equator and to complete one
revolution from the vernal equinox in the same time in which the true sun
completes one revolution on the ecliptic. This interval (about 365 1/4
apparent solar days) is called the tropical year; it is more rigorously
defined as the interval between two successive passages of the center of
the sun through the vernal equinox. A precise value of the length of the
current tropical year is given on page Cl of the Almanac. The time given by
the mean sun is such that every day measured by it is of exactly the same
duration, and each one is equal to the average (mean) solar day as
measured by the true sun. A mean solar day may then be defined as
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the interval between two successive lower transits of the mean sun over
the same meridian. The local mean solar time, or simply the local mean
time (LMT), is the hour angle of the mean sun plus 12 hours, that is,

LMT = LHApqm + 120 (4-13)
The local mean time on the Greenwich meridian is called either the
Greenwich Mean Time (GMT) or Universal Time (UT), and is equal to the
Greenwich hour angle of the mean sun plus 12 hours, that is,

UT = GMT = GHMpg+ 127 (4-14)

Local mean noon at any place is the instant of upper transit of the mean
sun over the meridian of the place; mean midnight refers to the instant
of lower transit. The mean solar day is divided into 24 hours beginning

at mean midnight.

Since the mean:sun is not observable, it is necessary to introduce a
method for changing from one kind of solar time to the other. This is
done by the equation of time (EOT), which is defined as the quantity
"apparent solar time minus mean solar time" (compare this expression with
that for the equation of the equinoxes in section 4.3). We may then write

EOT = LAT - LMT = GAT - UT (4-15)

The equation of time is not tabulated in the Almanac, though it may
be computed from data which is tabulated, using the method as explained
later in this chapter. Values of the EOT are given twice daily in the .
Nautical Almanac, to a precision of 1™ of time. Fig. 4.2 shows
graphically the equation of time for the year 1945; the graph is
essentially the same for all years.

Mintes | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. [Sept. | Oct. | Nov. | Dec. | Minutes
1229 | 19201 3929 1 1020 [ 1520 [ 1020 | 1020 | 1020 | 1020 1 1020 | 1920 | 1920
T 1 17T | T U S T Il
15 0 O 0 O A O L 4BV 15
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Fig, 4,2, The equation of time.




two places and their difference in longitude,

located 12
denotes the mean midnight point, which is
Jocated 12h ahead of the mean sun,
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The relations described in the preceding paragraphs, and as given by
Egs. 4-1 through 4-15, are illustrated by Fig. 4.3, from which it is
evident that

LMT = GMT - A = UT - A (4-16)
LAT = GAT - A (4-17)

or, after slight rearrangement,

UT - LMT = GMT - LMT = A ' ' (4-18)
GAT - LAT = A . (4-19)

again illustrating the basic principle first stated in section 4.3: The
difference between the corresponding local times of two places is equal -
to their difference in longitude.

Fig. .3 Relation between the solar times of

The point labeled M is the midnight point,
5 Eiaaa.heafl of the sun; similarly, mM

The definition of Universal Time as given above is for the value as
deduced directly from observations; for greater precision, it is
necessary to correct the observed values for the rotational
irregularities of both polar motion and seasonal variation. The numbers
0, 1, and 2 are conventionally used for this purpose, in the following
way:

UTO UT as deduced directly from observations
UT1l UTO corrected for polar motion
UT2 = UTO0 corrected for both polar motion and seasonal variation.

The corrections for polar motion and seasonal variation are so small
that it will normally not be necessary in our work to distinguish between
the three types, so that we shall call any one of them simply "Universal
Time," unless the topic is such that it is necessary to be specific.



4.5 Relation Between Mean Solar and Mean Sidereal Time Interval. A
definite relation exists between an interval of mean solar time and the
corresponding interval of mean sidereal time, so that knowing the one is
equivalent to knowing the other. To understand this relationship,
consider the earth moving about the mean sun as shown in Fig. 4.4.

Suppose that at a given instant the mean sun is on the meridian of
an observer at O, and that a line joining the earth's center C and the
mean sun S points toward a certain star. After 24 sidereal hours, the
earth's center is at C' and the earth has completed a full rotation so
that the star is again on the observer's meridian.

— Y
tow - =P\ -
) | \
_ ) o .'_6@
tos 5\_/

Fig, 44 Relation between solar and sidereal time interval,

From the figure, it is clear that the mean sun is not yet on the
meridian, lacking about 1° of rotation, which is equivalent to about

4™ of time. This shows that the mean sidereal day is shorter than the
mean solar day by about 4™. The sidereal clock thus gains on the mean
solar clock by this amount daily, which accrues to a full day at the end
of the tropical year.

The length of the tropical year is given in the Almanac as
containing 365.24220 mean solar days (after rounding to an accuracy
sufficient for our purposes); the mean sidereal year thus contains
366.24220 mean solar days, leading to the following ratio:

366.24220

1 mean solar day = 365.24220 m

ean sideareal day = 1.0027379093 mean
sidereal day

This ratio is, in general, the ratio of any interval of mean
sidereal time to the corresponding interval of mean solar time.
Conversion from an interval of mean sidereal time to the corresponding
interval of mean solar time, or the converse, may be done by means of the
above relation.

55



56

4.6 Relation Between Mean Solar and Mean Sidereal Time Epoch.
Until 1984 January 1, for consistency with the FK4 system of astronomical
constants in use until that time, the fundamental relation between the
epoch of mean solar and mean sidereal time is given by the expression

Greenwich mean sid. time @ 0D yrl = 6P 38™ 45836 +
86401845542 T + 050929 T2 (4-20)

where T denotes the number of Julian centuries of 36525 days which, at
the beginning of the calendar day concerned, have elapsed since 1900
January 095 (JD 2415020.0) on the Greenwich meridian.

On and after 1984 January 1, for consistency with the FK5 system of
astronomical constants to be introduced at that time, the fundamental
relation between the epoch of mean solar and mean sidereal time is given
by

GMST at OP UT1 = 6M41M50$54841 + 86401845812866 T, |
0093104 T2 - 00000062 T3 (4-21)

where T, denotes the number of Julian centuries of 36525 days which, at
the beginning of the calendar day concerned, have elapsed since 2000
January 19 12h yr1 (JD 2451545.0) on the Greenwich meridian.

The table of Universal and Sidereal times in section B of the
Almanac has been constructed by using the appropriate one of the above
expressions. A discussion of the table is given in the 'Explanation'
section of the Almanac.

Example: Find the GMST at oP UTl on 1984 January 1
(JD 2445700.5) by each of the above expressions.

2445700.5 - 2415020.0
T = 36525 = 0.839986

which, when used in eq. 4-20, gives

GMST at 0 uT1 = 6P39M2256389

2445700.5 - 2451545.0
= = =0e16001)
Ty 36525 S L

which, when used in eq. 4-21 gives
eMsT at 0P yrl = 6h39M22$7025

The difference of 050636 in the two results is equal to the difference
in right ascensions of the FK4 and FK5 systems.
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4.6 Relation Between Mean Solar and Mean Sidereal Time Epoch.
Until 1984 January 1, for consistency with the FK4 system of astronomical
constants in use until that time, the fundamental relation between the
epoch of mean solar and mean sidereal time is given by the expression

Greenwich mean sid. time @ 0P UT1 = 6P 38™ 455836 +
86401845542 T + 050929 T2 (4-20)

where T denotes the number of Julian centuries of 36525 days which, at
the beginning of the calendar day concerned, have elapsed since 1900
January 095 (JD 2415020.0) on the Greenwich meridian.

On and after 1984 January 1, for consistency with the FK5 system of
astronomical constants to be introduced at that time, the fundamental
relation between the epoch of mean solar and mean sidereal time is given
by

GMST at 0P UTL = 64150554841 + 86401845812866 T,
05093104 T2 - 050000062 T3 . (4-21)

where T,, denotes the number of Julian centuries of 36525 days which, at
the beginning of the calendar day concerned, have elapsed since 2000
January 19 12D UTl (JD 2451545.0) on the Greenwich meridian.

The table of Universal and Sidereal times in section B of the
Almanac has been constructed by using the appropriate one of the above
expressions. A discussion of the table is given in the 'Explanation'
section of the Almanac.

Example: Find the GMST at ol uTl on 1984 January 1
(JD 2445700.5) by each of the above expressions.

2445700.5 - 2415020.0
T = 36525 = 0.839986

which, when used in eq. 4-20, gives
GMST at 0P UTl = 6h39M22563987/4¥

T = 2445700.5 - 2451545.0 = «0,16001L
u 36525

which, when used in eq. 4-21 gives
GMST at 00 UTl = eP39M22$7028 3/

The difference of 050636 in the two results is equal to the difference
in right ascensions of the FK4 and FKS systems.
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4.7 Ephemeris Time. The failure of the rotational time systems
({sidereal and solar) to provide a means of obtaining a uniform time scale
directly from observations led astronomers to a new system in which the
dynamical motion of the bodies in the solar system are used in
determining the time scale. Ephemeris Time is the uniform measure of
time defined by the laws of dynamics and is determined in principle from
the orbital motions of the planets, specifically that of the earth. The
value of Ephemeris Time at any epoch is obtained by directly comparing
observed positions of the sun, moon, and planets with their gravitational
ephemerides; observations of the moon are the most effective for this
purpose, due to its relative nearness and gfeater apparent speed. An
accurate determination requires observations over an extended period of
time and, in practice, takes the form of determining the correction AT
that must be added to UT to obtain ET, thus:

ET = UT + AT (4-22)

The value of AT is not predictable, except roughly, because of the
unpredictable variations in the rate of rotation of the earth. Precise
values of AT are generally unavailable for several years after the
observations are made due to the time required for data reduction and
publication. The Almanac gives values of AT for the past several years,
together with an extrapolated value or values for the current year.

Ephemeris Time is the argument in several Almanac tables of
positions of the various heavenly bodies.

4.8 Atomic Time. Within the past few decades, various time scales
based upon certain phenomena involving the cesium 133 atom have been
devised. The particular time scale resulting from analyses by the BIH
(Bureau International de 1'Heure, located in Paris) of the atomic time
standards of many countries is known as_TAI (Temps Atomique
International). The fundamental unit of TAI is identical to the
fundamental unit of time in the International System of Units, that is,
the SI second.

4.8.1 Coordinated Universal Time (UTC). The present trend of
universal times UTO, UT1l, and UT2 is that of a gradual departure from
TAI, due to the gradual slowing of the earth's rotation, as shown in Fig.
4.5, To provide a world-wide, uniform time scale which has the same rate
as TAI but yet which is close to UT in epoch, the time scale called
Coordinated Universal Time (abbreviated as UTC) has been devised. UTC is
a step-function time scale, as shown in Fig. 4.5, having the same rate as
TAI (and ET, since the rates of TAI and ET are identical, as far as is
known at present, to extremely high precision), but with occasional
l-second steps, called leap-seconds, to maintain agreement with the epoch
of UT.

*Epkemens Time has been ra-named as Dvnamcd Time . All
remarks made here Qoncerning Ephemems Time are To be
(‘egudgd as per‘fammo.’ . ) Dsn«mtcal Time. There are Twe kinds
of Daﬂam-cd Time ; 'H‘\ej are explarned m Fhe A{mq,\u' Section B
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Insertion of leap-seconds is done, under international agreement, by
the BIH, following advance notice of several weeks or even months. The
number of leap-seconds extant at any given instant is denoted as

AAT = TAI -~ UTC (4-23)

A table of leap-seconds versus past epochs is given on page B5 of the
Almanac; also on that page is given a table of

(4-24)

AET = ET - UTC

Fig. 4.5 Relations among

variovs time scales.

)

ET-TALS

AVUT = UT{-UTC

UT (uTe,uTy,UT2)

| TP ST R R PN Y DU R S

. 1 o 8! 82 a3 8¢ as

CALENDAR YEAR (19xx)
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4.8.2 Radio Broadcast of Time Signals. The National Bureau of
Standards radio station WWV, located at Ft. Collins, Colorado, broadcasts
UTC and certain other time information on a continuous basis, using
frequencies of 2.5, 5, 10, 15, and 20 MHz. The transmissions include,
but are not limited to, voice announcements of UTC, a binary coded
decimal (BCD) time code, seconds ticks, standard audio frequencies,
weather information, and UT1-UTC corrections.

4.8.3 AUT1 = UT1l - UTC. While UTC is the preferred time scale for
ordinary, everyday, time-keeping or time-tagging purposes, including the
setting of our normal clocks and watches, there are some applications
such as precise navigation and satellite tracking which require that one
of the universal time scales (UTO0, UTl, or UT2; not UTC) which are
locked to the earth's actual rotation rate be used. The particular time
scale used in several of the Almanac tables (for example, the table of
Universal and Sidereal times in section B) is UT1l as described in section
4.4 of the present text. To convert from UTC to UT1l, a knowledge of

AUTL = UT1 - UTC ) (4-25)
is required.

For users needing AUT1 to a precision of only 0§1, WWV encodes
this information into the broadcasts by using double ticks after the
start of each minute. The amount of the correction is determined by
counting the number of double ticks heard each minute and noting their
position. The lst through the 8th ticks indicate a positive value of
UT1l; the 9th through the 16th ticks indicate a negative value. For
example, if the 1lst, 2nd, and 3rd ticks are double, UT1-UTC = +053 .
Again, if the 9th and 10th ticks are double, UT1-UTC = -052 .

For users requiring AUT1 to higher precision, or for epochs other
than the current epoch, reference may be made to page B5 of the Almanac,
keeping in mind that the notation_:HE:_ggwggggﬂghg;gxis strictly UTl. It
will be seen that the AUT1 values printed there are given to a precision
of 0501 for epochs earlier than about 1 year prior to the publication
date, and to 051 thereafter.

For users requiring AUT1 to still higher precision for current,
recent past, and short-term future values, reference may be made to
various publications of the U. S. Naval Observatory in Washington, D.C.
For example, their "Earth Orientation Bulletin, Time Services
Publication, Series 7", issued weekly to authorized recipients, contains
such information to a precision of 05$0001.

In any case, once UTC and AUTl are known, UT1l is found by adding

UT1 = UTC + A UT1 = UTC + (UT1 - UTC) (4-26)
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4.9 Time Zones. In timekeeping for ordinary civil purposes,
confusion would arise if every place used the local solar time of its own
meridian. In order to avoid having a different time at practically every
city, a system of standard time zones has been devised, with all persons
within a single zone keeping the same clock time. The world is divided
into 24 zones, each having a nominal width of 15° (lh) of longitude
(sometimes the actual border of a zone is modified to make it conform to
a geographical feature or political boundary). Each zone is centered on
a meridian which is an integral multiple of 15°, and the zone time for
each zone is taken as the local mean time for that central meridian. The
same clock time is thus kept by all persons within a large area, and this
time usually differs from the local mean time of any place in the zone by
less than 30™. The meridian of Greenwich is taken as the center of the
zone system and of the zone numbered zero. Zones to the west are
numbered +1, +2, +3, etc., and those to the east are numbered -1, -2, -3,
etc., up to 12 in both directions. The twelfth zone is divided into two
parts by the date line (the meridian 180° from Greenwich), the eastern
half being numbered +12 and the western half -12. When the date line is
cgossed in a westerly direction, the calendar date must be advanced by
1%,

Central Time

108 ‘

Fig, 4.4 Map showing the standard time gones in the United States.
(The clocks show the zone times corresponding to the instant of 127u.r.)
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The relation between the time on the Greenwich meridian, the time of a
given zone, and the zone number or zone -description is given by

UrTC = 2T + 2D (4-27)

Many of the standard time zones have been given names, a few of which
are listed in Table 4.1.

Table 4.1, Standard Time Zones

‘Standard Zone . Zone Abbreviation
Meridian Description Name for the zone time
60 +4 Atlantic AST
V) +5 Eastern EST
90 + Central CST
105 +7 Mountain . MST
120 +8 Pacific PST
135 +9 Yukon YST
150 +10 Alaska-Hawaii HST
165 +11 Bering BST

In the United States, under the Uniform Time Act of 1966, all states,
The District of Columbia, and U. S. possessions must observe Daylight
Saving Time beginning at 2D 00™ zZone Time on the last Sunday in April
and ending at 2h 00® Zone Time on the last Sunday in October,
provided, however, that any state may exempt itself from the law by
legislative action each year. (The states which generally do so are
Arizona, Indiana, and Hawaii.) Daylight Saving Time is achieved by
advancing the clock one hour; when this is done, the time then kept by
each zone is the standard time of the next zone to the east, and the
letter "S" in the appropriate zone time abbreviation is replaced by the
letter "D". For example, in zone 7, the instant on a certain day which
would normally be designated as 16D 40™ MsT will, under the Uniform
Time Act, be designated as 170 4om MDT; this instant is also properly
designated as 170 40™ CcST. Thus it is seen that, during the
half-year in which Daylight Saving Time is in effect, persons in zone 7

keep the standard time of zone 6, those in zone 6 keep that of zone 5,
and so on.
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4.10 Time Diagrams. To aid the process of visualizing the ‘
relations between the several kinds of time, a north polar view of the i
celestial sphere showing the hour circles, bodies, and reference points
involved may be helpful. Such a time diagram is shown in Fig. 4.7; PG
represents the Greenwich meridian, so that PD is the date line; imagine
the points G, £, and D as fixed, with the other points moving clockwise
(i.e., westerly) around the diagram, at their proper relative speeds. The
mean midnight point mM is always directly opposite the mean sun m(® . At ‘
the instant for which the diagram is drawn, mM is between the meridians of I
Greenwich and the observer so that the date is different at those two
places. Notice that the date changes at two places: at the mean midnight
point and at the date line. There can thus be at most two calendar days
in existence at the same epoch, considering the whole earth, and this is
the usual case; for one instant on each day, the one day exists all around
the earth. For example, the local mean time at the date line is shown as
approximately 150 35M; after another 8" 25M of mean solar time,
the point mM will be at the date line, and the calendar day of Monday,

April 6, will exist over the entire earth.

- em® = ephemeris mean sun

Coh m® = mean sun

;ﬁ @ = true sun

: mean equinox
= true equinox
= mean midnight

EOT = equation of time
-
=

- |
-3
n

Fig, 4.6 Time diagram
showing the relatiggi
between the various kinds
of astronomical tines,
The angles corresponding
to EOE, EOT, and AT are
‘Very much enlarged for
clarity,

equation of the equinoxes
ET-UT .

local mean sidereal time
LAST = local apparent sidereal time
IMI = local mean time

IAT = local apparent time

AT
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4.11 Conversion of time scales. In solving certain of the
problems which arise in Engineering Astronomy, it often becomes necessary
to convert from one time scale to another. Among the time scales most
frequently involved in such conversions are the following: local mean
solar time, local mean sidereal time, zone time, Universal Time (UTC,
UT1l), and Ephemeris Time. A few of the more frequently required
conversions are discussed in detail in the following section.

(The rest of this page intentionally left blank.)




64

4.11.1 To Change from Zonc¢ Time to Local Apparent Sidereal Time.

To obtain the local apparent sidereal time on a given meridian
corresponding to a specified instant of zone time, the following method
may be used:

(a) Convert zone time to Coordinated Universal Time using eq.

4-27, UTC = Z.T. + Z.D.

(b) Convert UTC to UTl using eq. 4-26, UTl = UTC + AUT1.

(c) Enter the Almanac table of Universal and Sidereal Times with
the above UT1 date as argument; take out the tabular value of
Greenwich mean sidereal time at ohurl on that date.

(d) Multiply the value of UT1 from (b) by 1 + & = 1.,0027379093

(e) Add the values from (c) and (d4):
. mean sidereal time at the desired epoch. .
(£) Interpolate the tabular values of EOE to the epoch’ of UTl.,
Add the values from (e) and (f);

the result is the Greenwich

~

the result is the Greenwich

apparent sidereal time at the desired epoch.
(h) sSubtract the west longitude from the value fpund in (g); the
result is the local apparent sidereal time.

Example: On 1983 March 28, in longltude 106°32'06"W> at < N

19127™165 zone 7 time, find the LAST.

Zone Time
+ Zone Description

- P —

1983 March 28919h27M16S
+7h

(a)

Coordinated Universal Time (UTC)
AUT1 (from U.S.N.O. bulletin)

1983 March 299 2h27m16S
-050250

(b) UT1 1983 March 299 2h27M1559750

(c) GMsT @ 0PUTL on 3/29 12h23M2052477

(d) (1+0 )+ (UTl) = GMST since 0UT1 +2N127Mm4081671

(e) GMST @ epoch 14P51Mp0S4148

(f) EOE @ epoch (by interpolation) -150675

(g) GAST @ epoch 14h50M59$3473

(h) -Aw -7 6 8.4 -
LAST 7h44Ms5059473
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4.11.2 To Change from Local Apparent Sidereal Time to Zone Time.
To obtain the zone time on a specified meridian corresponding to a given
instant of local apparent sidereal time, the following method may be used.

(a) Add the west longitude to the given local apparent sidereal time;
the result is, by eq. 4-10, the Greenwich apparent sidereal time.

(b) Enter the Almanac table of Universal and Sidereal times with the
given calendar date as argument; since the UT1 epoch is at first
unknown, assume it to be zero, and take out the tabular value of EOE
at ofurl.

(c) Subtract the value found in (b) from that found in (a); the result
is the Greenwich mean sidereal time.

(d) Again from the table, take out the Greenwich mean sidereal time at
0"UT1 on the same date.

(e) Subtract the value found in (d) from that found in (c); the result
is the change in Greenwich mean sidereal time since obyr1.

(f) Divide the result found in (e) by 1 + @ = 1.0027379093; the result
is the change in UT1 since OhUTl, hence is UT1 itself.

Since the value of UT1l was not known in step (b), the value of EOE
used was necessarily not the true value, but only a first
approximation. Now that a trial value of UT1l has been determined,
a second, and closer, approximation to EOE can be found by
interpolation, and steps (c) thru (f) repeated to yield a better
approximation to UTl, and so on until a desired level of accuracy is
obtained. In practice, two interations will be found to suffice.

(g) Using the final value for UT1l as argument, determine the
corresponding value of AUT1l = UT1-UTC from an appropriate source,
such as the Series 7 bulletins of the U. S. Naval Observatory. The
argument of AUTL in these bulletins is strictly UTC, but in
practice UT1 may be used as argument with no loss of accuracy.
Subtract the value of AUT1 thus found from UT1l; the result is UTC
of the desired epoch.

(h) Subtract the zone description from the wvalue of UTC found in (g);
the result is the zone time of the desired epoch. Remember that the
calendar date is a significant part of the UTC, and that it may be
necessary to repeat the entire above process from step (b), if the
wrong date was used at first.
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The local apparent sidereal time for an observer in longitude

106°32'06"W (zone description = + 77%) is 7144M50$9375; the

local date is 1983 March 28.

Find the corresponding zone time.

LAST 7h44M5059473
+ Aw +7 6 8.4
(a) GAST 1450M5953473 5953473
(b) -EOE (UTL unknown at - (-1.0581) -(-150590)
first; assume as zero)
(c) GMST 14hs51m 98 405¢ 6054063
(d) -GMST @ 0BUTl1 on -12 19 23.6924  -23.6924
1983 March 289
(e) GMST 2h31m3657130 36.7139
(£) =+ (1 +0°) 2h31m1158150 1158759
(g) =-AUT1 from U.S.N.O. -(-$0251)
bulletin
UTC 2h3m 1158010
(h) - 2.D. -7h
Z.T. 1983 March 279 19831 , 1158010
but this is on the wrong day, .. must repeat from (4d)
(a) GAST 14P50M5953473 5953473
(b) -EOE -(-1.0666) -(-1.0675)
(c) GMST 1ah51Mp0S 4134 60.4148
(a) =-GMsT @ 0MUTl1 on -12 23 20.2477 -20.2477
1983 March 299
(e) GMST 2h27m 4051662 4051671
(£) <+ (1 +0)
UT1 1983 March 294 2h27mM 58474 1559750
(g) -AUTl from U.S.N.O. bulletin -(-$0250)
UTC 1983 March 299 2ho7m 1650000
(h) -Z.D. -7h

%.T. 1983 March 289 19ho7m

1650000
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4.11.3 To change from Local Mean Time to Zone Time. There are tables
in both the Astronomical Almanac and the Nautical Almanac which involve
values of local mean time; each observer must convert these values to his
correct zone time. This conversion may be made by means of the following
procedure:

(a) Obtain the UTC corresponding to the specified epoch of local mean
time through the relation

UTC = IMT + A, (Eq. 4-18, using UTC for UT)
(b) Obtain the corresponding zone time from the relation

ZT = UTC - 2D (Eq. 4-27)
Combining the above steps, we may write

ZT = IMT + A, - 2D (4-28) .

from which it is seen that, to obtain the zone time corresponding to a
specified instant of local mean time, add to the ILMT a correction of
(iw - ZD), that is, add a correction of 4™ for every degree by which
the observer is west of his standard meridian; if he is east of his
standard meridian, the correction is to be subtracted.

Example: The local mean time of a certain event, as observed
from a place in 106° 30' W longitude, is 5 16™; £ind the
corresponding zone time.

The nearest standard meridian is 105° (see Table 4.1), so that the
zone description is 7. The time equivalent of 106° 30' is

7h6m; the correction from local mean time to zone time is thus

6m, to be added, since the observer is west of his standard
meridian. The zone time of the event is then

ILMT + ( )\w - 2D)
sh jgm 4+ g
ZT = sh 22m,

ZT

]

From the foregoing discussion, it is seen that to convert from zone
time to local mean time, the inverse process may be used.
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Exercises

Using the formula for general precession from the Almanac
'Explanation' section, show that the period of the general
precession is about 26,000 years.

The local hour angle of the vernal equinox referred to a place in
160° W longitude is 14 15™; find the apparent sidereal time
for the place.

If the apparent sidereal time in longitude 320°W (40°E) at a
given ‘instant is known to be §h 14™, find the apparent
sidereal time at each of the. following longitudes:

(a) 20°W (b) 85°E (c) 160 (d) 200°
If the equation of the equinoxes is 0P5 at the instant referred

to in problem 4-3, find the mean sidereal time on each of the
meridians involved. "“‘ '

Give the hour angle of the mean equinox at each of the meridians

‘involved inmprobléms 4-3 and 4=4.

Find the mean sidereal time for a place in 67°E longitude at the
instant of upper transit of Regulus, if the equation of the
equinoxes is -094.

If the hour angle of the mean sun is (a) Gh (b) 17h, what is
the mean solar time?

Using Fig. 4.2, find the local apparent time for part (a) of
problem 4-7, for each of the following dates: (a) Feb. 20,
(b) Sept. 3, and (c) Nov. 11.

On each of the dates specified in problem 4-8, what will be the
local mean time of apparent noon?

If the local mean time of a place in longitude 80°W is
4h 20™, find the mean time of a place in longitude 120° at
that same instant.

Same as problem 4-10, except that the second place is in longitude

160°w.

The local mean time of a place in 108° 30' 30" W longitude is
February 39 4P 10™ 205. Find the Universal Time of this
instant.

For each of the intervals of mean solar time listed below, find
the corresponding interval of mean sidereal time, using the ratio
given in section 4.5 of the text.

(a) 5° 30™ ‘ (c) 22P 18™ 36°
(b) gh el (a) 15P 42m 228
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4-14. For each of the intervals of mean sidereal time listed below, find
the corresponding interval of mean solar time, using the ratio
given in section 4.5 of the text.

o (a) 4" 24" (c) 21" 54™ 18°
(b) oh 15™ (a) 14h 30m &S
K 4-15. Using the appropriate equation from section 4.6, calculate the

Greenwich mean sidereal time for the epoch May 2@ oh yr1.
Verify your answer by comparing it with the tabular value in the
Almanac Table of Universal and Sidereal Times.

'ﬁ\ﬁ 4-16. Find the ecliptic longltude and ecllptlc latitude of the sun at
- the epoch October 79 14h 26™ 135 § UT<

4-17. Find the right ascension and declination of Jupiter at the epoch Prse €27
June 84 3P 20M 425 Eamirw) UTC

4-18. Find the rlght ascension and declination of the moon at the epoch
September 49 5 46™ 215 pembam®) U7 <

4-19. By listening to radio station WWV (on base, dial 120), determine
the current value of ATUT1.

4-20. Using the above value of AUT1, convert the Coordinated Universal
Time of 170 14™ 195253 to the corresponding epoch of UTl.

| 4-21. At a particular instant UTC = 31 48® 26S59, AvTl = -0%28,
~ and AAT = 21°, For that same instant, determine the
corresponding values of TAI, UT1l, and ET{(DT).

For current values of A UT1l which may be required for the solution
of any of the following exercises, ask the instructor.

4-22. Find the local mean and apparent sidereal times for Sacramento Peak
Observatory, New Mexico, at the epoch February 6d 20h 10M zone time.

4-23. Find the zone time of transit of the star Vega as seen from the
Hale Observatory, Palomar Mountain, California, on June 4.

4-24. For the star and date specified by the instructor,‘find the zone
time of transit of the star as viewed from EMOS. Sirsa A
Man % 0
4-25. On the average, what is the daily difference in transit times for a
given star and observing site? Be sure to specify whether it is
earlier or later each day.

4-26. At what zone time on August 19 will the LAST be zero, as seen from
the Mauna Kea Observatory, Hawaii?
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4-27. For the epoch specified by the ingtructor, find e follow1ng —
quantities, for the sun: 3/ 3GUgs 72y 1 sh J~7 + 52295

(a) right ascension = 3 v 3
._.-—-—&ia\ ¢ 7 . <
(b) declination ="72 . € LTSSAZ P upi A o e s

(c) true geocentric distance zw#7ﬁ4L§;§55?§§

. 4-28. Give the sun's azimuth and altitude for April 21 at 120 oom
y zone time as seen from EMOS.

4-29. Repeat the preceding exercise, but for Venus.

Give the zone times of sunrise, sunset, and the end of }9?69/
astronomical twilight for Mount Evans Observatory, Colorado, on

the date of the summer solstice. A&tf/4~ L/ﬂl -+ 4@ﬁ£upwq~ifﬁzmﬁf i

Give the zone times of moonrise and moonset for Catalina
Observatory in Tucson, Arizona, on June 19.

/) = A +&£
a

I’

223" 23 3%

a = 53 3¢7 37



CHAPTER 5 71
CORRECTIONS TO OBSERVATIONS

5.1 General Remarks, Engineering astronomy deals in general with the solution
of the astronomical triangle based usually on observations made, or to be made,

by means of portable field instruments such as a theodolite or an engineer's
transit. In some cases, a larger device such as a telescope, radar, solar radiation
collector, etc.,'may need to be pointed to some heavenly body at a specific time.

There are two different physical situations involved when making calculations to
support such field operations, as follows: |

(1) prediction of position =~ the calculation of the obcentric (observer-centered)

coordinates of the body at a specific epoch, either future or past, and

(2) reduction of observation =~ the mathematical treatment of a completed
_ observation so as to yield a desired result,
;In either case, the effects of certain physical phenomena upon the body coordinates
need to be considered and appropriate corrections applied as necessary.

The corrections to be discussed in this chapter are those due to the effects of

refraction, semidiameter, geocentric parallax, diurnal aberration, and deflection of
e —— —— ———— ————— N

—_— e e

the vertical, A complete discussion of corrections due to systematic errors of the
observing instrument itself is beyond the scope of this text; however, Appendix A
does contain a few remarks about methods of eliminating certain of these systematic

errors,

5.2 Refraction., When a ray of light passes through the atmosphere of the earth, the
contimial variation of the air density along the path of the ray causes a contimal
change in its direction of travel. In a general way, the ray is bent downward due to
the refractive effect of the air through which it passes. If the atmosphere is
horizontally stratified, that is, if it is composed of a number of layers each of
different density but with a constant density in any single layer, then the bending
of the ray path takes vlace entirely in a vertical plane, There is therefore no
effect on the azimuth of an observed heavenly body, that is,

AA =0 (5-1)

The effect of refraction on the observed altitude of a heavenly body is shown in
Fig. 5.1, which represents the earth with center C, an observer at 0, a heavenly
body at B, and a horizontally stratified atmosphere extending from the earth's
surface to the dashed circle. In vacuum, a light ray from B would proceed to O along
the straight line BAO, and the true zenith distance z, would be measured by the

observer at O, In the presence of an atmosphere, this ray would be bent downward
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within the atmosphere to follow the path BAK, thus missing the observer entirely.
There would exist, however, another ray leaving B along the line BA' which would be
bent downward so as to reach point O at an apparent zenith distance 2z, ; to the
observer, it would appear that B were located along the line OB'. This leads to the
conclusion that due to refraction, all objects appear nearer the zenith, and thus

higher above the horizon, than they actually are. The angular difference

bz,.= 2, - 2, (5-2)
(or Aa, = al-a, , which is the same thing)

is called the refraction correction; it must be added to a predicted obcentric

altitude, or subtracted from an observed altitude, to yield the corresponding

other value.

/4ﬁﬂf7 _flixg; Fig. 5.1 Atmospheric refraction.
~. :
~T .
e
C

It should be noted that the refraction correction AzAR is not, in general,
rigorously equal to the total bending of the light ray between points B and O;
Fig. 5.2 may help make this clear. The ray from B which ultimately reaches the
observer at O departs from B at an angle &
above the straight line BO, The total /
bending of the ray is the angle 2B

between the tangents to the path at B

and at O, whereas the refraction

correction 1s strictly the angle Az, 0
formed at the observer by the straight

line OB and the tangent to the incoming ray,

i.e., the straight line OB', From the geometry of the figure, it is seen that

Bz,

Fig. 5.2

AZMa = f - & (5-3)

LI ISR L LT IRT L LN Y



As the point B recedes to a very great distance from O, the angle © approaches
zero and A4z,, approaches £ 3 in this limiting case, the total bending of the ray
is exactly equal to the refraction correction, which is then called the astronomic
refraction, It can be shown (see Appendix E) that all of the natural heavenly bodies
are sufficiently far away so that ® is 1" or less, hence may usually be neglected
for engineering purposes. For objects relatively near to the earth, such as
artificial satellites, 8 will be much larger than 1"; the treatment of refraction
for such cases is not within the scope of this text.

Various formulas for computing the value of the astronomic refraction correction
have been used in recent years. The simpler formulas are usually developed by
neglecting the earth's curvature and assuming that all of the refraction takes place
at the upoer surface.of the atmosphere; more elaborate derivations take the earth's
curvature into account and also include the effects of barometric pressure,
temperature, and relative humidity. Since the resulting analytical expressions are

somewhat complex, numerical integration is frequently used to obtain a solution.

A defect in all analyticalimethods is that the actual ray path is a function of the
state of the atmosphere at every point along the path, and this is never known in
a practical situation., The analyst can only assume some atmospheric model, with
arbitrary standard conditions of pressure, temperature, etc., at the observer, and
realize that the result will represent, at best, an approximation to a statistical

mean (i.e., average) refraction,

An alternate approach is to construct tables of refraction by means of repeated
observations of stars from a known position; several such tables have been
constructed and are still in use today, e.g., the Pulkovo tables and the Greenwich
tables. Again, these tables necessarily yield statistical mean values of refraction,
since the actual atmospheric state corresponding to a particular individual

observation is never known all along the ray path.

13
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5.2.1 Refraction correction to observed altitude.

The Nautical Almanac contains tables of astronomic refraction corrections
which are based upon extensive theoretical and practical investigations by

Garfinkel. The data in ghe tables are for assumed sea-level standard conditions
of 1010 millibars and 10 Celsius.

By plotting and smoothing the N.A. tabular data, and by applying regression
anelysis methods to the results, the following two formulas have been obtained.
Each formula represents, within its indicated range of validjty, & match to the

smoothed N.A. data within 1 agc-second for altitudes above 5 and within 3 arc-
seconds for altitudes below 5 .

For the region 505 a' < 90% a' = M nm

_ g2 0"058 0000068
Aam =a' -8.=—5—— - -——-35—- + —— @ " b (5-4)
) tan a' tan’a’ tan"a' X RF+
For the region 0° < a' < 5% \@r’%lo"/fw o s
7
— N

Aa,, = a' - a = 17833 &' - 29923 a'3+ 196796 a'2- 778"9 & + 20700 (5=5)

where Aa . = Dean astronomic refraction

a' observed altitude, degrees

a true (corrected) altitude, degrees

Eqs. 5-l and 5-5 give the mean astronomic refraction for the assumed standard
conditions of 760 millimeters of mercury and 10° Celsius, Conversion to other
conditions may be made by multiplying by appropriate factors as indicated:

1070 willibrn = S ¢ mm e

! - a = _
Ae,, =a' -a= &, K K (5-6)
b
Where = —
“ 760
b = barometric pressure in mm of mercury
28
273 + C
C = atmospheric temperature in °Celsius
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5.2.2 Refraction correction to predicted (true) altitude.

The preceding discussion is for the case in which an observed altitude is to
be reduced to the true altitude by removing the effect of refraction. 1In the
reverse case, when it is desired to convert from a predicted true altitude to the
corresponding altitude including refraction, the following equations may be used,
with errors as before:

For the region 5° a9

" ” ”
Kim =g -8 = 5871 _ 0%v070 + 0.05)0086 (5-7)
tan a ta.n’a tan” a

For the region -0°34'34" < a < 5%,

-A-‘n =a -a =0U711 a.h - 12979 a3 + 103%L a2 - 51872 a + 1735"0 (5-8)
Eqs. 5-7 and 5-8 give the mean astronomic refraction for the assumed standard

conditions of 760 millimeters of mercury and 10° Celsius. Conversion to other
conditions may be made by multiplying by appropriate factors as indicated:

aa,, = a-a = A—an K, K, (5-9)

where K.b and Kt are defined as before,

(The rest of this page intentionally left blank.)
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5.2.3 The effect of refraction on the right ascension, local hour angle,
and declination of a body is shown in Fig. 5.3, which represents the celestial
sphere with the observer's zenith at Z., Point P is the celestial north pole;

B is the true position of a body and B! is its apparent position as affected

by the refraction r = Aa,, « The hour circles PBF and PB'F' are separated by the
angular amount Ah = h' « h , the difference in the local hour angles of B' and B.
The figure shows that Ah is also equal to AX= & = ', the difference in the
right ascensions of B and B'.

Fig. 5.3 The effect of refraction
upon the right ascension,
local hour angle, and
declination of a body.

In the astronomic triangle PZB, the parallactic angle 8 at B is found from
the four-consecutive-parts formula (Eq. 3-5) to be:

sin (360°-h) .
- c0s(90°- &) cos (360°~h)

tan 8 = SIn(90°=5 ) (5-10)

tan(90°- ¢)

which, upon substitution of the appropriate co-functions, may be written as

-8in h
cos § tan ¢ - 8ing cosh

tan B = (5-11)
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In the spherical triangle PBB', again using the four-consecutive-parts formula,

tan Ah = 5in(%0 - & sin 8 5

——(—Im = - cos8(90 - §)cos 8
tan Ah = %—2— - :i;g con 7 | ‘ (5-12)
Aa = a - a'= Ah or a' = a - Ah | (5-13)
Ah =h' -h or h' = h + Ah (5-1k)

Agein in the spherical triangle PBEB', using the law of cosines,
cos(90°- 6‘) = cos(90°- §) cos r + sin(90°- &) sin'r cos 8

sin 8 = sin S cosr + cos § sinr cos @ (5-15)

Equations 5-13, 1k, and 15 then give the corrected right ascension, hour angle,
and declination,

It should be noted that in Eq. 5-12, as the refraction r approaches zero, its
tangent also approaches zero, and the first term in the denominator tends to
infinity. This is mathematically correct, and leads to the correct result that

Ah also approaches zero. When the solution is being made by means of a calculator
or computer, proper care must be taken to assure of a correct value for Ah.
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The above treatment 1s rigorous; in many cases, however, the approximate method
discussed below will be sufficiently accurate.

The declination circle through B cuts the hour circle PB'F' at the point K
forming the right triangular figure BKB'. The side KB' is equal to A8 = &§-3,
the difference in declinations of B' and B; the hypotenuse BB' = r, the refraction;
the side BK = Ah cosd ,
tTo P
!
J

The figure BKB' is so small that it may, A
without serious error, be treated as a
plane triangle as shown in Fig. 5-3a.

K Ah cos § B
By inspection of the figure, Fig. 5-3a
Ahcos 8 = r cos(90°- 8) =r sin 8 (5-16)
A8 = r sin(90°- B8) = r cos 8 . | (5-17)
Then, since
Ah= @a-a' = h' -h, and a8 = & -9,
Eqs. 5-16 and 5=-17 become
(a-a') cosd = rsinp
(' =h) cosd = rsing
5 - = rcosp
or, finally,
o =oa- D28 (5-18)
n' =n e LEBB (5-19)
§ = 8+rcosp , (5-20)

Egs. 5-18, 19, and 20 then give the corrected right ascension, hour angle,
and declination,
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5.3 Parallax, In a general sense, the term "parallax" refers to the
apparent angular shift in position of an object with respect to & remote
background reference frame, when the object is viewed from two different
locations, In astronomy, the background reference frame is composed of the
most distant stars, which are so remote that they have no significant
parallax of their own, The situation is shown in Fig, 5.4, in which B
represents a body such as a star or a planet which appears to be at point
By when viewed from the observer at and at B, when viewed from the
observer at O,, The line OoA is parallel to line O;B;j the parallax is
measured by the angle A0,B, which is seen to be equal to the angle 01302,
"hence the definition of allax as the tggle measured at the observed
body between lines drawn Eg each of the O serving locations,

Fig. 5.4 The general case of astronomical parallax,
The lines marked with a double slash are parallel,

There are two kinds of parallax in astronomy with which we are concerned;
these are described in the agraphs which follow, PR ,

5e3.1 Annual parallauc%mr p<;{1q£4]&;k_Jﬁ; )sﬁqbﬁu‘ ;%ggh (Zmé7 r@izwd%J

A star which is at a finite, even though very large, distance from the
earth appears to trace ocut an elliptical path on the celestial sphere, as
defined by the most remote of all the stars, in the course of the year, The
paths for stars near the poles of the ecliptic are nearly circular; the paths
of all the rest are foreshortened to appear as ellipses; for stars lying in
the ecliptic plame, the paths are completely foreshortened into line segments
along the ecliptic, The major axes of these elliptical paths are unaffected
by this foreshortening, giving rise to the definition of annual (or stellar)
Eggnllax as the semimajor axis of the elliptical path traced out annually on
the celestial sphere by the star, The annual parallax is alse equal to the
angle subtended at the star by the radius of the earth's orbit, as shown in

Fig‘ 5 05 e
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The annual parallax of a star is related to the distance of the star from
the sun by the relation

A.P.° = sin~t % " (5-21)

where A,P.° is the anmual parallax in degrees and d is the distance from the
sun to the star in astronomical units, Since the annual parallaxes of stars
are very small, they are commonly given in seconds of arc, in which case

the relation is written as

, _ 648,000 1 u
A.P.r --—gr_ . 3 (5=22)

where A.P." is the anmual parallax in arc-seconds; the multiplier on the
right-hand side is the number of arc-seconds per radian.

The annual parallaxes of stars are so small (the largest known value is
less than 1 second of arc) that it may not be necessary to apply a specific
correction for this purpose to any observation, Catalogs.which give precise
star positions do, however, take annual parallax into account in compiling
their tabular data,

Table 5, 1 lists a few stars of relatively large annual parallax,

Table 5,1, Annual Parallaxes of Stars

Star Annual Parallax
Proxima Centauri 05785 (largest known)
Barnard's Star oSk
Iacaille 9352 27
Kapteyn's Star .25
Cordoba 32416 22

Groombridge 1830 12




5.3.2 Geocentric parallax is the angle formed at the center of a heavenly body

by two straight lines, one drawn to the center of the earth and the other drawn

to the observer, It may also be regarded as the difference in direction of the
body as viewed from the center of the earth and from the observer, A related
quantity, the horizontal parallax, is defined as the angle formed at the center

of a heavenly body by two straight lines, one drawn to the center of the earth

and the other drawn tangent to an imaginary sphere which circumscribes the earth
ellipsoid., The horizontal parallax may also be regarded as the angular semidiameter
of the earth circumscribing sphere as viewed from the center of the heavenly body.

The above definitions are illustrated by Fig. 5.6 with the earth's center at C, a
heavenly body at B, and an observer at O, located at a distance r, from C. The
earth circumscribing sphere is also shown, having a radius r, equal to the
equatorial radius of the earth ellipsoid. The geocentric parallax is the angle OBC,
denoted on the figure by the letter p 3 the horizontal parallax is the angle CBT,
denoted on the figure by the letters HP, It is seen by inspection that the
geocentric parallax p is equal to the difference 3z, - 2, , and also to the
difference a. =~ a, . In the figure and in the above definitions, no distinction
is made between geodetic and geocentric latitudes, verticals, zenith distances, etce.
As will be shown later in this chapter and in the Appendix, for all of the natural
heavenly bodies other than the moon, a treatment based on assuming the earth as
spherical will yleld parallax correction values which are within less than one arce~
second of the corresponding values derived from oblate earth considerations,

The moon, because of its relative nearness to the earth, requires an approach which
includes the effect of the earth's oblateness.

H = Moot /amw&%&: argle ki
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In the sections which follow, formulas for the calculation of the geocentric
parallax will be derived. As explained earlier, there are two cases to be

considered: the "prediction of position", in which the geocentric coordinates
are known and the obcentric (observer-centered) coordinates to be found, and
the "reduction of observation", in which the obcentric coordinates are known

and the geocentric coordinates are to be found.

\/a[ugs O‘\C +}\€ Hor:zon’f‘xf pa.ra(la.x ) wl'nd'\ YY)Q.LJ be. desrred
for salution of the formolas for eocentric parallax are
given etner exPlluﬂj or lmpllC!'Hﬂ in +he As’f‘ronomtc)od
Almarac. For the Sun, values are tabulated in Section C
at oOh Dynamical Time dm{ﬂ_ For the Moon, values are )
Given in twa pimaes tn Section D, once da\lﬁ 'n
sexagesimal Unifs | at O DT, and in decimal degree units
N +-ne Poivnom\&\ ‘FOY‘W\.

Horizonteal crellax  values for the

v ‘ Pland’s are neot
“t‘a.'oufaj'ed ,

, 'Hr\eu_, meay , however‘) be obtained baj d.zwdmg +the
O\iop't'ed' ‘./an'ue o-F equod'orua( hom‘zan‘f"a’\ Po,rog“a,x &'{‘ um‘f
distonce (8"74x4) by the true c‘]eoceﬂf‘mc distance of the
Pla,ne‘t‘ in  Astronomical Units values of which are Given
in Section E of +the A[manac\ ot o DT d&\lj.

— ) 1 ’
lebie 5-3,below, gives ™M GX 1 mum \/aJues of 'Hﬁq f‘\omz.onjt'a.l

Parallax for +the Various heaver\{(j boches) based on ther
mean nearesT™ distance £rom the earth.
Tes'e S.3 Moaximuom hotizon*al parallaxes
T
Bo J_L-.!_ C!.m,n(/A.U.\; o= %ﬂ
* Soun | : 8.1a4
¥ Moon .00257 | 3422.61
N\emmj A 14.42
Venus .28 31.41
Mors .S2 1641
JupTer 4,20 2.09
Saturn g.53 .03
Uranus 18.2 0.48
Nepf'une 29.0 .30
Plufo 3e.S .23
Starsg x> o

% ﬂtf@(r/ﬁ/ walua Cnot M
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5.3.3 Geocentric parallax of bodies other than the Moon. Because of the assumption

of a spherical earth, there is no effect on the observed azimuth, that is,
AA =0 (5-23)

The effect of the geocentric parallax on the observed altitude is, by inspection

of Fig. 5.6,

Aa = a = a =2, -2 = D (5-24)

[ < -] ° [

Case 1: Prediction of position. (A., a. given; A , a, required)

Referring again to Fig. 5.6, in the triangle OCB,drop a perpendicolar from O to pont P
on Sl&e. BC. Blj lnsPec'hon QF 'H'\e_ resuH'mﬂ ‘Flsure) Shown here for Comlemer\ce,\_

XCoP = O OP= [, os &

] B
. PB= - Sm O 0/7
__Oj - C_-, Cos Qe

T\r\e.n +an P = PB = rb_ f; Sin a-c

r
u\;\tcj\‘ acﬁ“o.r Jwt&mﬂ “H\ru h'j ro) Lﬁecnmes e
Cos G
- —_— §-25
T—a'“ 1) - rb/r -~ Sm A ( } C
Since Fhe lhorizonTal Pa,ra_ﬂa,g s related t the c‘)eoc_en'{‘rfc distonce  via
iy .
sin P = -:;‘ (a_s may be seen from th]. Sﬂé) X Hien Q‘ﬁ 5-25

b
mouj ‘)e wf‘l'“'en n "Hf\Q *Co(‘w-\

Cos S~
an P =T
f'° Sin P

(5-20)
-~ sim & A

When the ohserver s on the earth c;rc_umsuabmg sphere, ,=fe and the
obove Two numbered Expi‘essxans 51"\(5“43 te

Cog e
fb-— S G

fan pz —Cos Be ‘ (5-26 o)

- Sl

Tan P'—'— (S'ZS’&)

Sin H
Having thus found the geocentric parallax p, the observed altitude is found from

Eq. 5-2L, put'in the form
(5-2La)

a,= a-p
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5.3.3 cont'd=-= Geocentric parallax of bodies other than the Moon.
Case 2: Reduction of observation., (A, , a, given; A_ , a. required)
From triangle OCB in Fig. 5.6,

sin p _ sin(90° + a, )
r, r,

Since sin(90° + a,) = cos a_, , the above expression may be written as

-— ro
ginp = _;;cos a, (5_27)
r,
By inspection of the figure, r, = Eﬁ? , 80 that
sin p — To €08 8 , or
re/sin HP
sinp = —::-‘:— sin HP cos a, (5=28)

For an observer on the surface of the earth circumscribing sphere, r =r, ,
and the above expression simplifies to

T ———— e I

(sin p = sin HP cos a:\\1 | (5-29)

N - L

~. S RS —

Having thus found the geocentric parallax p, the geocentric altitude is found from
Eq. 5-2L, put in the form

a,= &+ p | (5-2Lb)
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S.l Semidiameter. The angle subtended at the center of the earth by the linear
radius of a heavenly body is known as the geocentric angular semidiameter, or

simply as the semidiameter, of the body.

Referring to Fig. 5.8, if r represents the distance from the center of the earth
to the center of a heavenly body at B and R, represents the linear radius of the
body, then the angular semidiameter 8 of the body is given by

R
sins:;*’ s Or

s = sin™t %’ _ (5-k.1)

Fig. 5,8 Relation between the angular semidiesmeter s'of a body,
its lipear radius kh and its distance from the center of the earth.

The Ephemeris gives the semidiameter of the sun and planets at Oh ET each day;
the semidiameter of the moon is given twice daily, at Oh and 12h ET. The adopted
value for the semidiameter of the sun at unit distance of 1 A.U, is 16' 01.18 ;
that for the moon is 15' 32758 at a unit distance of 60,2682 equatorial radii of
the earth.

Since in making observations of the sun or moon it is difficult to sight with
accuracy at the center, it is common practice to sight on the limb, or edge,
instead. The limb is well defined and the setting can be made with precision.

The position of the center is obtained by correcting the observation for the
semidiameter. The amount of the correction is different for different altitudes,
because the body is at different distances from the observer, as shown in Fig. 5.9 .
The apparent enlargement of the semidiameter as the body's altitude increases is
known as the augmentation of the semidiameter. In practice, the effect is of
consequence only for the moon, as will be shown by the following analysis,
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When a heavenly body is at the zenith
of an observer, as shown in the figure

at right, the augmented semidiameter

is given by

"gin s!' =
z r - Re

The augmentation at the zenith is

Asz-.: s;-s

where s is the geocentric semidiameter from Eq. 5-4.1 .
The maximum zenithal augmentation occurs when the body is at minimum distance
from the earth, In the case of the sun and moon, since the orbits involved are
nearly circular, a mean value of r may be used to obtain an approximate value
of Asmax for each body. In the case of the planets, r 1is a minimum when the
planet concerned is "lined up" with the earth and sun as indicated in the figure
below, In the figure, ¥ represents the mean orbital distance of the planet
from the sun; orbital eccentricities and inclinations are ignored.

i - I ) @mnet

Sun 4Ehf“1

r P

The actual linear radius Rb of the planet need not be explicitly known, but may
be replaced in the first expression on this page by its equivalent

Rb = Ty sin 1
where r, = adopted unit distance for the body, and
s, = adopted semidiameter at unit distance . ’

-The Ephemeris gives, in the Explanation section, the adopted semidiameters for
the sun, moon, and planets at unit distance (1 A.U. for the sun and planets,
60.2682 equatorial earth radii for the moon). From those values and from the
formulas and considerations above, together with necessary orbital data from
Table 1.1, Table 5.2 may be constructed. Inspection of the last column of

the table shows that, to a precision of O)1 , the augmentation is negligible
for all of the natural heavenly bodies except the moon,



Table 5.2 Semidiameters and maximum augmentations

Body

Sun
Mercury
Venus
Moon
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto

51

961518
3.34
8.l1

932,58
L.68

98.47
83.33
3L.28
36.56
(not given)

smax

961.18
5.8
30,04
932,58
9.00
23.0L5
9.77
1.88
1.26

'
sma.x

961522
S.L8
30,04
9L8,32
9.00
23.L5
9.77
1.88
1.26

8Le

As

0404

15,74

o O O O

(Note: The values given above for Jupiter and Saturn are the equatorial ones.)

(T™he rest of this page intentionally left blank.)
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S5.li.1 Augmentation of the semidiameter of the Moon: rigorous method,

Fig. 5.9 illustrates a number of related quantities which are useful for the
present development; among them are the geocentric semidiameter s , the obcentric
semidiameter s'= s « As ( As is the augmentation), and the horizontal parallax HP,
By inspection of the figure, it is seen that

R = rsins = dsins' (5=kel)
Also by inspection, _

r= R/ sin HP (5-k.2)
Combining the foregoing and rearranging produces

R sin s
sin s' = —g—s_in_ﬁ? (5=L3)

The angle aé is the geocentric altitude of the moon measured with respect to
the geocentric vertical of the observer at 0, and may be obtained from Eq. 5-33,

repeated here for convenience,

(5-33)

gin a' = cos AP sina_ - sinA¥ cos a_cos A
c c c c

’

=z

'C/ﬁ 5.9 Augmen'/'a.f'/an of +he
SEM/C//&LMQ?Ler oFf 7‘-/'6 NMoovn .

Earth

Circum scri bmg
SPhere
In triangle OCB, using the law of cosines,
2_ 2 2 _ ’ °_at) - z T _ '
d=r +r, 2rrocos (90 ac) = r o+r 2rr°sinac
Using eq. L.2 in this expression yields
R R’r* 2R R r_sina'
e o e , e o c

2
dz——+——- ~
sin HP Re i.nHPRe 1

2
dz— Rz r, . 1l _2'2 gin aé
°\ ®? sin’ HP R, sin HP




8Lg

Taking the square root gives

d =R, 1[(10)2 L _ L Zena (5=L.L)

R,/T TP T R_~ "SI EP

Substituting the above expression for d into eq. L.3 gives

Sin 8§
RQ sSin HP

RV(EYL ___I__ — r; ZSInL'
€ Re + szHP -R.e Sin HPc

sin s'=

which becomes, after a little rearrangement,

sin s

sin s' = (5-L.5)

2
f z T, .
1l +{2\sin HP - 22 \sin HP sin a!
Re Re c

The preceding expression gives the augmented semidiameter s!' as a function
of the geocentric altitude aé referred to the geocentric hqrizon of the
observer, thus is strictly intended for the "prediction of position" case.
The corresponding expression for the "reduction of observation" case may be
obtained in a similar fashion, using the relation

2 _ 2 % ° _
rz r 4+ d-24d r, cos (90 aé)

from Fig. 5.9, to obtain

sin s
sin s' = (5=Le6)
r \1 b r
1« (=2 sin'HP cos a! = =2- sin HP sin a!
Re) o Re (6)

in which aé is the obcentric altitude of the moon referred to the geocentric
vertical and horizon of O. '
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5..2 Augmentation of the semidiameter of the Moon: approximate method.

The expressions for the augmented semidiameter of the moon derived in the preceding
section are rigorous; analysis shows (see Appendix E) that the following approximate
method may be used, with error less than about 0425 , in all cases where the
observer is within 40 kilometers of the earth circumscribing sphere.

In Eq. 5-L.5, let r,equal R, and a! equal 90°; also replace the sine of the
semidiameters by the semidiameters in radians, since they are always small., The
resulting expression is the maximum augmented semidiameter :

s! = 8
MaX 1 - sin HP
Now replace the sine of the horizontal parallax by the equivalent expression
K+HP , where K is equal to the number of radians per arc-second, to obtain
8
s' - o ————
maX 1 - K-HP
where s , s' , and HP are in arc-seconds

w

K= 1865036007

The maximum augmentation is then

o s e gy .
Asmax= sr:lax's'l—'—-K-HP-s"s(l-KHP 1)

A _ s:K-HP _ 8
®max = 1 - k-mP 1
K-HP

-1

The Ephemeris gives the relation between the moon's semidiameter and horizontal

parallax as

s = 0,0799 + 0.272453 HP
where both 8 and HP  are in arc-seconds.

Ignoring the constant term, the relation simplifies to

s = 0,272453 HP or P = 0.27:533

Using this relation , the expression for the maximum augmentation becomes

- e - 8 _
Asmax ~ 180(3600)0.272L53 o1 = 58205 ‘1 (5=Le7)

8 8
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The augmentation at other altitudes is given by

As = ggﬁ—T sin a (5=L.8)
== -

As shown by Appendix E, the altitude a in the above expression may be either the
geocentric or the obcentric altitude of the moon's center or of either limb (upper

‘or lower)

(The rest of this page intentionally left blank.)
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S.ie3 Correction to azimuth and altitude for the effect of semidiameter.

A portion of the celestial sphere is shown in Fig. 5.10 with the observer's zenith
at Z; the solid circle represents the obcentric position of a body in vacuum, that
is, if there were no atmosphere. Point C is the body center and the arc ZC is the
vertical circle through the body.>The vertical circle ZF,, represents the circle
swept by a theodolite whose vertical cross-wire is tangent to the left 1limb of the
body at T. The semidiameter, increased by the augmehtation in the case of the moon,
is denoted by s . The difference in azirmuths of the body's center and left limb

is AAgs a_ is the unrefracted obcentric altitude of the center and oaé is the

oc
corresponding refracted altitude; r is the refraction of the center,

Z
In the spherical triangle ZCT S
e ee T 7
sin Ad, sin 90° P
sins | R00% al) A
. _ sins
sin A, = Sos _a
oc
Since the semidiameters are 5.10
always small, the sine of
the semidiameters may be replaced
by the radian equivalents to give
s
AN, = —> (5-4.9)

sp cos _a
oc

The obcentric altitude of the center, 0dc ? required for the solution of the

above equation, is obtained either by calculation (including the geocentric parallax)
or, in the case of reduction of observation, by observing the altitude of a limb or
the center with as little loss of time as possible after the azimuth observation,

and removing the effect of refraction.

The semidiameter correction to the altitude is simply the semidiameter itself,

AaSp = S (5"’-‘.10)

The corrected obcentric azimuth and altitude are then

AE-,_ = AC + AASD ] .
A = Ac - bAA,, (5"’]»“)
a,. = OaC + S

= a =85

a
L o C
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_ 5,5 Aberration, Because the velocity of light is finite, the apparent
direction of a moving celestial body as seen by a moving observer is not

the same as the geometric direction of the body from the observer at that
instant, This displacement of the apparent position from the geometric
position, known as planetary aberration, may be attributed in part to the
motion of the body and in part to the motion of the observer, these motions
being referred to an inertial frame of reference, The first part, due to the
motion of the body in the inertial frame of reference during the interval
while light is propagating from the body to the observer, is known as the
correction for light.time; this correction is included in the. apparent
positions for the sun, moon, and planets as given in the Almanac,. The

second part, due to the motion of the observer in the inertial frame of
reference, is called the stellar aberration, since for the stars the correction

for light-time is, of necessity, ignored,

The motion of an observer on earth is the resultant of the diurnal
rotation of the earth on its axis, the orbital motion of the earth about the
center of mass of the solar system (which for our purpdses may be considered
to be the same as the center of the sun), and the motion of this center of
mass in space, The stellar aberration is thus made up of three components,
known respectively as the diurnal aberration, the annual aberration, and the
secular aberration, The secular aberration is practically constant for each
star and hence may be ignored, leaving only the diurnal and annual aberrations
to be considered,

In Fig,'5.11, let O1 and B represent
the true positions of.s&n observer and a
celestial body, respectively, at some
epoch I,. At this instant, a ray of light
leaves %he body at B, and propagates at
speed c towards poin% 0o, the position
occupied by the observer at the epoch
I, =1, + 7, where 7 is the time required
for the light ray to reach point Oy, The
instantaneous velocity of the observer at
point O, is denoted by v, and is directed
along tge line 0102M. Point 01 is located
at a distance d = v7 from Op, ! Fig. 5,11 Aberration,

The law of aberration is that the apparent direction of the body from
the observer at this second epoch is measured by the angle §' in the figure,
whereas the true (geometric) direction is measured by the angle §, Point B
then represents the apparent position of the body at the second epoch.
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In triangle 020;_31, we see that

_v7__ c7T__
s8inAg. = sin ¢'

which becomes, upon eliminating » and rearranging,
sin A0 = % sin ¢*

Since the angle A9 is always small, we may write this expression as
Al = % sin 0'

where A9 is in radians; if A6 is to be given in seconds of arc, it is
necessarghgo miltiply the right-hand side by the number of arc-seconds per
radian, 2000 | to give

™

648,000

20 = —k

-L-’-sin ' = « sin ¢*

(or AO = K s8in 0

with no significant loss of accuracy, since 0 and ' are very nearly equal)

letting
X = 614877:000 . % (5-36)

where x , expressed in arc-seconds, is known as the constant of aberration,

When the earth's orbital speed is used in Eq, 5-36, the resulting value
is k. , the constant of annual aberration, Taking the mean radius of the
earth's orbit as 149,600,000 km (= 1 Astronomical Unit) and the length

of the tropical year as 365"?214219', the mean speed of the earth in its orbit is

27r _ 27 (149,600,000)
© P 365.24219(86,400)

= 290 78631 M/So

The speed of light is given in the Almanac, to sufficient accuracy, as

¢ = 299,792.5 km/s .

8é
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Using these values in Eq, 5-36, the constant of annual aberration is

648,000 29.78631 - ,
Kem —2 © XS - 20Thol (5-37)

(The Almanac value iz 207496,)

The effect of annual aberration is treated as a correction to the
tabular position of a star rather than as a correction to an observation,
The methods commonly used to obtain the numerical value of the correction
are discussed in Chapter 6,

When the rotational speed of an observer on the surface of the earth is
usedinEq, 5-36, the resulting value is k;, the constant of diurnal aberration.
Letting p represent the geocentric radius of the observer in units of the
earth's equatorial radius (= 6,378,1L0 km) and ¢' = his [geocentric]latitude,
and taking the length of the sidereal day from the Almanac &8 230 56 O4§0905L
(= 86,164800054) of mean solar time, the linear velocity of the observer
towards the east is .

v 2nr 27 6378.140 pcos ¢!
o " p * , 16K,

v, = 0,4651028 pcos ¢' Im/s

Again using Eq. 5-36, we obtain the constant of diurnal aberration as

648,000 0,4651028 "
= Budiibed Ruthadd L4 ) = ] -
Kg = 599,792.5 P 8 ¢ 02320 p cos ¢* (5-38)
or, upon dividing by 15,
= 030213 pcos ¢' , (5-39)

Ka

5.5.1 The diurnal aberration as given by Eqs, 5-38 and 5-39 may be
resolved into corrections to both right ascension and declination, as
shown by the following analysis,

In Pig, 5.12, the celestial sphere is shown with the observer at O,
his zenith at Z, his east point at E, and a star at B, The component
of the observer's instantaneous velocity vector which is caused by the
diurnal rotation of the earth is directed along the line OE, causing the
apparent position of the star at B to be shifted to B', The amount of
the shift is given by «,8in 6 ; it is so small that the figure BQB' may,
without significant loss of accuracy, be treated as a plane triangle,



B__ A cos & Q

a6
=Kg sin 6

Fig, 5.12 The effect of diurnal aberration on right ascension ﬁd declination,

By inspection,
BQ = Axcos 8 = Afcos Y

Acxcos § = K3 sin 6 cos 7

Ba = Ky sec 8 8in 6 cos Y (5-40)
and
~A8 =Ky sin6 sin Y (5-41)
In the spherical triangle PBE, using the law of sines (Eq, 3-3), we
have that
sin @ . sin 90°
8In{90°x) ~ sin(90°+7)
giln 6 cos ¥y = cospm (5-42)

Again, using the five-parts formula (Eq, 3-2), we obtain

sin 6 cos(90°+7) = cos 90° sin(90°-8) - sin 90° cos(90°-8§) sin .

sin @ sinv= sin & sin/u (5-43)



Substituting Eqs, 5-42 and 5-43 into Egs. 5-40 and 5-41 respectively,

and using the relation between meridian angle s and hour angle h as discussed
in section 3.5, we get

e B0t = Kg S€C § CO8R
' «ea = 080213p cos ¢* cos h /cos § / (5-44)

'-35 = 00320p cos ¢' sin h sin &

(5-45)

— ——

e ——

‘ AaDA = O
| 45 8

e cnvmnm —— |

For a star on the meridian, h is either oP (upper transit) or 12 (lower
transit) so that the above equations become

( L /_/,_/’“ 1 '
[ Bap, = $080213 p cos ¢*/cos s (5-46)
"
n — | 5-
{ ‘ MDA = 0,0 ) e T ( 47)

where the positive sign corresponds to upper transits and the negative sign
corresponds to lower transits, In practice, the increment as calculated from
BEqQ. 5-46 is usually applied as a correction to the obs€rved time of transit
rather than as & correction to the right ascension of the star,

Table 5, 2 gives values of the correction and the rule governing
its application,

5.5.2 To determine the effect of the diurnal aberration on the azimuth and
altitude of a body, consider Fig, 5.13, which is the same as Fig, 5, 12 except
that the aberration term xg sin # is shown resolved into the components

AZ cos a and -Aa, Again, since the aberration is small, the figure BRB' is
8o small that it may be considered as a plane triangle, so that we may say

AZ cos & = K3 sin @ sin
AZ = K4 sec a sin f siny (5-48)

-0a = kg sin 0 cos 7 (5-49)

B
a
a0 B F

=Kkg sinf

AZ cos &
’ 6 %0°- 2
R -48 B
E
Fig, 5,13

The effect of diurnal aberration on azimuth and altitude,
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In the spherical triangle BFE, using the law of sines, we obtain

sin 0 _ sin(90°-E)
sin 90° sin 7

sin 0 sin 7 = cos 2 (5-50)

Applying the five-parts formla (Eq., 3-2) to the same figure, we get
sin § cos 7 = cos(90°-2) sin & - sin(90°-2) cos a cos 90°
sin § cosn = gin Z sin & (5-51)

Substituting Eqs, 5-50 and 5-51 into Eqgs. 5-48 and 5-49 respectively,
and using the relationship between azimuth A and azimuth angle Z as
discussed in section 3,5, we get

e, — R

4 R

] i
1

LAbA = A'eA = ‘ 0’.'320p¢os ¢' cos A/éos a - (5-52)
a , =8'-a = -01'320@ cos evﬁ sin A sin &’ | (5-53)

1 U

Table 5.2 gives the correction, due to diurnal aberration, to the time of
transit of heavenly bodies.
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Table 5,2 CORRECTION FOR DIURNAL ABERRATION *

Lat. 0° 10° 20° 30° 35° 40°° 45° 50° 52° 54° 56° 58° 60°

Dec. Unit o*-001

(]

° 21 21 20 18 17 16 15 14 13 13 12 11 J1
3 212X 20 19 18 16 15 14 13 13 12 11 11
' 10 22 21 20 19 18 17 15 14 13 13 12 11 11
15 22 22 21 19 18 17 16 14 14 13 12 12 11
20 23 22 21 20 19 17 16 15 14 13 I3 12 II

25 24 23 22 20 19 18 17 15 14 14 13 12 12
30 25 24 23 21 20 19 17 16 15 14 14 13 12
35 26 26 24 23 21 20 18 17 16 15 15 14 13
40 28 27 26 24 23 21 20 18 17 16 16 15 14
45 30 30 28 26 235 23 21 19 19 18 17 16 15

50 33 33 31 29 27 25 23 21 20 20 19 18 17
52 35 34 33 30 28 27 25 22 21 20 19 18 17
54 36 36 34 31 36 28 26 23 22 21 20 19 18
56 38 38 36 33 31 29 27 24 23 22 21 20 19
58 40 40 38 35 33 31 28 26 25 24 23 21 20

6o 43 42 40 37 35 33 30 27 26 25 24 23 21
62 45 45 43 39 37 35 32 20 28 27 =2 24 23
64 49 48 46 42 40 37 34 3t 30 29 27 26 24
66 52 52 49 45 43 40 37 34 32 31 290 28 26
68 57 56 54 49 47 44 40 37 35 33 32 30 28

70 62 61 59 54 st . 43 44 40 38 37 35 33 31
71 66 65 62 57 54 50 46 42 40 39 37 35 33
72 60 68 65 60 57 53 49 44 43 41 39 37 35
73 73 72 69 63 60 56 52 47 45 43 41 39 36
74 77 76 73 67 63 59 55 50 48 45 43 41 39

75 8 8 977 71 68 63 s8 53 51 48 46 44 41
76 8 8 83 76 2 68 62 57 54 52 49 47 44
77 9s 93 8 8 78 73 67 61 s8 s6 53 so 47
78 103 o1 96 8 8 79 73 66 63 60 57 54 51
79 112 110 103 97 92 86 79 72 69 66 63 59 56

Unit o%-01

8000 12 12 12 11 10 9 9 8 8
8r o0 14 13 13 12 I 1o 10 9 8
82 00 15 15 14 13 13 1z 11 10 9
83 00 18 17 16 15 14 13 12 II 11
84 oo 20 20 19 18 17 16 14 13 13 1

8500 24 24 23 21 20 19 17 16 13 14 14 13 12
85 30 27 27 26 24 22 21 19 17 17 16 15 14 14
86 oo 31 30 29 26 25 23 22 20 19 18 17 16 15
86 30 35 34 33 30 20 27 25 22 22 21 20 19 17
87 oo 41 40 38 35 33 31 20 26 25 24 23 22 20
8730 49 48 46 42 40 37 35 31 30 29 27 26 24

8800 61 60 57 53 50 47 43 39 38 36 34 32 31
810 67 66 63 58 55 51 47 43 41 39 37 35 33
8820 73 72 69 64 60 56 52 47 45 43 41 39 37
88 30 8 8 77 71 67 62 58 52 50 48 46 43 41
8840 92 90 8 79 75 70 65 59 56 54 51 49 40
8850 105 103 98 g1 8 8 74 67 65 62 59 56 52

89 00 122 120 115 106 100 94 8 79 75 72 68 65 61

This correction is to be subtracted from the observed time of transit for transits above
pole, and added to the time of transit for transits below pole.

#From the "Explanatory Supplement to the Ephemeris", 1961
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5.6 Deflection of the Vertical. As was discussed in section 2.3.4,
the astronomic vertical and horizon do not, in general, coincide with
-the geodetic vertical and horizon, since the local gravity vertical
does not, in general, point to the center of the eartht in fact, it
may pe that the gravity vertical does not even lie in the plane of

the ooserver”’s geodetic meridian. Since measurements made with a
gravity-sensing instrument, such as a transit or a theodolite, are
necessarily referred to the astronomic (gravity) vertical and horizon,
it is mandatory to be able to transform mathematically between the
astronomic and the geodetic systems of coordinates.

The positive directions of the deflection coefficients § and 9

were defined in section 2.3.4 in such a way that the horizontal plate
of the gravity-sensing instrument will be tilted down with respect to
the geodetic horizon at the north and east points (based on taking
east longitudes as positive). This is the situation shown in

__Figr576.T, With Z4 , thegsodetic zenith, Z, the astronomic zenith,

Ng and Eg the geodetic north and east points.-respectively. and
C the center of the earth.

The maximum tilt of the horizontal plate, i.e., the angle of inclination

between the two horizons (and verticals), is denoted by T 3§ the
maximum downward tilt of the astronomic horizon (i.e., the instrument’s
horizontal plate) with respect to the geodetic horizon occurs at an
azimuth v . It may pe shown that, for small T ,

R W”“Aw__ﬁ___*,%

—— -

/.‘-«" //‘ _ _rL |
f /V?-t-q] and(i ’U«tan,(,‘x,hN

(L — —— _J

where ? =¢-9% ., and N = () X )cosCP , from sec. 2.3.4.

Fig. 9.6.1
Relations among astronomic
and geodetic coordinates.

- Geodetie _

"\cl‘( zon
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The .spherical triangle ZSZ“B is shown in Fig. 5.6.2. The interior
angles at Z, and Z, are, by

J inspection of Fig. 5.6.1, equal to

A —v and 180°- (A, -?),

réspectively. In the derivations

which follow, it is assumed that

¢ and n , and thus t and v,

are known.

B Figo 5.6.2

Case 1 - Prediction of position.

The four-consecutive-parts formula, eq. 3-5, gives

tan(180°~(A, V) = — sin (Ag-v) )
n
—_— -~ C0S T Cos (A -
Tan (qo°-A3) 9
Sin (Ag-v) ‘
-Y) = o
tan(A, -V) ~Sin T Tan Ag + cos T Cos (Aﬁ"v) [5=-dv-1]
ho = (Ao7v) + ¥ [5-dv=-2]

The law of cosines gives

cos(90° - a,) cos(90° - ag)cos T + sin(OOo—GE)sinT cos(AS—U)

sin a, = sin agcos'r + cos a, sinT cos(Ag-v) (5~-dv-2]
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While the preceding development is rigorous, the approximate method
discussed below may be preferred. It uses the fact that T is always
small, the greatest value known being less than 40 arc-seconds.

Referring to Fig. 5.6.3, which is a skeletonized version of Fig. 5.6.1
with a few additional lines and labels to aid in the discussion to
follow, the arc Z,K is a great circle which cuts the astronomic

vert ical BZa. (extended) at K.
Since T is small, the.spherical
triangle ZQZQK may be regarded
as a plane triangle, and the
interior angle at Z, may be
taken as equal to Ag -V, to
sufficient accuracy. Then

ZgK

T sin(A9 -V) and

ZoK

T cos(A9 -v) .

Using the rule that the arc
distance between intersecting
great circles is, for small
angles of intersection,
proportional to the sine of the
distance from.the point of Geodetic horzen
intersection to the point of
interest,

AA _ K - Xsin(Ag -¥)
sin aq sin(90" ~ ag) cos ag
BA = A, - Ag = T tan ag sin(Ay -v) (5-54a)
Ag = A9 + T tan ag sin(A9 -V) (5-54b)

Again using the rule stated above for intersecting circles, and since
the distance D F_  is very nearly equal to Ay -v,

S _ o
/ Aa = 8, ~ 8, = T sin(90 - (Aq4 -?))

39
/ Aa = a, - ag = T cos(Ay-v) (5-55a)
/ a, = a, + T cos(Ag =) (5-55b)

SE—
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Case 2 - Reduction of observation.

Proceeding in similar fashion to Case |, the following rigorous formulas
may be obtaineds

Sin (Aa_--u)
-v) = -dv-7
tan(As ) sm T Tom @ ¥ cos T cos (A-0) (5-dv-7]
Ag = (Ag —v) +V [5-dv-8]
sin ag = sin a, cos T - cos a, sinT cos(A, -V) (5-dv-9]
The following approximate equations may also be obtained:
/“/_’ -
;/ AAg= Ag - A, = -Ttan a, sin(A, -?) [5-dv-10]
| Aag= a, - a, = -T cos(A, ~?) [5-dv-11]

i
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The observations referred to in the following problems are assumed as
to be made, or having been made, with a perfectly adjusted theodolite.
In each case, find the azimuth and altitude _as_indicated, including

the effect of all appropriate corrections. Carry out the calculations

to a precision of 0¥l
to the nearest

14

PR lﬁ

» but round off the final answer in each case

Po? Ros Ygo 3} ¥.E5 T
P — :
(5-l> 5-2 5-3 \\5-4 ) 5-5 5-6

Body Sun Jupiter Moon Altair Sun Moon
UTC day | Jun 17 Sep 10 Nov 3 Aug 24 Feb 19 May 9
UTC tod 14340 03235 21230 23315 05115 09344
Barom. 76 1mm 1 000mb 625mm 692mm 995mb 615mm
Air tmp. 34 C 17 C 46 F 32 C 22 F 23 C
Azimuth [157° 197464 [243°17756" | 76°34722n 312°59’08“ 169° 4471 24| 198° 267 33
of limb left right right right left
Alt. 22‘42’3Qﬂ/ 28%40712n l4°55’06“~»373141i2f 73°207,22%| 21°527)3%
of limpb | lower upper lower upper lower
Ops lat | 30127154 | 129274374 |=41°32724n| -8°09~10% | 20°30740"| 51°06748"
tHite 200m 847m 1660m 1050m “400m 1820m
Undul +18m -12m +10m -6m . =4m__ +9m
DV lon +9u -15% -6 +81 ST +130
DV lat ~12n +1 0 ~14 —4n +70 +8"

1’/ 5 —D
\\

Find the geodetic latitude of an observer who measures the

e meridian altitudes at upper and lower transits of a north
circumpolar star as 55°42/12* N and 21° 11736" N, respectively.

Assume other data as follows?
thermometer reads
sea level is

on June

barometer reads 750 mm Hgs
15 degrees C3 height of observer above mean

1277 meterss no geoidal undulation or deflection
of the vertical data is known.

Find the geodetic azimuth of the center of the sun at the instant
19 when the observed altitude of the lower limb is

30°31736" and the observed 321muth of the left limb is 82944730%,
The UTC of the observation is 6"45™3 the barometer is 782 mm Hg.

and the air temperature is

5-9.

at the epoch May

13 C.

Find the geodetic azimuth and altitude of the center of the moon
d sho™ UTC, if the observed altitude of the

upper limb was 25°5|'10" and the observed azimuth of the right

limb was

110°46708",

The barometer was read as 746 mm Hg and the

air temperature was 18 degrees C. The observer was located at
2450 meters above msli the undulation of the geoid at that point

is known to be =15 metersi

+10" Iin longitude and -8*" in latitude.

the deflection of the vertical is
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From a place in latitude 20°N, a star having a declination of
45°N is observed at an hour angle of -30° § find the corrections
to pboth right ascension and declination due to the effect of
diurnal aperration.

Same as 5-10, except the star is at transit.

From a place in latitude 30°N, a certain star is observed at
an azimuth of 60° and an altitude of 45° § find the diurnal
aberration corrections to both azimuth and altitude.

Same as 5-12, except the star is at transit.

Find the obcentric azimuth and altitude of Venus for the
following datas
observing site is the 42-inch Clark reflector at
Lowell Observatory, Flagstaff, Arizona
(see the Appendix, Table B-B3 for location data)
epoch is May 23 at 12330 zone time — >
expected barometric pressure is 6!0 mm Hg
expected air temperature is 70 degrees Fahrenheit
deflection of the vertical in latitude is -3%
won n # longitude is =-7%
undulation of the geoid may be neglected
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CHAPTER 6
STAR PLIACES

6,1 Changes in the Coordinates of Stars, In the preceding chapters,
it has been assumed that the coordinates of stars in the independent
equatorial system (right ascension ana declination) are constant with
respect to time, and that in the dependent equatorial system (local hour
angle and declination) and the horizon system (azimuth and altitude) the
coordinates change continuously due only to the diurnal rotation of the
earth, Careful observations carried out over long periods of time have
shown, however, that all celestial coordinates suffer additional small
changes because of the following factors:

(a) the motion of the coordinate fundamental circles with respect to
the stars (precession and nutation--gsee section 4, 2)

(b) the apparent displacements of the directions of the stars due to
physical causes (refraction, parallax, and aberration--see Chap. 5);
and

(c) +the motion of the atars relative to each other in space (proper
motion, defined as the continuous, slow change in angular position
of & star as measured by reference to extremely remote background

N stars, which are considered as fixed, A few stars having
exceptionally large proper motions are listed in Table 6.1; the
proper motions of most stars are very much less than 1 second of
arc per year,)

Table 6,1 Proper Motion of Stars

Proper motion,

Star arc-sec, per year
Barnard's Star : 10,37 (largest known)
Kapteyn's Star v 8.8
Groombridge 1830 7.1
Iacaille 9352 6.9
Cordoba 32416 6.1
61 Cygni A 5.21
a Centauri A 3.67
van Maanen's Star 3.01
Arcturus 2,283
Sirius A 1.32

Two of the above effects (refraction and diurnal aberration) are
treated as corrections to observations, as discussed in Chapter 5% the
remainder (precession, proper motion, nutation, annual aberration, and
?Eﬂﬂél_eézallax)vare considered as changes in the coordinates themselves.

e purpose of the present discussion is to explain the system of star
positions, or places, currently in use, and to show how to obtain the
correct position of a specific star for a specific observer and epoch.
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6.2 Star Places. In order to distinguish between the several kinds of
coordinates of stars, the adjectives observed, apparent, and mean are
useds they are defined as followss

The observed place of a star is its position as viewed ffdm an observer
(who Is usually, but not necessarily, located on or near the surface of
the earth) by means of an instrument which is free from error.

The_apparent place of a star is its geocentric position (i.e., as viewed
by EEQ%EEETEEFV”SBBerver at the center of the earth) referred to the
instantaneous. (true) equinox and equator at the epoch of the observation.

- It differs from the observed place by the effects of refraction and
mdiurnal abérration. (Geocentric parallax is negligible for stars due to
their very great distances from the earth.) Apparent places of 1,535 stars
are given in the publication "Apparent Places of Fundamental Stars". an
-annual volume published by the Astronomisches Rechen-Institut in

tleidelberg, West Germany.

The mean place of a star is its heliocentric position (i.e., as it would
be viewed by an imaginary observer at the center of the sun) referred to
a specific mean equinox and mean equator. When the reference equinox and
equator are those at the begimning of a so-called Besselian solar year,
defined as that instant near the beginning of a Gregorian calendar year
when the right ascension of the mean sun is 18h 40m exactly, the usual
practice is to describe the star position as being *the mean place for
‘the epoch B1950.0¥, or whatever year is appropriate. The Astronomical
Almanac gives the mean places of stars at the middle of the current Julian
year, referred to the mean equinox and mean equator of the epoch

2000 January Id 12h UTC, designated as J2000.0 and also as

2000 January 1.5 .

The apparent place differs from the mean place by the effects of

_precession and proper motion over the time interval from the mean place
epoch to the epoch of observation, and also by the effects of nutation,

annual aberration, and annual parallax as described briefly in sections
4.2, 5.3 and 5.5 and more fully in sections 6.6, 6.7, and 6.8 , following.

'Mean places of 1,482 stars are given in the Almanac, listed in order of
increasing right ascension. In the name of each listed star, the 3-letter
abbreviations for constellation names as recommended by the International
Astronomical Union are used. A list of these constellation names and
abbreviations is given in Appendix C of this text.

6.3 Reduction from Mean Place to Apparent Place. In the types of
problems usually encountered in Engineering Astronomy, it is often
necessary to have the apparent (geocentric) place of a stars this is
most readily taken from a publication such as "Apparent Places of
Fundamental Stars*, mentioned above. It may be, however, that such a
volume {s not available so that it becomes necessary to convert an
Almanac mean place at mid-year to the desired apparent place at the
epoch of observation. This conversion process is called the reduction
from mean to apparent place, and includes corrections for each of the
five effects (prgggggigg._nggggsgggigg. nutation, annual aberration,
and annual parallax) mentioned above. Each of these effects is
discussed separately in the sections which follow.
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6.4 Precession. The equator and the ecliptic are continuously in
motion, as was pointed out in section 4.2 . The motion of the equator,
and therefore of the celestial poles, is due to the gravitational
attraction of the sun and the moon on the earth’s equatorial bulge.
This motion consists of two components: (1) the luni-solar precession,
which is the smooth, very-long-period (about 26,000 years) motion of
the mean celestial pole around the pole of the ecliptic, and

(2) the nutation, which is a relatively short-period motion which
carries the actual (i.e., true, instantaneous) celestial pole around
the mean celestial pole in a somewhat irregular curve, of amplitude
about 9" and main period 18 .6 vears.

The motion of the ecliptic, that is, of the mean plane of the earth’s
_orbit, is due to the gravitational attraction of the planets on the
earth as a whole, and consists of a slow rotation of the ecliptic
about a slowly-moving diameter. This motion is called the planetary
precession, and results in a westward movement of the equinox of about

12" a century and a decrease in the obliquity of about 47" a century.

The combination of the luni-solar and the planetary precessions is
~called general precession, and is the subject of the remaining
discussion in the present section. The effect of the nutation is
discussed separately in section 6.6

€.4.1 Genera) precession and the precessional angles. The effect of
precession on the coordinates of a fixed point is illustrated in

Fig. 6.1, in which the position of a body at B is referred at an
initial epoch t, to a coordinate system defined by the mean equator
EQ, and the mean ecliptic ECL,; the intersection of the two fundamental
great circles is the mean equinox T, . The poles NCP, and NEP, of the
mean equator and ecliptic, respectively, are also shown. At a later
epoch t , the positions of the_(mean) equator, ecliptic, equinox,

and poles are shown as EQ, ECL, ¥ , NCP, and NEP, respectively.

Although at any instant NCP moves, due to the luni-solar precession,
in a direction perpendicular to the arc NEP-NCP, i.e., towards the
equinox, the arc NCP,-NCP is not perpendicular to either NEP, -NCP

or to NEP-NCP; because of the planetary precession, NEP is itself in
motion along a curve which is always convex to NEP-NCP. This complex
motion is specified by the three angles ¥ , z , and & , also

shown in the figure. It should be noted that & is not the actual path
taken by the moving pole NCP, but is merely the great circle arc
connecting two discrete points of that path, viz., NCP, and NCP.



94b

Flg.é-l Precession 3eame1‘:r3.

<!
oT = lum-solar precession
)

planetary precession

o3 3
=31 3

1

general precession

For the reduction of mean places based on the FK4 system, and with
time measured in tropical centuries of 36524.22 vears from the
fundamental epoch B1950.0 = 1950 January 0.9 = JD 243 3282.423, the
following formulas for the precessional angles are valid:

T = 23047948 T + 0"302 T + 0"0179 r: (6-1)
zZ = 2304”948 T + 1"093 T* + 00192 T, : (6-2)
O = 20047255 T - 0”426 T' - 00416 T (6-3)

where T = (JD-243 3282.423)/36524.22

For the reduction of mean places based on the FKS system, and with
time measured in Julian centuries of 36525 vears from the fundamental
epoch J2000.0 = 2000 January 1.5 = JD 245 1545.0, the following
formulas for the precessional angles are valid:

5, = 07640 6161 T + 0°000 0839 T. + 0%000 0050 T, (6-4)
Z = 09640 6161 T + 0°000 3041 T: + 0°000 0051 T (6-5)
6, = 02556 7530 T - 02000 1185 T* - 0°000 0116 T° (6-6)

where T = (JD - 245 1545.0)/36525

The subscripts A in eqs. 6-4, 6-5, and 6-6 are used to distinguish
these precessional values from the ones based on the FK4 systen.
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6.4.2 Reduction of mean places-- rigorous formulas.
Figure 6.3 is a portion of Figure 6.1, enlarged and simplified for
clarity. ' . '

B

In this triangle, the vertex angle at NCP may be found
from the four-consecutive parts formula,

swn (o<°+ r)
- cos O cos (X, + £)

> - ol =
tan (180°+ 2 - o) s

tan (20> §,)

+6m(o(-2) = sin(d .+ %)
~5in® tan §, + cos © cos (pl‘,‘b £) (6-7)
® = (A-2) + 2 (6-8)

N\w\-_.wmj/’

In the same spherical triangle, from the law of cosines,

cos(90°-§) = cos 8 cos(90 -8,) + sin 8 sin(90 -~ 8 )cos( &, + )
sin § = cos @ sin § + sin 8 cos §, cos(x,+¥%) (6-9)

[

e S U
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©6.4.3 Annual motions and approximate formulae. The precessional
motions during a time interval of the order of 1 year or less are

so small that the portion of Fig. 6.1 in the vicinity of the equinoxes
may be regarded as a plane, as shown in Fig. 6.4

e\
et F
-7 ~ EQo
Fig. 6.4 - -
Annval precession. n //
.—-’// -
q’l ”
-
i E

From a comparison of the figures, it is seen that the distance n = Fﬁ:
in Fig. 6.4 is equal to the annual change in the sum ¥ + 2z of

Fig. 6.1; the quantity m 1is called the annual precession in right
ascension. Similarly, it is seen that the distance n = FT in Fig. 6.4
is equal to the annual change in the quantity ©® in Fig. 6.1; the
quantity n 1is called the annual precession in declination.

The amounts of precession in right ascension and declination for

intervals of time less than one year are then obtained by multiplving
these annual rates by T , the decimal fraction of a year representing
the interval. Figure 6.5 illustrates the situation.

Flg. 6.5 Annual precession.

Subscmﬂ 1  refers to the
s‘h-f‘hmg epoch within a given year.
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By inspection of Fig. 6.5, keeping in mind that the distances
Tm and Tn are small,

Sin S,
v\ cos 5:

X = &+ Tm + Tn sin «

= &, +7Tm + Th sin &, tan &,
X = o+ 7T(m + n sino, tan§,) (6-10)

§ = § +Tn cos «, ' (6-11)

Until 1964, the mean places of stars tabulated in the annual volumes
of the Astronomical Almanac were given for the beginning of the
current Besselian solar vear, and were referred to the FK4 system.
Beginning with the 1984 volume, the mean places are those for the
middle of the current Julian vear, this epoch being denoted as

t, = 19YY.5 (where YY stands for the last two digits of the vear),
and are referred to the FKS system. Reduction of these values to the
mean equator and equinox at any other epoch t within the vear may
be done by means of eqs. 6-10 and 6-11. Values of the annual
precessional constants m and n, required for solution of these
equations, are obtained in the manner explained in the material
which follows.

Referring to the precessional angles as defined in section 6.4.1, let

M= L+z, = 1°281 2323 T + 0°000 3879 T> + 0°000 0101 T3 (6-12)
N= '8 = 09556 7530 T - 0°000 1185 T* - (%000 0116 T° (6-13)

Differentiating,

M = dM/dT = 1°281 2323 + 0°000 7758 T + 0°000 0303 T* : (6-14)
N = dN/dT = 0°556 7530 - 0°000 2370 T - 0°000 0348 T? (6-15)
The preceding are the centennial values; for annual values, divide

by 100 to obtain

m = M/100 = 0%012 812323 + 07000 007758 T + 0°000 000303 T: (6-16)
n = N/100 = 0°005 567530 - 0°000 002370 T - 0°000 000348 T (6-17)
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6.5 Proper Motion. The term “proper motion" refers to the motion

thru space of.a star, as viewed against the essentially fixed background
stars which are so extremely far away that they have no discernible
motion of their own, and are referred to as *fixed stars*. The spatial
‘motion of a star may be considered as having two components, one at
right angles to the star-earth line (or the star-sun line, which is

the same, for practical purposes), and one in the star-earth line.

It is the first of these with which we are concerned, and it is this
component which is called the *proper motion” of the star. The other
component is called the ¥radial motion®, and is of no interest to us.

Proper motions of stars are small, the largest one known being only of
the order of 10* per year, as is shown in Table 6.1 . This table {is
not exhaustive, and shows only a few of the larger proper motions.

For proper motions of a specific star, consult one of the various

star catalogs such as the FK4 catalog mentioned earlier.

(The rest of this page intentionally left blank.)
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6.6 Nutation. Nutation is essentially that part of the precessional
motion of the pole of the earth’s equator which depends on the
periodic motions of the sun and the moon in their orbits around the
earth. The progressive long-period motion of the mean pole has been
considered as the luni-solar precession in section 6.4; the nutation
is the somewhat irregular elliptical motion of the true pole about

the mean pole in a period of about 19 vears with an amplitude of

about 9" , The principal term depends on the longitude of the moon’s
orbit and has a period of 6798 days (18,6 years); the amplitude of
this term, 992025, is known as the constant of nutation. In the
‘complicated theory of the gravitational action of the sun and moon

on the rotating, non-spherical, non-rigid earth, other terms arise
which depend on the mean longitudes and mean anomalies of the sun

and moon and on their combinations with the longitude of the node of
the moon‘s orbit. The resulting shift of the mean to the true pole can
be resolved into corrections to the mean longitude (A¥Y , the nutation in
longitude) and to the mean obliquity (A€ , the nutation in obliquity).
Expressions for these corrections, in the form of series, constitute
the formal specification of the nutation.

When working with the FK4 system and the fundamental epoch of B1950.0,
the series used is that developed by E. Woolard and others, published
as "Astronomical Papers Prepared for the use of the American Ephemeris
and Nautical Almanac”, Volume XV, Part I, 1953; the series is also
given in the "Explanatory Supplement to the Ephemeris, Section 2C.

wWhen working with the FK5 system and the fundamental epoch of J2000.0,
the series used is that adopted by the International Astronomical Union
and denoted as the "1980 IAU Theory of Nutation"; this series is
published in the 1984 volume of the "Astronomical Almanac" and also

in the United States Naval Observatory Circular No. 163, "The IAU
Resolutions on Astronomical Constants, Time Scales, and the Fundamental
Reference Frame", 1981. It is also presented as Table 6.2 of this text.

The terms divide naturally into those not depending on the moon’s
longitude, which can be interpolated to high accuracy at intervals

of 10 days, and those which do depend on the moon’s longitude, with
periods of less than about 60 days, which cannot be so interpolated.
Nutation is therefore conventionally divided into long-period terms
and short-period terms; the latter, consisting of terms with periods
of less than 35 days, are sometimes summed separately as dy¥ and de ,
called the short-period terms of nutation in longitude and obliquity,
respectively. In certain special applications, such as the tabulation
of star positions at intervals of 10 days (e.g., in the volume
“Apparent Places of Fundamental Stars"”), only the Jong-period terms
of nutation are included in the tabular places; data is provided,
however, for the individual application of corrections for the effect
of the much smaller short-period terms, after interpolation.

The IAU-80 nutation series contains 106 terms in AY , of which 30 are
long-period and 76 are short-period; there are 64 terms in A€ , of which
18 are long-period and 46 are short-period. In Table 6.2, the terms

of the series are listed in descending order of size of the coefficient
of the sine terms, within each period group.



Fundamental arguments

l
I
F
D
Q

Tehle 6.2

o

i

1980 IAU Theory of Nutation

Series for nutation in longitude Ay and obliquity Ae, referred to the mean
equator and equinox of date, with T measured in Julian centuries from epoch
J2000.0.

= 485866733 + (13257 €715922'633)T)+ 3131072 + 0706413
= 1287099804 + (9% + 12925817224)T — 0/577T2 — 0/012T3

= 335778877 + (1342" + 295263"137)T — 13"257T2 + 070113
= 1072261'307 + (1236° + 1105601/328)T — 6/891T2 + ¢019T3

= 4501607280 — (5 + 482890"539)T + T'455T2 + 07008T3

where 17 = 360°= 1296000"

1l  is the mean anomaly of the Moon.
I'  is the mean anomaly of the Sun (Earth).
- § is the longitude of the ascending node of the Moon’s mean orbit on the
ecliptic, measured from the mean equinox of date.
D is the mean elongation of the Moon from the Sun.
F  is the difference L—2, where L is the mean longitude of the Moon.
- A A<
ARGUMENT PERIOD LONGITUDE | OBLIQUITY
I ' F D Q - (pavs) (070001) | (070001
1 0 0 0 0 1 67984 —171996 —174.2T 92025 89T
2 0 0 0 0 2 3399.2 2062 0.2T7 —895 0.5T7
3 -2 0 2 0 1 13055 46 0.0T7 —-24 0.0T
4 2 0 -2 0 0 10952 11 0.0T 0 0.0T
5 -2 0 2 0 2 1615.7 -3 0.0T \ 1 0.0T7
6 1 -1 0 -1 0 32329 -3 0.07 | 0 0.0T
7 0 -2 2 -2 1 67863 -2 0.07 | 1 0.07
8 2 0 -2 0 1 9432 1 00T | 0 0.0T
9 0 0 2 -2 2 1826 -—13187 —16T 5 5736 —3.1T
10 0 1 0 0 0 365.3 1426 —-34T \ 54 -0.1T7
11 0 1 2 -2 2 121.7 -517 12T | 224 -0.6T
12 0 -1 2 =2 2 365.2 217 —05T | -95 03T
13 0 0 2 -2 1 171.8 129 017 | 170 0.0T
4 2 0 0 -2 0 205.9 48 00T 1 0.0T
15 0 0 2 -2 0 1733 —-22 00T 0 0.07
16 0 2 0 0 0 182.6 17 -017 , 0 oor
17 0 1 0 0 1 386.0 -15 007 | 9 0.0T
18 0 2 2 -2 2 91.3 -16 0.17 7 0.0T
19 0 -1 0 0 1 346.6 —-12 0.0T 6 00T
20 -2 0 0 2 1 199.8 -6 0.0T7 3 0.0T
21 0 -1 2 =2 1 346.6 -5 0.0T 3 00T
22 2 0 0 -2 1 212.3 4 00T -2 0.0T
23 0 1 2 -2 1 119.6 4 0.07 -2 0.0T
24 1 0 0 -1 0 411.8 —4 0.07 0 0.0T
25 2 1 0 -2 0 131.7 1 0.07 0 0.0T

(continued)

q4qg - |
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ARGUMENT PERIOD LONGITUDE OBLIQUITY
I I' F D 0 (oavs) (070001) (070001)
26 0 0 -2 2 1 1690 1 0.0T 0 0.0T
27 0 1 -2 2 0 3298 -1 0.0T 0 0.0T
28 0 1 0 0 2 4092 1 0.0T 0 0.0T
29 -1 0 o0 1 1 383 1 0.0T 0 0.0T
3 0 1 2 -2 o0 1175 -1 0.0T 0 0.0T
31 0 0 2 0 2 187 —2274 —02T 917  —0.5T
32 1 0 0 0 0 27.6 712 0.17 -1 0.0T
33 0 0 2 0 1 136  —386 —04T 200 0.07
3 1 0 2 o0 2 91  -301 0.0T 129 —01T
3 1 0 0 -2 0 31.8  —158 0.0T -1 0.0T
3 -1 0 2 o0 2 27.1 123 0.0T —53 0.0T
3 0 0 0 2 o 14.8 63 0.0T -2 0.0T
38 1 0 0 0 1 211 63 0.17 -33 0.0T
39 -1 0 0 0 1 27.4 -58 —01T 32 0.0T
40 -1 0 2 2 2 9.6 —59 0.0T 26 0.0T
40 1 0 2 0 1 9.1 —51 0.0T 27 0.0T
2 0 0 2 2 2 11 —-38 0.0T 16 0.07T
48 2 0 0 0.0 138 29 0.0T -1 0.0T
4 1 0 2 -2 2 23.9 29 0.0T —12 0.0T
45 2 0 2 0 2 6.9 -31 0.0T 13 0.0T
46 0 0 2 0 O 13.6 26 00T -1 0.0T
4 -1 0 2 0 1 21.0 21 . 00T -10 0.0T
48 -1 -0 0 2 1 32,0 16 0.0T -8 0.0T
49 1 0 0 -2 1 317 -13 0.0T 7 0.0T
50 -1 0 2 2 1 9.5 -10 0.0T 5 0.0T
51, 1 1 0 -2 0 348 -1 0.0T 0 0.0T
52 0 1 2 0 2 13.2 7 0.0T -3 0.0T
53 0 -1 2 0 2 14.2 -1 0.0T 3 0.0T
54 1 0 2 2 2 5.6 -8 0.0T 3 0.0T
5 1 0 0 2 0 9.6 6 0.0T 0 0.0T
56 2 0 2 -2 2 12.8 6 0.0T -3 0.0T
5 0 0 0 2 1 14.8 -6 0.0T 3 0.0T
58.0 0 2 2 1 7.1 -1 00T 3 0.0T
5 1 0 2 -2 1 23.9 6 0.0T -3 0.0T
60 0 0 0 -2 1 14.7 -5 0.0T 3 0.0T
66 1 -1 0 0 © 29.8 5 0.0T 0 0.0T
62 2 0 2 0 1 6.9 -5 0.0T 3 0.0T
68 0 1 0 -2 0 154 -4 00T 0 0.0T
64 1 0 -2 0 O 26.9 4 0.0T 0 0.0T
66 0 0- 0 1 0 29.5 -4 0.0T 0 0.0T
6 1 1 0 0 0 25.6 -3 0.0T 0 0.0T
67 1 0 2 0 0 9.1 3 0.0T 0 0.07
68 1 -1 2 0 2 9.4 -3 0.0T 1 0.0T
69 -1 -1 2 2 2 9.8 -3 0.0T 1 0.0T
7 -2 0 0 0 1 13.7 -2 0.0T 1 0.0T

(continued)



Toble 6.2 (cont'd.)

ARGUMENT PERIOD LONGITUDE OBLIQUITY
I ! F D Q (pAys) (070001) (070001)
1 3 0 2 o0 2 5.5 -3 00T 1 0.0T
2 0 -1 2 2 2 7.2 -3 0.07 1 0.0T
7 1. 1 2 0 2 8.9 2 0.0T -1 0.0T
4 -1 0 2 -2 1 32.6 -2 0.0T 1 0.0T
% 2 0 0 0 1 13.8 2 0.0T -1 o.0T
% 1 0 0 o0 2 278 -2 0.0T 1 0.0T
7T 38 0 0 o0 O 9.2 2 0.0T 0 0.0T
7 0 0 2 1 2 9.3 2 0.0T -1 0.0T
9 -1 0 0 0 2 273 1 0.0T -1 0.07
80 1 0 0 -4 O 10.1 -1 0.0T 0 0.0T
81 -2 0 2 2 2 14.6 1 0.0T -1 0.0T
82 -1 0 2 4 2 5.8 -2 0.0T 1 0.0T
8 2 0 0 -4 O 15.9 -1 0.07 0 0.0T
84 1 1 2 -2 . .2 22.5 1 0.0T -1 0.0T
8% 1 o0 2 2 1 5.6 -1 0.0T 1 0.0T
86 -2 0 2 4 2 73 -1 0.0T 1 0.0T
87T -1 0 4 o0 2 9.1 1 0.0T 0 0.0T
8 1 -1 0 -2 0 293 1 00T 0 0.0T
8 2.0 2 -2 1 12.8 1 0.0T -1 0.0T
% 2 o0 2 2 2 417 -1 0.0T 0 0.0T
91 1 o o0 2 1 9.6 -1 - 0.0T 0 0.0T
92 0 o0 4 -2 2 12.7 1 0.0T 0 0.0T
8 3 0 2 -2 2 8.7 1 0.0T 0 0.0T
94 1 0 2 -2 0 23.8 -1 0.0T 0 00T
9% 0 1 2 0 1 13.1 1 0.0T 0 0.0T
%6 -1 -1 0 2 1 35.0 1 0.0T 0 0.0T
99 0 0 -2 o0 1 13.6 -1 0.0T 0 0.0T
9% o0 0 2 -1 2 25.4 -1 0.0T 0 0.0T
9 o0 1 0 2 o0 14.2 -1 0.0T 0 0.0T
100 1 0 -2 -2 0 9.5 -1 0.0T 0 0.07
100 0 -1 2 o0 1 14.2 -1 0.0T 0 0.0T
12 1 1 0 -2 1 34.17 -1 0.0T 0 0.0T
103 1 06 -2 2 0 328 -1 0.0T 0 0.0T
104 2 0 0 2 0 71 1 0.0T 0 0.0T
1006 0 o0 2 4 2 4.8 -1 0.07 0 0.0T
106 0 1 0 1 0 27.3 1 0.0T 0 0.07

G4g-3
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6.6.1 Evaluation of the series {for the nutation. To evaluate the
series for a specific epoch, first find the time argument T in Julian
centuries from the fundamental epoch, J2000,0 , then compute the
values of the five fundamental arguments listed below:

f = 4858664733 + (1325 + 7159229633)T + 319310 T+ 0v064 T° (6-22)
0/ = 12870999804 + ¢ 99" + 12925819224)T - 09577 T*- 04012 T® (6-23)
F = 3357789877 + (1342" + 295263%137)T - 139257 T*+ 0%011 T (6-24)
D = 1072261%307 + (1236" + 1105601%328)T - 69891 T>+ 09019 T® (6-25)
DD = 4501609280 - 5" + 4828909Y539)T + 79455 T%+ 0v008 T° (6-26)

The series is then evaluated term by term, as indicated below.

The first few terms of the series for the nutation in longitude are:

AQ’ = (=1771996 - 0701742 T) sin( 0N)
+( Y2002 + "00002 T) sind( 20 )
+{ T0046 ) sin(-24 +2F + L)
+( "o011 ) sinC 280 -2F )
etc.

The first few terms of the series for the nutation in obliquity are:

A€ = ( 9Y2025 + 0700089 T) cos( : 10
" +(- V0895 + 100005 T) cos( % Zn)
+(~- %0024 ) cos(-2% +2F +104)
+( %0001 ) cos(-21 +2F +20-)

etc.

The nutation in longitude, to be added to longitudes referred to the
mean equinox of date, is tabulated to 0V001 for D“ Dynamical Time

on each davy of the vear in the Astronomical Almanac, Section B, in the
subsection entitled “"Nutation, Obliquity, Day Numbers". The nutation
in obliquity,to be added to the mean obliquity of date, is also
tabulated there, to the same precision.

The equation of the equinoxes is the right ascension of the mean equinox
referred to the true (apparent) equinox. It is equal to AY cos € and
--represents the difference between .the mean and true (apparent) right.
ascensions of a heavenly body, in the sense of apparent minus mean.

It is thus also equal to the difference between apparent and mean
sidereal times. The equation of the equinoxes (EOE) is tabulated to
00001 in the Almanac, Section B, in the subsection entitled "Universal
and Sidereal Times", and is included in the apparent sidereal times
given on the same pages.

6.6 .2 Correction to coordinates for the effect of nutation.

The simplest and most direct way to convert a position from the mean
equinox and mean equator (mean place) to the true equinox and true
equator (apparent place) for the effect of nutation is to add AY to the
ecliptic longitude, since the ecliptic, and therefore the latitude,

is unchanged by nutation. In making the conversion from the resultant
ecliptic coordinates to the corresponding equatorial ones, by means of
the usual formulas of spherical trigonometry, the true obliquity

€ =€ + N€ should be used. If the mean place right ascension and
declination are alreadv known, direct corrections to these values {for
the effect of nutation may be made in the manner described in the
‘paragraphs which follow.
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6.6.1 Evaluation of the series for the nutation. To evaluate the

series for a specific epoch, first find the time argument T in Julian

centuries from the
values of the five

fundamental epoch, J2000,0

, then compute the

fundamental arguments listed below:

f = 485866V733 + (1325r + 715922V633)T + 317310 T + 0V064 T (6-22)
L/ = 12870999804 + ¢« 99" + 1292561"224)T - 049577 T - 04012 T (6-23)
F = 335778Y877 + (1342 + 295263%Y137)T - 139257 T + 09011 T (6-24)
D = 10722619307 + (1236" + 1105601%328)T - 69891 T + 09019 T (6-25)
N = 4501607280 - ( 57 4+ + 79455 T + 07008 T (6-26)

The series is then

482890°53M)T

evaluated term by term, as

indicated below.

The first few terms of the series for the nutation in longitude are:

AY = (-1791996 - 0201742 T) sin( 0N
+( “2062 + “00002 T) sin( 2N )
+( Y0046 ) sin(-2% +2F + N
+( "0011 ) sin( 28 -2F )
etc.

The first few terms of the series for the nutation in obliquity are:

A€ = ( 992025 + 0"00089 T) cos( ‘ 10
+{- "0895 + “00005 T) cosi L zn)
+(~- %0024 ) cos(-2% +2F +10.)
+( "0001 ) cosi-21¢ +2F +24-)

etc.

The nutation in longitude, to be added to longltudes referred to the
mean equinox of date, is tabulated to 0V001 for D Dvnamical Time

on each day of the vear in the Astronomical Almanac, Section B, in the
subsection entitled "Nutation, Obliquity, Dav Numbers". The nutation
in obliquity,to be added to the mean obliquity o{ date, is also
tabulated there, to the same precision.

The equation of the equinoxes is the right ascension of the mean equinox
referred to the true (apparent) equinox. It is equal to AY cos € and
represents the difference between the mean and true (apparent) right
ascensions of a heavenly body, in the sense of apparent minus mean.

It is thus also equal to the difference between apparent and mean
sidereal times. The equation of the equinoxes (EQOE) is tabulated to
00001 in the Almanac, Section B, in the subsection entitled "Universal
and Sidereal Times", and is included in the apparent sidereal times
given on the same pages.

6.6.2 Correction to coordinates for the effect of nutation,

The simplest and most direct way to convert a position from the mean
equinox and mean equator (mean place) to the true equinox and true
equator (apparent place) for the effect of nutation is to add AY to the
ecliptic longitude, since the ecliptic, and therefore the latitude, .
is unchanged by nutation. In making the conversion from the resultant
ecliptic coordinates to the corresponding equatorial ones, by means of
the usual formulas of spherical trigonometry, the true obliquity

€ =€ + N€é should be used. If the mean place right ascension and
declination are already known, direct corrections to these values f{for
the effect of nutation may be made in the manner described in the
paragraphs which follow.
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6.6.2 Corrections to r.a. and dec. for the effect of nutation.
In the spherical triangle NCP-B-NEP of Figure 6.7, the law of cosines
gives

CoS(90%8) = coSe COSI90-8) + sine€ sin(90-p) cos{90-1)
siné = cosésinp + sine sinAcosg (6-29)

The law of sines applied to the same triangle gives

Sin(90+) _ sin(90-)\)
sini90~8) = sin(90%-§)

cosx cos § = cosp cos A (6-30)
Again in the same triangle, the five-parts formula gives

5in(9018) cos(?ﬁza) = cos(9516) siné¢ - sln(?&ip)cose cos(9JLA)

-cos § sint= sinpsiné& - cos@ cosé€sinA
sina cos8 = cos € cosg sinX - sine sing (6-31)
’ %
,'/I
/
Fig. 6.7 /

Differentiating eq. €-29 with £ constant,

cos§ d§ = -sinp sin€é de + siné cosp cosA dA + cosp sinh cose de
= 5iné cosp cosA d\ + .(cos€ cosp sinA - siné sinp )dé

Using eqs. 6-30 and 6-31 in this last expression gives
cos § d§ = sin€ cosxcos8§ d)\ + sina cos8 de
dy = sin€ cosadX + sino d¢ (6-32)

Now let d§ =A§ ., d) =Ap, and deé =A€; then eq. 6-32 becomes

Asw-g’r-g;- sSine cos« AY + sinox A€ (6-33)
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Differentiating eq. 6-31 with B constant gives

-5in« siné d§ + co0s§ coso da = cos¢ cos@ cos A dA -
cos@ sinA sin€é de - sing cose de

= c0s €6 cospg cos X dX -(cose sin
+ sine cosp sinA )de (6-34)

Using eqs. 6-29 and 6-30 in the right-hand side of the above expression,
and moving the term in dé across the equal sign results in

cos8 cosx dt = C0S € cosc cos5 8 dA - sinf de¢e + sina sin§ d§
Substituting eq. 6~-32Z into this expression gives

cos § cost dX = cos € cosx cos S d)X - sind de +
sin® sinf§ (siné cosex d)\ + sinx dé )

Expanding and gathering terms,

cos § coscet dt = (CcOS € cos:<coss + sinx sind sin€ coset )dA +
(sin siné - siné )de

3
dx = {(cos €+ sine€ sin« tan§ )d) + tan§ (sinx - 1)de
cos o

Using sin« - 1 = costx , de =AX . dX =AY, and de =A€ ,

Ady, = K -o-= (cos €+ sinesin«tan§)ay - cosa tan § A€ (6-35)

Eqs. 6-35 an&‘é;33 then give the required corrections to right ascension
and declination caused by the nutational components AY and Ae .
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1_ | 6.7 Annual aberration. As was discussed in section 5.5, there is
. an apparent shift in position of a star or other heavenly body due to

Y— the motion of the observer. In the paragraphs which follow, the effect

] _J of this position change due to the motion of the earth in its annual
travel around. the sun will be discussed. The effect is made up of two
———— parts. The first of these, called the circular annual aberration, is
| found by considering the orbit of the earth as being circulars the
|1 second and smaller part is that due to the actual ellipticity of the

annual aberration is the sum of the two parts.

weimma 6ed )l Circular annual aberration. Consider the earth’s orbit to be
| circular, as shown in Fig. 6.8% the instantaneous velocity vector
- 71 1s V, directed at a right angle to the earth-sun line. The ecliptic
S longitude of the sun is Ns . so that the vector V points in the

' direction X, 90° from the vernal equinox.

~ p=—-— Now consider the celestial sphere
) . as shown in Fig. 6.9% the point
. labeled V denotes the intersection
of the earth’s velocity wvector
B | with the celestial sphere, and
o is the angle from the body B to
-———— the point V. The effect of annual
aberration is to.shift the apparent
! position of B to B”, along the arc ;

earth’s orbit, and is known as the e-term of the aberration. The total

e Of B, ~by—the—amovnt—AB= g SO — 1
, }_.___,72._5! was discussed In section B ’ \‘\"_’W
1 5.9 . |Since this is a very small |
T 7 displacement, the figure BB/R may ‘ , _
—— .2 be treated, with sufficient accuracy, S N SN

- as a plane triapqle.
! Fig. 6.9

AdAA cos & »R

} AKX cos § = k&, snB e 7 %7\)\
- A An

— ASAA = A's;'r\e sm 7 (67 7.) \ T™ /

j \a e
o _Sh the sp'h}, A PB\/, S //
B Sin B - Sm (qo"— 8 :3 , or e
s (oly-o ) sin (0% 4+ 7)
) 8 ces7s cos S, s (o w) (6-1-3)

Also USM1 ‘H'\e 'CNQ- [Da.rﬁ 'Co(‘mu(&
S0 0 Cos (40 247) = e (0% §,) sm(G0™ g\ ~ 0 (90°8,) cos (G0 8 cur O, -]
—smB s 7 = S S, Cos & — Cos .Q,, sm S .u{fx‘, m}() (é_'? 4)
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LIn the right sphericah triangl VAT,
b O emOmt ) = e, e S, |

’ | sm Xy = wiet, cu §, (650
e

c‘osv(lls;f-_‘x,\;ws ('f°°- €) M

. Sin Su =
l | | Csin & T —cws A s € (6-7-¢)
o Also\ vsing the 'Flve-r)a.nf's _‘Formu{{x)
! s;n()\‘—ﬁo")a—:é = s Sv sineX, - Sin S' Cog X, Lo F0°
-C_u".s)\s s ez Sindd, C'.csgv _ (é,?—'l} ‘

Now \ \)Sm-j (3) i~ (i))
{ AX, , cosS =%, cus &, Sin (oty — )
. . = Kaa Gt &y (sm o, cos o = con oty sm o).
I = Ky, Cos 8, simoly Cot X — Cus 8, cmod, sin X (b;7-%)

§ ' U$|n3 (5) &L (7)) n (_?)) ) o
1 AL, s 8 = Ky, (-Caso( c‘;r;?\s Cos &€ — Sin o Sin )s\,

Or) ﬁrﬁf.e/\- ./‘J.MI\M—E'V“' ,
I 10.4%9Y
o~

e ol - = —Fan ™ ny -
e Ag,, =X A -_au—;-—s»—(smo_( 5in /\s%: cus o Cus A g Cut é\ (6.7 -4)

Nex‘f) Lsing (4) (2\)
ASAA = Kaa (Sln Sv Cus 5»"‘ Cus SV Sm S Cot (o(v-o(§) )

= K‘AA ( Sin Sv Cogg - ug&, smé LCJJSQ(, ot X 4 &m Ay Sin o{}) N

. =kpp (8, cond s, sm 8 s oy sl - Cos §, sm § sinaly Smo{) ©.7-10y

P
U.’Hv\s (5\ , (é\) . ki (7.) in L]o) glM

‘ ASAA = KAA(_CGSSC‘“)S Smé —cosck sin 8 sin >\5 4+ smodd Sind Cos )‘A Cas 63

4”_,__\ A§AA= S,—S = - ICAA(CDSO( Sms Sin )\S + cusSc»s >\5 Sin € — Sindd Sin S Cos /\f <us C‘) (6,7—“)

’ | ’ Eﬁs' q - oend llg- +hen que +he corrac‘f?m; 7 r/jhf a:céns/an and
J decfination cavsed bui +he circular QomPonen"l‘ of the

i ) armnval aberration .

I
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6.7.2 The e-term of alnef‘ra‘{'lar\. The effect of +he

eccenf"mcff:L of the earth's orbit on arnnual aberration s
discussed in the par&qm’pxs which ‘Fo”ow, Tt will be S‘\own

+Hhat +he effect ls of the order of Ol.'3'+ except Ffor close

‘ clr\cumpolaf~ S+&.f‘5> l’\ev\ce Moy USU&”H he Y\eq{ec'{'ei.

ijo‘v\su;lef‘ a boiﬂ moving sbout 1ts primary.  In  4an e,”xp"LlQA[
orbﬁ“ as  shown lnifitﬁq. 6.10a , The '('oTa.[ Ve.locf('gf Vec.fo(‘ \/

. 1S C{H“ec—tecl +quﬂ+|ﬂ.”; To the e”:pse . ancl mMay be CcmS:C!e(‘ed

as the resulfant of “the circolar fangential veloed; vector

-

7 _re ond the radwal Veloc('fz.,, veclor r as  shown m Fig. 6.10b .

7

F?g 3.3

P

L

P

The éggé:hgg,ﬁeﬁjh,e_ ellpse tn polac form 15

i
r= all-e) (4.7 -17%)
/1 € cus 8 ~

‘le%‘ef‘én‘ﬁd.f;n 7"'/1/.{ with respect 7 Time yes
: 7 / I

1 . _ a(-et) (- esmb é)
_{ r= Y usa)z- S
\
W ’ r _ ae(1-¢%)0 (é;;-zs)

, 4 sm@ T (1+eces@)T

y - o s = 4e(1-€*)8 cosd
74n O smb (1+€ cos G)?



= a.(l-e““)é .

ae(l- e’)éc»:é -

Tan O

(1+e u:a)"

= a(/ 62}9//+€w:9 e,ﬂoje

B _ /tecesd
B Brvar o Ay
] 1+€ s P /4+€ ¢cot®
v =_ é_(/__eﬁﬁ. e
(/ +Q cos 8 )

<>w14¢m3 05y of ). /‘;{f[QM

eV

/+8 cus & \

/+€ es © )

t s apparent Hhat

(6.7-14)
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(ea-is)

_' constant

. e.Cte'\fNCttj,_ €.

et Poo

now BL S}\M "Hu.f 'H\e

in value.

I+ will

;.Sn Ftaé._ 6.1, the ane MPQ pmf of am "V
“ellipse with center Q| _:5_@*'?!‘,'..?!\,4,]0!‘ axis
&, Semiminof axis b,...,.énu.c’_ .

The slpe

_of the ellipse at P 15”&‘.93,3_._:_,..
the |

line.

PLe.

which 15 "always

directed at
pose that

r‘lcj‘\f

alse  su

at P there

Com?cv\n-..:t‘. Vﬂ-w-g. V'ML

b=ea* et

CY

jSu”)ore that 'L n; ‘6_» ‘me Vec.tr | M-J-;\lc.fr\ .15 of constant

C«nejl es +u "H'\ <

1S another

._fm.e V_ecﬁzr,,,

IenA:J'H\, MJ

rz\d [RVES \/ecj'br r

3
of

and +he

ConsTant [enﬁ*H\ el , directed at r:SH' anﬁles to +the Semimajor Axis,
T}\e [me vector L‘E is then tThe '\/ecfor sum of L u’mc} eL)
SloPe of Lg 15 given log
_dy _ eltles8  eqcos®

slope = 2 = Tras fTTmme ©T0e
The equofhon of +he eH»rue in Carfisian coordinatas ig

-3{- + :Lz =1 (6'7"'7)

e b*
or

b'x" +aq = a'h’ (6o~



Dufferestiabing (8),

b 2xdx +a" 24353 EX- T

~nw"\\clr\ 1s +the same
“H’\k“' the aSSump‘hon reqarqu the

S AU
f

Frow\, \"zg 6.1,

X = ea.+r'¢:o:é and

) Sulod’ ;i;ufnnj these relations (4,

dy _ — b eatrose
W T T @ e

e

@k SN -

dy é"{-“"e os® + <:a§"e"‘“é“a's'e""‘ B

TeFLs

resuH‘ o8 06\ a.lpove,

j :‘r' Sim 9

\Ner_vsimg (2) ond the _f'ff*e,let{;; S N

e ea_-f- 6. (1~ cos B
_a*(-eY) [+ 6 cos
ar a.(r-e*y §5e
Litees®

EILL-,

ey

‘H‘\u,s S(f\owms

constancy of

94 o

‘H\Q vgc'f'o,»_; (. a..vxcl _g‘: L Sa+lS'F|es

+he

CGY\ 4 1 .{-!Ur\-f -

L +he ellipse. B )
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. The rumerical_ valves of V and V' may be fomd From
Keplerutn orbit 7‘heor5, in which 1t 1S shoum Fhat

= lalre ) , - _v.,‘(."”‘“’w
f‘ [N

where
G = 6.673 10" m’//cg-s o the Newlhnian 3:%4//7%770514/ cons fanT
M = mass of the central body i é//agrﬂms
Let o : o
R a(i-e*) 4 (5,-»2,})
Then ‘, (12), {4, -MJ‘(H) become | /urfecfm,lfj , A
- , -~ 2.4
7= LIt € i) o - ("7 2 )
Y - : | ’
V= et (/1€ cos O)F ' P G 2s)
o h o /uZ(,*e Cofa)l U .
9 = r = ht . . R (@'7’7'5)
‘Uﬂ!‘»j (26)'1" 25) 3:wes
V= h ' . /ul(h‘e'cu&)z
T owtrecx 8)F h
V= /% (6.71-27)

.S,ncg A Mo/ A are bo?‘A Coﬂffﬂ-v\%) +A€m V I_S CW:/AT'?‘.'

. ) / .
.)’mce e /s CW{%M'%) 7L/7€n V = e[/ /5 can_f?'/'a’.nf.

For the case of the earth maving aroumd the sum
A = GM, = /3.246 « 10" km?’/s>  (From the Ex//an«?‘w:j Su/)/p/emenf)
G.= /144,600,000 £m
e = 0.0/16773

Then h = 149600000 (1-.01673%) 13,246 x10""
h= 4.45049 <io km“/"sk

13,246 x10'° L
V= e 2 2996 km /s

/ ,
V= eV:=.01673(247%) = 050 km/s
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. 5D ‘i43_
My = W ﬂ}’ it (‘"W’ -

L | _

| The effeet of Vion the right arcension and  dechnalin of a0
| | body may then be obtamed from eqs.(9). and Q4. by replacing

- DAy with ow, ,ésr\d_v,_bg mq.,(ftp_[w.ng_., bj the ggier\fﬂotg, e. —
. The result of thete Two opecafions gquen o _

T AS —eK, . (Wweatsind smw, +wsSwsw, SIn€ -~ Sinck sm8 Ut W, ws€)

EAA
- (6.7-22)

Eq&s. (28) a-d (24) then guwe the conuctioms o flﬁkf'w7

o.SCewnision o.vxé dec(ma.'h(m 'Fof‘ "H\Q Q\C'Fec't' of the eccer\'{‘rlm@
| or. annua( abef‘(‘a’hon. o

+

At the Pre‘Senf 'hme) the lma\fuc‘;g of periger s abwfﬂ ,2‘_5'!,0, eto-v!’"‘?”:’;,i_

the obliguy of the eclphe s abat 235 | and the constad

t Jof omnual aberration s 201-"‘96.-3."*“9-, maximum values which

rv\a,al ke, f‘QAckec( lo_zj e%sCZS’) and (24) ora "H\e.\

‘= .o1e73 (205)

(B

N

(SM(X SIV\ 28|°+ C—éSo( Qs 28]6(‘,“;7 13?53

- 0.343

r,f‘, ;.ﬁ;, . (A,O(E,,Amax = *’;T“(‘ 0.982 sinext + O-ilv73f ok ) - (6.7-30) -

n

o (ASGAA\M

. . . a ° R
A —o.oung,(zo.s )(Casd sind sim 2l u.sr_S s 261%5m 23§ - Sina 3w S_c% 221%ws 13,8

1)

(ASEM) o % =034y (F0.482 custsin§ 40,076 e § = 0.17S snx sind)  (6.7-31)

e
!

 Considerstion  of 2qs. (30) and (31) shows that, for  stars

|- _‘J e e e

L with declinalions  From =70° To +70°  the wmaximum valoe of

!
{

S SR
1

Cithe  e-term s 1"

or less enee may vsvally be ignored.

L. — e ¢ e e it e e — -
i
N e e e e e e e e, e i e — — —
|
I
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68’ Bnnual Pa,ral[&x

| Comsider_fig. giwil which chos i son, Ha ek, and & tan; Ha

9/4'16 defmeo/ bq 7“/)&:2 7L/tf‘ee éoc{les /S,nof m jener‘A,[ 7‘*{2_

| L -&rke" S ,,,.“

o 1 echpf‘/c plane . The annval parallax  of Fhe Sfa.n. s Fha :L.«.J/e_

Fig.gs=l A\ 7

ot _the star sobtended by the radis of Hhe earth’s orbit, teken

as cmevlar Cwith SMA” error | since tha orbital eccentricily 15 0.01673) |

Sw‘\‘ A P

il?‘j

T Ly

The hehocenfnc dzrec‘i’:on of +tha star 15 defined by Tﬂ“‘“_rz% 9,,

and -H\_g ﬁeocenfrjt; o!*ec'hav\ 1S de'fmec{ b "H\-L ﬂM?(A 9/
M%ﬁ“ at +£~4 Sfdf\-, SUBfQV\C!QC/ l:) 'I’&Q thfMTanEmzs f‘«d!mg Vécﬁ,f
aé He, eantk s @-8' :

From *the Lowr of sines a_lo,o//eq/ 7 The /0/4ne fr/dnj/e Earth= Sim~ Sﬁv\

5"\(9 -8") _ sm 8’ . 6.8~ <2)
o - d '

MJ, vpen substifolion  for d From (/))

/
sm(e-8’) _ sm8

==

& @/Smﬂ,P.
Sin (/9"9’) = s.n AP 5/:19’- 6.5~ (3)

. . ]
Annval /Mm//axe.r of  slars never exceed | n Va./ue) so Mat

we  rmay warthh (3) as

9-9, = A.P. s/n 9 6.8~ (‘){)



GH.a

s'f‘a.n. s - denofeJ b e l]m 08 Y

e qeo cexfric durec'hm b‘_j OB’

| },.M  Tha_one BB 15 equad to HR
“ ,%¢“&€axyugw)

} L Tha diwrna{ circle oF B c-.»Ts
B  4ha hour circle of B! at R 5000\,
, ) . the length of +ha dwrnal are
~BR s equal to AX cos &, .
} - where A, represenfc tha |
oo difference in right ascemsioms . Fg. b2 T
}”.A%B&ARQ, S Fmgw~~“

o Tke -Ge'yre. 'BRB 11 sg Tsm aH “l“ﬁ.aj' |+ ey thmT f@rigus R
reor ":'f'ic\"fed as f{a.m -ﬁ:njurs. , &< S'hown n /'lf, 6o £-3.
. , Frow 'H’\& "Clﬁut‘e ) Mc‘ U.S'Mj (‘43 i

| ) . . S . te. B Dol pas § R

e
s R

, Ao, cos § = (6-8') cosY = AR simBasY (5) " /‘75, 6.%-3
}, : . and P DV
—ag,, = (6-8') sin Y=A.P.smB sin7  (6)

} In the spherical trianale P__BS‘, Usinag ‘H‘* lawr of Sines

_ - Sin O . S (‘10°_ 8,\ :
; Sin (o, -0} Sm (20°4v) : 8>3

SmB s Tz ot § Sm“(_o(‘-o(_\ bt~ (73
'Qﬁan\‘ uSlnj +“-Q 'ﬁve- ()Mtﬂ' 'For‘ww(&)

sm B cos(0%4 ¥) = cos (G0 8 sim (3028 - sim (G0 &) cor R0 §) s (o)~ )
j ~5mB sy = sSm S, cos § —QOSSJ s\hS;oS(ds—d\ 6-8- (8\)



o subititing (o) et

T » AP

94t

Tn_the _nght sphecical triangle TSF

Cosm & o siady
oo Sneg o A A
Sin € Sim qo°

osm8 T smd smE bs= (D

P S
t

sin(G0%A,) 2 Cesol G 8,
CCos Ag F cosdl, e 6,

4:5’“(103
S‘“XSC“ € = cos b smag ~ sind, Cus X o 90°

Sim Ay o € = Sinol €or 6, T R
‘Us:r\&s (7\ In (5)) .
Adl,, s §3 AP, cos 8 sin (ol ~od) B
C=APR cos § (smdgean - tadg sma)
= AR(tr §, sm o, taat - cur & s o simal)
KSR w——rs
e Ao'—(APM = _A_‘_P_'_- Cog ol Sin )‘s Cog € ~— Sm_o( Cos )\‘) 4 é'g‘_f 02)
Cos &
-ASAP' = -—_A.P,‘( Sin 8‘ Cos S -Cos 8‘ S‘Mﬁs Cug (O(‘-NBB ‘
B8 = AP (5in8 el ~cefysm8 (cersty cndl 45ne, mat))
AP (sim 83 g § —Cus SS sind Qg oy &vsal = Cus SISmS Sim d‘Smo()

1

Sebstitting (4), (10), and (1) m Fhis exprcssion uelds

——— A8 = A.P-(ch S Sin >\5 Smé —cos o SimS Cay As ~sino sin ‘r"‘/\i Coy é) 5'1'~(|3)

E%s. (12) and (3) “hen quve +ha f&gwrecl corrections 15
_(‘I%H’ Gicenston  awd ,c"mc_ﬁlm{hcv\ C..au.m‘c{ BS Gonnual /Paﬂﬂw«&avt.
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6.4 Reduc'fmn ‘Ffom mean 'ILZ) d—{JJ'OMQn'i’— P’O\CQ usmj Daj /\]u-méers.
ACXPR: T(m+n st Taw $) = Tn('ﬁq—-ﬁnd tauw S
n
AX L= (Cu: € +smé& sing 'ILMS‘) AW -~ cos X Toan$§ Ac
= AP s AP snE smadTand - n€ s o T8 +AY-m gne —aY.mM sme
n n
A, = oy sne( ™M + smol tan §) +(-8€)Cso tand + A% (os € 21 5 &)
n
, .
QD(AA = ‘:*E Sin &k Sim 'A_s + Cos X cas_)\, oy é) <“63(ch'“3 +£q e—fem“}
= "KM qmA sin Ay = Ka Cos X cos A C3 €
LB s (mKa cos ) ers€) @ g (—Ka. s N ;g
’ . Coi § _ Cos §
= AP - sim
AO(AP-M8<QJ10( Sim Ay Cos € s d&uks\
= AP(smA e s _ cus A, simu
( noAs c’}g s s m\
= ar (Y, csux — Xy smw)
s § Ces § X = — X
AO(M’ = AP(XQ Sim . — \(6 C—vso(\ Stnce ® . e
s § Cos & \\"6 = = \(0
AClAILj1 ﬂ—woo\ &&dlj ‘7"%4_ pfo/ﬂ-e/\ rho'flw—x TLMHJ
AK = Adpe & A+ AKX, B, l
AX = (’{‘r\ .{—’AL{J Smé}(@;\j—swdf@-«&) | AR= A\Ck.\
+- (—aé&) _(cus o taw S) l + B b ‘. Nﬁ,bwﬁ
Cos ot , :
+ (—KA CO'SXSCUSé) -Qm—f ‘ 7% + C.r('.
Sinod \ )
+  (-% sm],) (25 | + D d
oy (ese -1 sme) | NHE
+ AP ( X smd ¢ cesd \ + AP(dX ~ oY)
Cas § Cat §
+ T/LO“ l + T/’Lo(
|
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6.11 The Besselian Day Number msethod of star place reduction.
o

&

’ 2
X, + Tm, + Aa + Bb + Cc + Dd + E + J tan § + AP{dX-cY) (6-60)

§ + TMg + Aa’+ Bb’+ Cc’+ Dd’ + J’tand + AP(d’R-c’Y) (6-b61)

where the “1° subscribts denote the mean place at the epoch 19YY.5, which
is the middle of the current Julian vear.

The Besselian Star Constants are:

]
O
(o]
(L
B3

+ sin o, tan $, R -at

=M
- 8 TR .5
R, . b = cosx tan § R.¢-b? = -sin &,
R 3 - ¢ = Cos icos §, Ry’ = tan & ces §, - sine, sin §,
/Q¢ " d = sin « /cos §, R g-d’ = cos & sin § p

Aépﬁ = ia”él

.h_and . n are the annual precession gn“rignt,ascenagonkand_de:lina;ignmw

at- the-middle of the Julian year, as given in-the A Section E.
€ is the mean obliquity of ths ecliptic, again from Section B of
the Almanac.

T denotes the fraction of the Julian vear elapsed from the epoch

of calculation to the epoch 19YY.5, this definition results in T being

~ megative during the first half of the vear and positive during the
ist BETf - R 8 N A N S LR L

mMm denotes the annual proper motion in either right ascension or
declination, as indicated by the subscript, values of x. are given in
various catalcgs, such as the FKd4 and the FK5.

A, B, ¢, D, E, J, and J’ &are the EBesselian Dav Numbers; values for

each of these are tabulated in Section B of the Almanac. The quantities
A, B, and E give the reduction {or precession and nutation; ¢ and D
give the reduction {for annual aberration. The second-order Day Number
J and J° are so small that they ¢an usually be ignored {for the purpos
of the present text.

s
es

LP is the annual parallax of the star; wvalues of AP are given in various
catalogs, such 3s the Yals “ieneral Catalog of Trigonometric Stellar
Parallaxes"”

X and Y are the heliocentric squatorial rectangular coordinaltes of the
Earth, refesrred to the mean equinox and eaquatcor at the epoch Jz000.0;
daily values of X and Y are tabulated in the Almanac, Section B.
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Exzercises

Find the values of §, , z, , and 8, at the epoch J19YY.5. the
middle of the current year.

The JZ000.0 mean place of a certain star is 15 hours imn right
ascension and +30 degrees declination. Find the mean place of
this star at the epoch J19YY.S including only the effect of
precession.

Further reduce the J19YY.S5 mean place of the same star to
include the effect of proper motion. The(%%é%éﬁéigllﬁlﬂﬁif
motions of the star are +35° in right ascemzion and -40"
in declination.

Calculate the fundamental arguments required {for use with the
1980 IAU Theoryv of Nutation, for the epoch of problem 6-2.

Calculate the first three terms of the series for the nutation,
in both longitude and obliquity, for the same epoch.

Using values of AY and Ae€ taken_iggmfiﬁg;Aimggi_, further reduce
the star place from problem 6-3 to include the effect of nutation.

f/“\\\

\\“_-,/©f annual aberration.

Further reduce the place of the same star to include the effect

Yt .
é—éjj?Further reduce the place of the same star to include the effect

of annual paqallax; the annual parallax cof the star is 0.7 .

Reduce the medn place of the star € Indi (number 5367 in the
Eright Star table in the Almanac) con=1derin; onlv the effect
of precession, ¢o the epoch February 9d 19" 26" 14°5 MST.

Further reduce the mean place of the same star, to the same
epoch, to include the effect of proper motion. The centennial
values of proper motion, taken from the FK4 catalog, are
+48%2 in right ascension and -254%5 in declination.

-

Further reduce the place of the star €& Indi to include the
effect of nutation.

Further reduce the place of the star e Indi to include the
effect of annual aberration.

Further reduce the place of the star e Indi to include the
effect of annual parallax. The annual parallax of this
star-is 0.291 .



APPENDIX B

Excerpts from "THZ ASTRONOMICAL ALMANAC - 1385*
and from certain earlier years of
"THE ASTRONOMICAL ALMANAC"

and "THE AMERICAN EPHEMERIS AND NAUTICAL ALMANACH



*

Table B-0

UNIVERSAL AND SIDEREAL TIMES, 1983 *

r Fquanoa of r

G. SIDERFAIL TIME
Date Juhan (G H. A of the Equinox) Equinoxes G>SD
orU T, Date Apparent Mean at0*u.T. orGST.

244 b oom s . . 245

Feb. 1S | SW0S 9 17 319499 449224 -09726 20770
16 | s181s 9 41 40 39x8 41.4778 9790 - 2078 0
17 | sww2s 9 45 370472 38.0132 9RS59 20790
18 | swis 9 49 139962 34 SRRS 9923 20%0.0
19 | <3845 9 3 30 {468 31.1439 9970 2081 0
20 | SIS 9 57 26.6999 27 6993 -0.9993 2082.0
21 SIR6S | 10 01 23.2559 24,2536 9987 20830
22 ) S387S | 10 05 198148 20 8100 9952 2084 0
21 | S388S | 10 09 163757 17.3653 L9896 2085.0
24 | S3I89.5 [ 10 13 12.9371 13.9207 9836 2086.0
25 | S390.5 | 10 17 09 497 10.4761 -0.9789 2087.0
2 | SI915 | 10 21 06.0541 07.0314 9773 2088 0
27 | s392.5 | 10 25 026074 03.5868 9794 20890
28 | S3935 | 10 28 591574 60.1422 9848 2090.0
Mar 1 S3945 | 10 32 55.7053 56.6975 0.9923 ! 2091.0
20 sw9ss | 10 36 s22528 53 2529 -1 0001 2092.0
3| SRS |10 40 488014 49 8083 1 0069 20910
4 swTSs |10 44 453520 16.1636 1.0116 2094.0
s ' SIYRS | 10 48 419050 42,9190 10140 2095.0
6 | SIYYS | 10 S2 3K 4600 19.4744 1.0144 2096.0
7 | 54005 | 10 56 15.0164 36.0297 -1.0133 20470
8 [ S3015 | 11 0o 315716 32.5851 10115 2098.0
9 | ss025 | 11 04 281708 29 1405 1.0097 2099.0
10 | S403.5 | 11 08 246871 25,6958 1.0087 2100.0
1 <3045 | 11 12 212420 22.2512 1.0092 21010
12 | S4085 | 11 16 17.7949 I8 8065 -1.0116 21020
13 | S406.5 | 11 20 14.3459 15.3619 1.0160 2103 0
14 | S407.5 | 11 24 10.8948 11.9173 1 0224 2104.0
IS | S408.5 | 11 28 074424 | 084726 1.0303 || 21050
16 [ S409.5 [ 11 32 039892 05.0280 1.0388 ] 2106.0
17 | S4105 | 11 36 00.516S 01.5%34 —1 0469 21070
“I% | S411.5 | 11 39 570853 SK.1I47 1.0534 21080
19 | <4125 [ 11 43 53.6365 $4.6941 1.0576 2109 0
20 | S413S [ 11 47 50.1905 $1.2495 1.0589 2110.0
2 S414.5 | 11 S1 46.7474 47 8048 1.0574 2111.0
22 | <4155 [ 11 55 433065 44 1602 -1.0537 21120
23 | 54165 | 11 59 39.X664 09156 1.0492 2113.0
24 | S417.5 | 12 03 36.4255 37.4709 1.0454 2114.0
25 | S418.S | 12 07 32.9824 34 0263 1.0439 2115.0
26 | S419.5 | 12 11 29.5360 30 SK17 1.0456 2116.0
27 ] S420.5 | 12 15 26 0864 271370 -1.0506 20170
2 | 4218 | 12 19 224343 21 6924 1.0581 2118.0
29 | sa225 | 12 23 19y Imi2 20.2477 | 0666 21490
| 4238 | 12 27 157287 16.8031 1.0744 21200
3 $424.8 | 12 31 122781 13 354S 1.0803 25210
Apr. i $4258 | 12 35 0K 4300 099138 - 1LOX3IR 21220
2 $426.5 12 19 0S5 3843 06.4692 ~ 1.0%49 21230

From "The Astronomical Almanac - 1983

- -

UT ato*GMST
{Greenwich Transit of

the Mean Fquinox}

h L] .
Feb. 15 14 19 S3 KR4
16 14 15 57 9OR9
17 14 1201 y994
18 14 0% 06 0900
19 14 04 10 1808
20 14 00142710
21 13 Sh 18 3616
22 13 §222.4521
23 13 4R 26 5426
24 13 44 30 63132
25 13 40 34 7237
26 13 316 IX X142
27 13 32 429048
28 13 28 46 9953
*Mar. 1 13 24 51.0859
2 13 2055.1764
3 13 16 59 2669
4 13 1303135758
S 13 09 07 4480
6 13 0511.5385
7 13 01 156291
8 12 57 19.7196
9 12 S§323%101
10 12 49 27 9007
11 12 45319912
12 12 41 36 0817
13 12 37401723
14 12 33 342628
IS 12 29 483803
16 12 25 52.3439
17 12 21 56.5344
18 12 18006249
19 12 14047158
20 12 10 08 30640
21 12 06 12.896¢
22 12 02 169871
23 11 S8 210776
24 11 S4.25 1n81
25 11 SO 292587
26 11 46 3311492
27 11 4237 4397
2% 11 3% 41 S0
29 11 33 456208
0 1t Y0 49711}
ol 26 SYROLY
Apr. 1) 2287 k924
2 011 1901 9%29

2
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TABLE B-1%
CONVERSION OI' TIME TO ARC

or 1» 2k ‘ 3t \ 4t 5 SECONDS
! |
m . ’ [ . ° ’ ° ’ ' ° ' ° ’ s { YA '3 l ’” H s l "
0| 000 | 1500|3000 ;45 00! 60 00 | 75 OO 0! 000] 000 0.00 | 050, 7.50
1| 015|1515|3015 4515 60 15 | 75 15 11 015] .01, 0151 .51 7.65
2| 03015303030 4530 ;6030|7530 2. 03] 02.0307 52 780
31 045151530 451453516045 1 7545| 3! 0451 .03 035! 53 795
4( 100 |16 00| 3100 l 16 00 \ 61 00 | 76 00 4 \ 100] .04 0.60 I .54 ’ 8.10
5| 115|1615!131 15" 461561 15 76 15 5, 115] 005 0.75 ?; 0.55 | 8.25
6| 130(1630]|3130.46 30161 30; 76 30 61 130] .06: 090" .56; 840
71 14511645131 451 46 45| 61 45 | 76 45 71 145 0711054 .57 | 8.55
8| 200 |17 00, 3200, 47 00 : 62 00 ! 77 U0 8i 200 .08, 1201 .38 870
9| 215]17 15|32 15 i 47 15 } 62 15 I 7715 9| 215] .09 i 1.35 i% .39 | 8.85
10| 230|1730,3230;47 306230 7730| 10: 230|010 1.50 : 0.60 | 9.00
11| 245174513245 4745162 45 77 45| 11| 245] 11 1651 611 915
12| 300 |1300)3300 480U 63007800 12; 300] .12 150" .62 . 9.30
13{ 315[1815!/33 1548151631578 15) 13 315| 181 1.95 .63' 90.45
14| 330 |18 30| 3330) 48 30| 63 30 ’ 7830 14 330f .14 210 : .64 | 9.60
15| 345|18 4533 45|48 45|63 45|78 45| 151 345|015 ! 225" 065 ' 9.75
16| 400! 19003400, 49 00 ;6400 79 00] 16! 400] 161 240 ! 66| 9.90
17 41519 15|34 15149 151 64 15 J o153 17| $15] 170 2550 .67 10.03
18| 4301930 ;3430.4930 6430,;7930) 18, 430 .18 270 .68 10.20
19] 44519 43 1 31 45 I 49 45 1 64 45 { 7945 19 445 19 2.85 i 69 .10.35
20| 500 ;200035005000 ;6500,8 00] 20| 500] 0.20' 3.00 ; 0.70 -10.50
21| 515201513515 50 15165 15180 15} 21} 515) .21 315" .71 11065
22| 530203013530 5030 } 6530 ;80 30| 22 5301 .22 3.30 .72 110.50
231 545 |20 4513545 ;50 45,65 45|80 45 23 545| .23: 345% .73:1095
24| 600 | 2100 360051 00] 6600 | 81 00f 24| 600 .24 360 .74 i11‘10
H i
25| 615 2115 36155115 6615 ,81 15| 25 ' 6150 025 375" 075 11.25
261 630! 2130!3630' 5130 ¢630,8130( 26 ¢ 26 0 3.u0: .76 11.40
27| 645121 45136 45150 45 66 45 Sl 45| 27 645| .27  4.05 S7 1155
28 | 700]2200|3700 5200,67 00:8200| 2%: 700] .28; 420, .78 11.70
29| 715221537 15 ‘ 52 15 | 67 15 | 82 15| 29 i T15] .29, 435 .99 “165
30 | 73022303730, 5230 ‘ 730:8230| 30! 730 0.30 ' 150 . 0.80 12.00
31| 7451224537 4515245167 4518245 314 745] .31¢ 40657 .81 :12.15
32| 800(2300 380035300 ,6800 8300 32, s¢o| .32 480, .82,12.30
33| 81523 15|3515(5315 6315183 15| 33 s15] 33, 495 83 1245
34| 8302330 | 38305330 6530 ;8330) 34| 830 .34, 510, .84 .12.60
4
35| 845 23453345 53 45 6845 |83 45| 35| 845[ 035 525 055 1275
36| 900 2400 3900|5400, 6900;84+ 00| 36 900} .36: 540 .86 ,12.00
37| 915 | 241513915 |54 15769 158415 37| 915 .37 | 555} .87 ;1305
38 9301243013930 5430,¢6930i8430| 38} 930} .35, 570" .88 1320
39| 9452445394554 45 | 69 45 | 84 45] 39| 945| .39 ! 5.85 “ .89 il3.3o
40 | 10 00 | 25 00 | 40 00 | 55 00 ; 70 00 | 85 00 ] 40 {1000| 0.40 | 6.00 ;' 0.90 ;13.50
41 (10 15 ] 25 15 | 40 15,5515 701585 15| 4111015) .41: 615} .91 1365
42 | 10 30 | 2530 1 40 30 : 55 301 70 30 | 85 30| 42 1030| 42 630" 9211380
43 | 10 45 | 25 45 | 40 45+ 35 45 | 70 45 | 85 45| 43 [1045) 43 6454 93 1395
44 | 11 00 | 26 00 | 41 00 | 36 0O ’ TL 00|86 00 44),1100| .44 6.60: .94 14.10
! J !
45 111 1512615 ) 41 151356 15,71 15|86 15} 45 ! 1115] 045 6.75 | 095 14.25
46 [ 11 3012630 1 41 301563017130 8630 4611130 45 600 A6 14.40
47 | 11 45 [ 26 45 1 41 45 1 56 45, T1 45 {86 45| 47 (11 45| 47 705 AT 14055
48 [ 1200 1 27 00 1 42 00 [ 57 00 1 72 00 ' 87 00 | 43 11200] 45 7.20 . .ys .14.70
49 | 12 15| 27 15 | 42 15 i 57 15 i 72 15 |87 15| 49 [1215] .49, 7.35 1 0.09 '14.85
50 | 12 30 | 27 30 | 42 30 57 30 72 30|87 30| 50 {1230]| 0.50 0 7.50 " 1.00 '15.00
51| 12 45 | 27 45 | 42 45 { 57 43 | 72 45 | 87 45| 31 12 45 i
52 | 13 00 | 28 00 | 43 00 | 53 00 | 73 00 | 88 00 [ 52 {13 00 [T~ T
53 |13 15128 15 | 43 157 58 15, 73 15 [ 88 15| 33 11315
54 13 30| 28 30 | 43 30, 58 30 | 73 3u | 88 30| 54 ' 133V ob = 00°
| ' x ‘z
55| 13 45 | 28 45 ¢ 43 45 ' 5% 451 T3 45 | 88 45| 55 {13 45 125 = 180°
56 | 14 00 [ 20 00 ; 44 VU 59 U0 © 74 00 ¢ 89 LO | 56 ' 1400
57 | 14 15|29 15| 44 15150 15, 74 15 | 89 13| 57 [ 1415 18b = 270°
58 | 14 30 | 29 30 ; 44 30 ' 59 301 74 30 1 89 30| 58 1430
50 [ 14 45120 451 44 45159 451 74 45 1 89 45§ 59 | 14 43
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TABLE B-2 ¥
CONVERSION OF ARC TO TIME

DEGREES MINUTES SECONDS
° h m . eln m 5! ° h m | m s ol s v 3 b 3
0,000 60400120 800) oroo0o] o o000l oo, 0000 . 050 0033
! 1004 61404121 804 11004 1, 0067 017 w01y 511 .034
2 008 62,408 122 808|] 27008] 2 0133 02 oo1? 52 035
3,012/ 63! 4121123 812| 3to012| 3" 0200 ‘03! 002 33 035
17016 0 64 416 124] 816 4 0 16) 4 0267 040 003 54 i .036
51020 65 420 1251 820] 5'020| 5 0333|005 0003 055 0037
61024, 66 424 126, 824| 6024 6 0400f 06 004 56 037
71028 67 428 127 828| 7028 7 o4s7]| 07, 005 571 .038
8 032 o8 +327128| 832] 8/032] 8, 0533| .08, .005 58 039
9,036 60 436 120 836| 9 036] 9 0600f 09, 006" 59 039
10 040 70.440 130 840010]0 40|10 0.667] 0107 0.007 060 0040
11,044 71,444 1317 84411 04|11 0733 110 007 ¢ 611 .041
12 048 72 448 132° 848)12/048[ 12  0os800] 120 008 62! 041
13:052 73452 1337 852|113 -0352[137 087] 13" 009l 63! 042
141056 [ 74 456,134 8561405614 033 .14, 0001 .64] .043
! . B | ! ! i :
15100, 75:500;135; 900)15]100f15: 1.000] 015 0010 065 0.043
16 104" 765047136 904)16,104)16 1067] .16 011 .66 .034
17 (108 ¢ 77 /508137 908|17 /103171133 17 011+ 67 | .045
18,112 78 5125138 9g12|18:112)18; 1200] .18 012 .68 | .045
19 116 70 516 130 916119 116019, 1267 | .19, 013 5 69! 046
i i i i ! i : b
200120 8 :52 ' 140' 920]20° 120]20° 1333|020 0013 070 0.047
21 124 81°524 141 924|210 ;12421 1400 21| 014, 71 047
22 123 82 528 142 928|22:12822" 1467 22 015 72, 048
23 132 83 53211431 932|231132|23 1533] 231 015+ 73 .049
24,136 - 84,536 144} 9 36|24 ) 136 )24, 1600 24, 016 74| .049
i i i il | ! | !
25140 85.540 145 940|251 14025 1667|025 0017 | 0.75 0050
26 144 86.544 146 944|261 44)26: 1733] 26, 017. 76 051
27148 8 548 N7 043127/ 148|27 1800| 27! 018 .77 .05l
28 152, 8 552 1481 95228, 15228 1.867| 28¢ 019" 78! 052
20 156 89 536 149 93612013629 1933] .29 01v, .70 033
1 i ' ! i ‘ i :
30 200 90 600 150 10 00| 30 12000130 2000|030 0020, 080 0033
31 2047 91,604, 151 (1004]31 204312067 31: 021 .81 .054
32208 92 608 152 1008)32/208[32; 2133 32 021 , 82 .03
330212 93 612153101233 212|133 2200| 33, .02 83 05
3412161 9416 16 | 154 ’10 163421634 2267 341 023; 8+ 056
35 220 9516200 155 1020]|35/220]350 2333 0351 0023 085 0057
36224 9616241156 1024)36, 22401361 2400 .36 024 86 057
37,228 97 628 1571028137 229377 2407 | 37 025 87 038
38 232 981632158 :1032|3%8 232|338 2533| 38| .025: .88! .059
39 236 996 36,;159 | 103630 23630 2.600 | .39 | .026 ; .89 . .059
' i ! ! i . !
40 240 100 | 6 40 160 | 10 40| 40 * 2 10 | 40 2067 | 040 | 0027 7 0.90 ¢ 0.060
41 1244 101 ;6 44 7161 |10 44 | 4112 44 41| 2733 | 41 027 . 91; .06l
42248 102 648 1162 10 48| 421 2 48 | 42y 2800 | .42 028 .92 .06l
431252 103 652 163 :1052|43 1252 |43: 2867 | .43 029" 93 . 062
44256 104 656 164710 56 [ 441256 | 44 2933 | 44 029 .04 063
! ti
45300 105 | 7 11 00| 45 i 300] 45| 3.000] 0.45 0030 . 0.95. 0063
46 ' 3 04 | 106 | 7 P11 0446303461 3067 46 031 © 96 064
37 308 107 |7 11 08|47 |3 08|47 3133| 47 031 . 97 065
48 312 0 108 | 7 11 1248 312|481 3200 48 032 98 065
49316 109 K 11 16 49‘ 316|490 (3267 | 40 033 099 066
50 ! 3201107 112050 320|501 3333|050 0033 1.00 0067
51324 0 11157 C11 24|51 (32451, 3.400 :
52 3 2% 1127 1128|523 28|52 3467 —
53 332 13 7 P11 32|53 1332)53 3.533
54336 114 i? : 11 36 54‘ 336 |51 3.600 90° = b
553 40 115 1 7 40 “ 175 [ 11 40 | 55 | 3 40 | 55 | 3 667 180° = 120
56 3 44 116 7 41 7176 . 11 41|56 | 3 44 [ 36 3.733
570348 117 748 0177 11 48|57 |3 48|57 320y 270° = 18
58 | 3520 118752 178 ' 11 52 | 58 ' 3 52 | 58 © 3.867
59 1356 119756, 179 11356159 |356]590 3933

# From "The American Ephemeris and Nautical Almanac - 190"



TABLE B-3

JULIAN DAY NUMBER
DAYS ELAPSED AT GREENWICH NOON, A. D. 1900-1950 ~

Year Jan. 0 Feb.0 | Mar.0 | Apr.0 ‘ May 0 | June0 | July0 | Aug.0 ! Sept.0 ! Oct. 0 ' Nov.0 !
’ H 1
1900 | 241 5020 | 5051 | 5079 51101 5140 \5171: 5201 | 5232 !5263! 5293 5324 '
1901 5385 | 5416 | 5444 | 5475 = 5505 #5536 5566 | 5597 ! 5628 ' 5638 5689
1902 5750 | 5781 5809\ 5840 | 5870 i5901 | 6931 | 5962 i 5993 ; 6023 = 6054 ,
1903 6115 | 6146 | 6174 | 6205 | 6235 | 6266 ! 6296 6327! 6358 i 6388 ' 6419 .
1904 6480 | 6511 | 6540 | 6571 | 6601 | 6632 | 6662 6693i 6724 | 6754“6785’
1905 | 241 6846 | 6877 | 6905 | 6936 | 6966 | 6997 | 7027 | 7038 ;7089’ 7119 . 7150
1906 7211 | 7242 7270[ 7301 | 7331 { 7362 : 7392 | 7423 i7454‘;7484 7515
1907 7576 | 7607 | 7635 | 7666 ' 7696 | 7727 | 7757 | 7788 ;7819} 7849 7880
1908 7941 | 7972 | 8001 8032i 8062 | 8093 | 8123 8154: 8185 ! 8215 8246
1909 8307 | 8338 | 8366 | 8397 | 8427 | 8458 ; 8488 8519i 8550{ 8580 ;8611;
i i
1910 | 241 8672 | 8703 | 8731 | 8762 | 8792 | 8823 | 8853 | 8884 : 8915 . 8945 . 8978
1911 9037 | 9068 | 9096 | 9127 | 9157 | 9188 : 9218 9249! 9280 | 9310 ! 9341
1912 9402 | 9433 | 9462 | 9493 . 4523 1 9554 . 9584 ' 9615 9646 U676 9707
1913 9768 | 9799 | 9827 | 9858 9888! 9919: 9949 @ 9980 =0011 =*0041 *0072
1914 | 242 0133 | 0164 | 0192 | 0223 | 0253 : 0284 . 0314 | 0345 Z0376] 0406 i0437‘ 0467
1915 | 242 0498 | 0529 | 0557 | 0588 | 0618 0649( 0679 | 0710 | 0741 i 0771 20802
1916 0863 | 0894 i 0923 . 0954 ! 0984 ' 1015 : 1045 | 1076 ; 1107 1137 ' 1168
1917 1229 | 1260 : 1288 | 1319 | 1349 : 1380 ; 1410 | 1441 | 1472 1502 15333 :
1918 1594 | 1625 | 1653 | 1684 ; 1714 | 1745 | 1775 | 1806 | 1837 ' 1867 1898 °
1919 1959 | 1990 | 2018 | 2049 | 2079 ; 2110 | 2140 | 2171 2202 | 2232 2263 -
{ .
1920 | 242 2324 | 2355 ; 2384 : 2415 | 2445 | 2476 : 2506 | 2537 2568! 2598 2629
1921 2690 2721‘ 2749l 2780! 2810 | 2841 | 2871 ; 2902 | 2933 | 2963 2994
1922 3055 | 3086 3114? 3145 | 3175 | 3206 | 3236 | 3267 ' 3298 3328 33359
1923 3420 | 3451 | 3479 | 3510 - 3540 3571 3601 | 3632 3663 . 3693 3724
1924 3785 | 3816 | 3845 ; 3876 | 3906 ! 3937 | 3967 | 3998 14029 4059 14090<
1925 | 242 4151 | 4182 4210) 4241 | 4271 | 4302 | 4332 | 4363 ¢ 4394 | 4424 | 4455 '
1926 4516 | 4547 | 4575 & 4606 | 4636 | 4667 | 4697 | 4728 i 4759 | 4789 © 4820 -
1927 4881 | 4912 | 4940 }4971 5001 | 5032 | 5062 | 5093 | 5124 5154 © 5185
1928 5246 | 5277 | 5306 | 5337 | 5367 | 5398 | 5428 | 5459 i 5490 . 5520 @ 5551
1929 5612 | 5643 | 5671 | 5702 | 5732 | 5763 | 5793 | 5824 | 5835 58855 5916 !
1930 | 242 5977 | 6008 | 6036 | 6067 : 6097 | 6128 | 6158 | 6189 ; 6220 | 6250 | 6281 !
1931 6342 6373! 6401 | 6432 | 6462 | 6493 | 6523 | 6354 . 6585 | 6615 - 6646
1932 6707 | 6738 | 6767 | 6798 . 6828 | 6859 ; 6889 | 6920 ‘6951l 6981 , 7012
1933 7073 | 7104 | 7132 | 7163 | 7193 | 7224 : 7254 ! 7283 | 7316 | T346 7377
1934 7438 | 7469 | 7497 | 7528 ’7558 7589 | 7619 | 7650 | 7681 | T7Y11 | T742 :
1935 | 242 7803 | 7834 | 7862 | 7893 | 7923 ; 7954 | 7984 | 8015 ' 8046 . 8076 ! 8107
1936 8168 | 8199 . 8228 | 8259 | 8289 | 8320 | 8350 | 8381 . 8412[ 8442 | 8473 :
1937 8534 | 8565 . 8593) 8624 8654J 8685 | 8715 | 8746 : 8777 | 8807 : 8838 -
1938 8899 | 8930 | 8958 . 8989 [ 9019 : 9050 | 9080 9111§ 9142 | 9172 | 9203 .
1939 9264 9295’ 9323 | 9354 | 9384 | 9415 | 9445 9476i 9507 | 9537 | 9568
1940 | 242 9629 | 9660 ;| 9689 9720‘ 9750 | 9781 | 9811 9842; 9873 | 9903 . 9934:
1941 9995 |*0026 *0054 *0085 *0l15 (*0146 (*0176 '0207"0238;‘0268;*02991*
1942 | 243 0360 | 0391 | 0419 | 0450 | 0480 [ 0511 | 0541 | 0572 : 0603 ' 0633 ' 0664 !
1943 0725 | 0756 | 0784 | 0815 | 0845 : 0876 | 0906 | 0937 | 0Y68 ; 0998 | 1029 ;
1944 1090 | 1121 1150 ; 1181 | 1211 | 1242 | 1272 | 1303 1334; 1364 1395}
1945 | 243 1456 | 1487 | 1515 | 1546 | 1576 | 1607 | 1637 | 1668 1699’ 1729 | 1760 .
1946 1821 | 1852 ; 1880 | 1911 ! 1941 | 1972 | 2002 | 2033 | 2064 ‘2094‘ 2125
1947 2186 | 2217 2245‘ 2276 2306 ; 2337 | 2367 | 2398 | 2429 12459 ¢ 2490 ¢
1948 2551 | 2582 | 2611 | 2642 | 2672 | 2703 l2733 2764 27951 2825 2856 ¢
1949 2917 | 2948 2976} 3007 | 3037 | 3068 ; 3098 | 3129 . 3160 ‘3190; 3221 ¢
1950 | 243 3282 | 3313 | 3341 [3372I 3402 | 3433 | 3463 | 3494 3525' 3555! 3586 |
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TABLE B-4

53
JULIAN DAY NUMBER
DAYS ELAPSED AT GREENWICH NOON, A. D. 1950-2000

Year Jan. 0 Feb.0 | Mar. 0 | Apr.0 | May 0 | JuneO | July 0 | Aug.0 | Sept. 0| Oct.0 [ Nov.0 | Dec.0
1950 | 243 3282 | 3313 | 3341 | 3372 | 3402 | 3433 | 3463 | 3494 | 3525 | 3555 | 3586 | 3616
1951 3647 | 3678 | 3706 | 3737 | 3767 | 37u8 | 3828 | 3859 ; 3840 ! 3920 | 3451 | 3981
1952 4012‘ 4043 | 4072 | 4103 | 4133 | 4164 | 4194 | 4225 | 4256 | 4286 | 4317 | 4347
1433 4378 | 4409 D4437 4468 | 4498 | 4529 | 4559 | 4590 | 4621 | 4651 | 1682 | 4712
1954 4743 | 4774 | 4802 | 4833 | 4863 | 4894 | 4924 | 4955 | 4986 | 5016 | 5047 | 3077
1955 | 243 5108 | 5139 | 5167 | 5198 | 5228 | 5259 | 5289 | 5320 | 5351 | 5381 | 5412 | 5442
1956 5473 | 5504 | 5533 | 5564 | 5394 | 5625 | 5655 | 5686 | 5717 | 5747 | 5778 | 5808
1957 5834 | 5870 | 5808 | 5929 | 5959 | 5990 i 6020 | 6051 | 6082 | 6112 | 6143 | 6173
1058 6204 | 6235 | 6263 | 6294 | 6324 | 6355 | 6385 | 6416 | 6447 | 6477 | 6508 | 6538
1959 6569 | 6600 | 6628 | 6659 | 6689 | 6720 | 6750 | 6781 | 6812 | 6842 | 6873 | 6903
1960 | 243 6934 | 6965 | 6994 | 7025 | 7055 | 7086 | 7116 | 7147 | 7178 | 7208 ) 7239 | 7269
1961 7300 | 7331 | 7359 | 7390 | 7420 | 7451 | 7481 | 7512 | 7543 | 757 7604 ; 7634
1962 T665 [ TOU6 | TT24 | TTH5 | TYRS | TRI6G | TR46 ; TRYT | TUO8 | 7938 | Y969 | TYY9
1963 8030 | U061 | 808Y | 8120 | 8150 | K181 8211I 8242 | 8273 | 8303 | R334 | 8364
1964 8395 | 8426 | 8455 | 8486 | 8516 | 8547 | 8577 | 8608 : B639 | 8669 : 8700 | 8730
1965 | 243 R761 | 8792 | 8820 | 8851 | 8881 | 8912 | 8942 | 8973 | 9004 | 9034 | 90635 ! 9095
1966 9126 | 9157 | 9185 | 9216 | 9246 | 9277 | 9307 | 9338 | Y369 | 9399 | 4430 | 9460
1967 9491 | 9522 | 9550 | 9581 | 9611 | Y642 | 9672 | 9703 | 9734 | UT64 0 9T93 | 9825
1468 0856 | 9887 & U916 : Y947 | 9977 *0008 1*0038 *0069 *0100 *0130 *0161 *0191
1969 |, 244 0222 | 0253 | 0281 | 0312 | 0342 | 0373 | 0403 | 0434 | 0465 : 0495 | 0520; 0556
1970 : 244 0387 | 0618 | 0646 ! 0677 | 0707 ! 0738 | 0768 | 0799 | 0830 | 08601 0%91 ; 0921
1971 0952 | 0983 [ 1011 | 1042 } 1072 1 1103 | 1133 | 1164 | 1195 | 1225 ; 1256 . 1286
1972 1317 | 1348 | 1377 | 1408 | 1438 | 1469 | 1499 | 1530 | 1561 ; 1391 | 1622 . 1652
1973 1683 | 1714 | 1742 | 177 1803 | 1834 | 1864 | 1895 | 1926 1956l 1987 . 2017
1974 2048 | 2079 | 2107 | 2138 | 2168 | 2199 | 2229 | 2260 | 2291 | 2321 | 2352 | 2382
1975 | 244 2413 | 2444 | 2472 | 2503 ; 2533 | 2564 | 2594 | 2625 | 2656 2686 | 2717 | 2747
1976 778 | 2809 | 2838 | 2869 { 2809 | 2930 | 2960 2991 | 3022 | 3052 | 3083 | 3113
1977 3144 | 3175 | 3203 | 3234 | 3264 | 3295 | 3325 | 3356 | 3337 3417{ 3448 | 3478
1978 3509 | 3540 | 3568 | 3599 | 3629 | 3660 ; 3690 | 3721 | 3752 | 3782 ; 3813 : 3843
1979 3874 | 3905 | 3933 | 3964 | 3994 | 4025 | 4055 | 4086 | 4117 | 4147 | 4178 | 4208
1

19080 | 244 4239 | 4270 | 4299 | 4330 | 4360 | 4301 | 1421 | 4452 | 4483 4513i 4544 4574
1981 1605 | 4636 | 4664 | 4605 | 4725 | 4756 | 4786 | 4817 | 4848 | 4878 . 4909 . 4939
1982 4970 | 5001 | 5029 | 5060 | 5090 ; 5121 ! 5151 | 3182 ; 5213 | 5243 ! 5274i 5304
1983 5335 | 5366 | 5394 | 5425 | 5455 | 5486 | 5516 | 5547 | 5578 5608} 5639 | 5669
1984 5700 | 5731 1 5760 | 5791 | 5821 | 5852 | 5882 | 5913 | 5944 | 5974 | 6005 | 6035
1985 | 244 6066 1 6097 | 6125 | 6156 | 6186 | 6217 | 6247 | 6278 | 6309 | 6339 | 6370 | 6100
1986 6431 | 6462 | 6490 | 6521 | 63551 | 6582 | 6612 | 6643 | 6674 | 6704 | 6735 | 6765
1987 6796 | 6827 | 6855 | 6886 | 6916 | 6947 | 6977 | 7008 | 7039 | 7069 | 7100 | 7130
1988 7161 | 7192 | 7221 | 7252 | 7282 | 7313 | 7343 | 7374 | 7405 | 7435 | 7466 | 7196
1989 7527 | 7558 | 7586 | 7617 ( 7647 | 7678 | TT08 | 7739 | 7770 | 7800 | V831 | 7861
1990 | 244 7892 | 7923 | 7951 | 7982 | 8012 | 8043 | 8073 | 8104 | 8135 | 8165 | 8196 | 8226
1991 8257 | 8288 | 8316 | 8347 | 8377 | 8408 | 8438 | 8469 | 8500 | 8530 ! 8561 | 8591
1992 8622 | 8653 | 8682 | 8713 | 8743 | 8774 | 8804 | 8835 ;| 8866 ! 8806 | 8927 | 8957
1993 8988\ 9019 9047 | 9078 | U108 | 9139 | 9169 | 9200 | 9231 | 9261 | 9292 | 9322
1994 9353i 9384 | 9412 | 9443 | 9473 | 9504 | 9534 | 9365 | 9396 | 9626 | 9657 | U687
1995 | 244 9718 9749 | 9777 | 9R08 | 9838 | 9869 | 9899 | 9930 | 9961 | 9991 *0022 *0052
1996 | 245 0083 | 0114 ! 0143 [ 0174 | 0204 | 0235 | 0265 | 0296 ; 0327 | 0357 | 0388 | 0418
1997 0449 | 0480 | 0508 | 0539 | 0569 | 0600 | 0630 | 0661 | 0692 | 0722 | 0753 | 0783
1998 0814 | 0845 | 0873 | 0904 | 0934 | 0965 | 0995 | 1026 | 1057 | 1087 | 1118 | 1148
1999 1179 | 1210 | 1238 | 1269 | 1299 | 1330 | 1360 | 1391 | 1422 | 1452 | 1483 | 1513
2000 | 245 1544 ' 1575 1 1604 | 1635 | 1665 | 1696 | 1726 | 1757 | 1788 | 1818 | 1849 | 1879
From "The American Ephemeris and Nautical Almanac - 1980"
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OPTICAL OBSERVATORILS,

Table B-5 *

1981

149 ¢

Flagstaff, Arizona
IFlag~taff Station
U.8. Naval Observatory
P.0. Box 1149
Flagstaff, Arizona 86002

Flagstaff, Arizona
Lowvcll Observatory
P.O. Box 1269
Flagstafl, Arizona 86001

Glasgow, Scotland
Glasgow University Observatory
Acre Road/Maryhill Road
Glasgow G20 0TL, Scotland

Cireenbelt, Marvland
Goddard Research Ohservatory
NASA/Goddard Space Flight Center
Greenbelt, Maryvland 20771

Harvard, Massachusetts
Georgc R. Agassiz Station
Harvard College Observatory
Harvard, Massachusetts 01451

Herstmoncenx, England
Roval Greenwich Observatory
Herstmoncenx Castle

Hailsham, East Sussex BN27 IRP
England
Hobart, Tasmania

University of Tasmania Observatory
G.P.0. Box 2520

Hobart, Tasmania 7001

Australia

Hoher List, Germany F.R.
Hoher List Oh<ervatory
University of Bonn
D-5568 Daun, (Lifel)
Germany F. R.

Jungfranjoch, Switzerland
High Alpine Rescarch Station
Sidlerstrasse 5
3012 Berne, Switzerland

Kamogata-Che, Japan

Okavama A«(mph\ sical Ob=ervatory

Kamogata Che, A<akuchi- Gian
Okuayama-IKen, 7\‘.)—(!2 Japan

| Heghit
nstrument West Longitude Latitude {Sen
I i
i A R " » L] . ” i ° ’ ” 1 m
Gl-in Astrometrie Reflector #1110 44 236 | +35 11 025 ¢ 2316
40-in Ritchey-Chrétien Reflector S0 44 149 ‘ T35 11 036 2312
21-in Cassegrain Reflector 111 44 155  +35 11 0451 2313
[
72-in Perkins Reflector FI1132 093 | +35 05 48.6 2198
42-in Ritchev-Chrétien Reflector +111 32 08 435 05 4R I 2198
24-in Clark lantornI Refractor +111 39 48 Pe35 12 08 2210
24-in Morgan Reflector +111 39 54 | +35 12 14 | 2204
13-in Lowell Refractor +111 32 08 +35 05 44 | 2200
42-in Clark Reﬂector——-——‘—-—-\ﬂll 32 00.30+35 05 46 6 + 2150
31-in Reflector +111 32 09 +35 05 55 | 2108
|
0.5-m Ritchey-Chrétien Reflector + 418 20 ; +55 54 08 } 53
- 0.3-m Telescope + 4 18 22 | +35 54 09 . 53
¢ 6-cm Transit Telescope + 418 19 | +35 54 08 ¢ 53
91.5-cm Cass./Condé Reflector + 76 49 37.14 | +39 01 159 . 53
48-in Cond¢ Telescope + 76 49 43.33 | +39 01 16.9 - 53
2-Element Interferometer + 76 49 33 ©+39 01 17 | 44
i i
155-cm Wyeth Fecker Reflector + 71 33 29.32 [ +42 30 19.0 : 185
80-ft Equatorial Radio Antenna + 71 33 30 +42 30 13 183
Cooke Transit Circle - 0201545 +30 52 18 34
98-in Isaac Newton Reflector - = 020465 | +50 51 58 53
25-cm Photographic Zenith Tube - 020195 +30 52 19 28
206-in Thompson Refractor - 020480 +50 52 09 50
i
1-m Optical Telescope ~147 32 00 -4250 00 , 300
0.4-m Optical Telescope -147 32 00 -42 50 00 ! 300
256x256-m Array -147 32 00 -42 50 00 | 300
512x512-m Array -147 32 00 -42 50 00 ] 300
106-cm_Cassegrain Telescope - 6510002, +50 09 453 | 533
36-cm Cassegrain Telescope ©o= 650 59.05 | +50 09 47 5 343
34-cm Schmidt Telescope io— 650 5657 +50 09 46 8 545
¢ 36/30-cem Refractor - 6510202 +50 09 485 : 54l
30-cm Astrograph ; - 6 30 58.25 i +50 09 475 ] 544
; i
 76-em Caz<./Condé Telescope | - 739 06 ‘ +46 32 53 ! 3576
! ! :
1 1
I‘ 188-cmm Reflector : -l?? 3§ 47.29 | +34 34 26 1 ‘ 372
" Oleem Retloctor | -133 35 46.6 | +34 34 22.8 | 305
. 6d-cm Solar Refleetor I -133 35 46 1 +34 34 18 350

# From "The Astronomical Almanae - 1981"
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Table C-2 LIST OF RADIO TIME SIGNALS¥

This short, illustrative list of radio time signals contains information on time
siznals that are widely used and are controlled by obscrvatories communicating

their results to the Burcau International de I’Heure.

Since transmission times and

frequencies arc liable to change current schedules should be consulted to obtain
up-to-date information,

The International Astronomical Union (Dublin, 19355) has recommended the
cessation of 0NOGO and rhythmic type signals; details of such signals have therefore
been excluded from this list,

Country

Argentine

Australia

Brazil

Cznada

China

France

Authority

Naval Observatory,
Buenos Aires

Military Geograph-
ical Institute,
Bucnos Aires

Mount Stromlo
Observatory,
Canberra

National Observa-
torv. Rio de lanetro

Dominion Observa-
tory, Ottawa

Zi-Ka-Wei
Observatory,
Shanghai
Observatory of
Paris

U.T.

Em
oI 00
13 0O
21 00
10 03
22 0§

08 oo
14 00
20 00

00 30
11 20
20 30
o1 30

14 30
21 30

11 0O
13 0o
15 00
c8 oo
09 00
09 30
13 00
20 00
21 00
22 30
09 00
21 00
o8 oo
20 00
09 30
13 00
22 30

Call
Sign
LOL

LQC

VHP
VIX

PPE

PPR

CHU

BPV

FYp

FYA3
TQCy

TQGs

Frequency
ke/s Notes

8110
17 180

17 550

44
6 428-5
8 478
12 907+5
8 721

6 421

8 634
17 194

3 330 Continuous transmis-

7 335 sions.
14 670

9 368

91-15

7 428
10 775

13 873

continued-on next page
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Table C-2 (continued)

Country

Germany
(Federal German
Republic)

Gernmany
(German Demo-
cratic Republic)

Japan
Switzerland
Union of Soviet

Socialist
Republics

United Kingdom

United States
of America

Authority

Germun Hydro-
graphic Institute,
}Hamburg

Geodectic Institute,
Potsdam

Astronomical
Observatory, Tokyo
Cantonal Observa-
tory, Neuchatel

Central Scientific
Investigation
Institute, Moscow

Asrononical
Obscrvatory,
Tashkent

Roval Greenwich
Observatory,
IHerstmonceux

United States
Naval Observatory,
Washington

U.T.

b m
00 00

12 00
11 00

o8 10
11 10

12 30
o813

©0 00
04 00
oS oo
12 00
16 oo
20 00

o8 oo
to
22 co

18 00

10 0O
18 oo

10 o0
18 oo

00 00
02 00
o6 oo
08 oo
12 00
14 00
18 oo
20 00

Call Frequency
Sign kc/s
DAM 4 265
6475°5
86385
DAM 8 6385
16 980

DMR20 3970
DMRz27 6075

DCF77 775
DIZ 4 525

JAS22 16 170
HBB 96-05

ROR 25

RN 5 000
10 000
15 000
20 000
»PT 5858

11 580

GBR 16-0
GiZ 19-6

GICz; 73975
GICz29 9 350
GIC33 13555
GIC37 170685
GPB3o 10 332'5
GKUs 12 790
NSS 121-95
5 870
9 425
13 575
17 050
23 650

NBA 18

Notes

Continuous transmise
stons.

Signals are transmit-
ted on one or more
of these freguencies
at intervals of 2h,

GBZ used as a reserve
transmitter for GBR.

Signals are transmitted
on two of these fre-
quencics at the times
quotced.

162 kc/s  replaces
121-05 on transmis-
sions at 18" oo™ and
20" oo™ on Tuecsday,
Wednesday, and Thur-
sday. ‘Transmissions
are on all frequencies
at the times quoted.

Continuous transmis-
sions except betwecn
132 oo™ and 21b oo®
U.T. on Wednesday.
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Table C-3 LIST OF COORDINATED TIME AND FREQUENCY
, R TRANSMISSIONS *

|
i

This list contains information on the coordinated time and frequency trans-
missions of the United Kingdom and the United States of America. The
co-operating authorities are: in the United Kingdom, the Royal Greenwich
Obscrvatory, the National Physical Laboratory, and the General Post Office; and
in the United States, the U.S. Naval Observatory, the Naval Research Laboratory,
and the National Bureau of Standards.

Country Call Sign Frequency Transmission Times
ke/s (U.T.)
United Kingdom MSF 2 500 Continuous
§ ooo
10 000
60 142 30m — 15h 300
GBR 16 Continuous (traffic) except for

daily maintenance between
13h oo™ und 15h oo@,

Time signals at 10P oo™ and
185 ooh only.

United States WWV 2 500 Continuous
of America 5 000 ’
10 00O
15 000
20 000
25 000
WWVH 5 000 Continuous
10 000
15 000
NBA 18 Continuous except between
13" oo™ and 21" oo™ on
Wednesday.

*
from the "Explanatory Supplement to the Ephemeris, 1961"

R Dt e T S P R P il FRE e Pl SR

152



Table C-4 Constcllation names and abbreviations ¥

153

The following list of constellation names and abbreviations is in accordance with the
resolutions of the International Astronomical Union (Trans. [.A.U., 1, 158; 4, 221 0,

66 and 77).

The boundaries of the constellations are listed by E. Delporte, on behalf of

the 1.A.U., in Délimitation scicutifique des constcllations (tables et cartes), Cambridee Univer-
+ sity Press, 1930; the areas of the constellations are given in Handbovk B.A.A., 1901.

Nominative
Andromeda
Antlia
Apus
Aguarius
Aquila
Ara

+* Ao
Aries
Auriga
Bootes
Caelum
Camelopardalis
Cancer
Cances Venatici
Carus Major
Canis Ninor
Capricornus
Carina
Cassiopeia
Centaurus
Cepiieus
Certus
Chamacleon
Ciriings
Ceiumba
Coma Derenices
TCorona Austrina
Corona Borealis
Corvus
Crater
Crux
Cyenus
Declphinus
Dorado
Draco
Equuleus
Eridanus
Fornox
Gemini
Grus
Hereules
Horologium
Hydra
Hydrus
Indus

And
Ant
Aps
Aqr
Aql
Ara
Arg
Ari
Aur
Boo
Cae
Cam
Cnc
CV'n
Cla
CMNi
Cap
Car
Cas
Cen
Cep
Cet
Cha
Cis
Col
Com
CrA
Cr3
Crv
Crt
Cru
Cvg
Del
Dor
Pra
Equ
Eri
For
Gem
Gru
Tler
Hor
Hya
Hyi
Ind

Genitive
Andromedae
Antliae

Apodis
Aquarii
Aquilae

Arae

Argus

Arictis
Aurigae

Bootis

Caeli
Cameelopardalis
Cancri

Canum Venaticorum
Canis Majoris
Canis Minoris
Capricorni
Carinac
Cassiopeiae
Centauri
Cephei

Ceti
Chamacleontis
Circini
Columbuae
Comave Berenices
Coronar Austrinae
Coronae Borealis
Corvi

Crateris
Crucis

Cyani
Delphini
Doradus
Draconis
Equulei
Eridani
Fomacis
Geminorum
Gruis

Herculis
Horologii
Ivdrae

Hydri

Indi

Nominative
Lacerta
leo
Lco Minor
Iepus
Libra
Lupus
Lynx
Lyra
Mensa
Microscopium
Monoceros
Musca
Norma
Octans
Ophiuclius
QOrion
Pavo
Pegasus
Perscus
Phoenix
Pictor
Pisces
tPiscis Austrinus
Puppls
Puxis
Reticulum
Sagitta
Sagittarius
Scorpius
Sculptor
Scutumn
1Secrpens
Sextans
Taurus
Telescopium
Triangulum
Trangulum Australe
Tucana
Ursa Major
Ursa Minor
Vela
Virgo
Volans
Vulpecula

Lac
Leo
LM
Lep
Lib
Lup
Lyn
Lyr
Nen
Mic
Mon
Mus
Nor
Oct
Oph
On
Pav
Peg
Per
Phe
Pic
Psc
PsA
Fup
Pyx
Ret
Sce
Sgr
Sco
Scl
Sct
Ser
Sex
Tan
Tel
Tri
TrA
Tuc
UMla
UM
Vel
Vir
Vol
Vul

* In modern usare Argo s divided into Carina, Puppis, and Vela.

+ Australis is sometimes used, in both nominative and genitive,

I Serpens may be divided into Serpens Caput and Scrpens Cauda.

*
from the "Explanatory Supplement to the Ephemeris,

Genitive
T.acertae
Lconis

Leonis Minoris
Leporis
Librae

Lupi

Lyncis

Lyrae

Mensae
Alicroscopit
Monocerotis
Muscae
Normae
Octantis
Ophiuchi
Orionis
Pavonis
Pejszasi

Perset
Phoenicis
Pictoris
Piscium

Piscis Ausirini
Fuppls
Pwxidis
Reticult
Saoittae
Sagittarii
Scorpit
Sculintoris
Scuti
Scrpentis
Sextantis
Tauri
Telescopii
Trianguli
Tranguli Australis
Tucanae
Ursre Majoris
Ursae Minoris
Velorum
Virginis
Volantis
Vulpceeulae

1961"



Table C-5 Alphabetical star list

Popular Name

Aldebaran
Alioth
Alkaid
Al Nilam
Alphecca

Alpheratz
Altair
Antares
Arcturus
Bellatrix

Retelgeuse ~
Canopus
Capella
Castor
Denedb

Cenebola

Dubhe

Elnath

Eltanin (or Etamin)
Fomalhaut

Eamal
Kochab
Markab
Megrez
Merak

Mizar

Phecda

Polaris (the Pole Star)
Pollux

Procyon

Regulus
Rigel
Saiph
Schedir
Shaula

Sirius

Spica
Thuban

Vega

Astronomical Iliame

Tau
UMa
UMa
Oori
CrB

QR mI3ImQR

And
Agql
Sco
Boo
Oori

<R RAR

-a Ori
a Car
a Aur
a Gem
a Cyg

B Leo
a UMa
B Tau
Y Dra
a PsA

a Ari
B UMi
a Peg
6 Ma
B Uta

{ uMa
Y UMa
a UM1
B Gem
a CM1i

a leo
B ori
x Ori
«a Cas
A Sco

o CMa
o Vir
a Dra

o Lyr
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12
13

>
15
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52
46
34
33

06
49
27
14
23

23

‘23

1k

32
Lo

L7
0l
2k
55
55
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