Large-Scale PV Plant Performance Benchmarking

Methodology and Results

Daniel Fregosi, <u>DFregosi@epri.com</u> Wayne Li, <u>wli@epri.com</u>

EPRI (Electric Power Research Institute)

PVPMC August 2022

У in f www.epri.com

© 2022 Electric Power Research Institute, Inc. All rights reserved.

EPRI's SOL and Performance Benchmarking

© 2022 Electric Power Research Institute, Inc. All rights reserved

Presentation overview

- Data overview
- Data quality control
- Analysis methodology
 - Normalization
 - Irregular performance filter
 - Trend analysis
- Key results

Data overview

- SOL Benchmarking:
 - 27 plants (2.4 GW) complete, ~35-40 more ongoing
- Measurements used
 - AC Power (inverter level), Weather (POA irradiance, temperature, wind speed)
 - When unavailable, temp. and wind data substituted from NOAA¹ or NSRDB²
- Additional added (from PVLIB)
 - Angle of incidence (AOI), clear sky irradiance
- Sampling
 - 1 or 5 minute high resolution necessary for filtering outages, clouds, clipping
- Future
 - Satellite-based meteorological data
 - Energy (distinguish power outages from data outages)
 - Automated/streaming data

1. https://www.ncdc.noaa.gov/cdo-web/datatools/lcd

2. https://nsrdb.nrel.gov/

EPRI

Data Quality Control

- Check for:
 - POA sensor error/miscalibration largest source of error¹
 - Interpolated/stuck (repeated) data
 - Daylight savings time shifts
 - Correct plant specs nameplate DC, AC
 - Consistency, units, polarity

1. Irradiance Sensor Accuracy Assessment: (3002020233)

© 2022 Electric Power Research Institute, Inc. All rights reserved.

Analysis methodology

- 3-step Methodology
 - Normalization (mainly weather)
 - Irregular performance filter
 - Trend analysis
- Metrics calculated at each step
 - Plant health metrics use filtered data: "normal" state of operation, non-clipping

Normalization

- Objective: account for weather (and other) conditions by calculating "expected" plant production
 - Model: digital twin of the healthy plant
 - Use it to detect changes in performance, estimate energy loss, etc.
 - Model Notes:
 - Inverter level (detecting outages)
 - Trained on 1st year
 - Minimize soiling, degradation
 - 100% data driven models
 - Automated, scalable

Normalization

- Model used: linear regression P = f(POA, T_{amb}, Wind, AOI)
 - Input variable transformations (cos(AOI), log(POA))
 - 2nd order polynomial expansion
 - Model trained on linear region
 - Clipping is applied to linear model power estimates
- R-Squared: Mean 0.95, Median 0.96

Use of clear-sky irradiance for PLR (trend) analysis

- Irradiance sensors often drift, causing a perceived shift in performance on the same order of magnitude as PLR
- Irradiance during clear-sky times can be estimated using lookup tables/functions¹
 - Clear sky times can be identified by the irradiance or power profile²

1. Reno, M.J. and C.W. Hansen, "Identification of periods of clear sky irradiance in time series of GHI measurements" Renewable Energy, 2016. 2. https://pvlib-python.readthedocs.io/en/v0.9.1/reference/generated/pvlib.location.Location.get_clearsky.html

9

Use of clear-sky irradiance for PLR (trend) analysis

10.0

7.5

5.0

2.5

0.0

-2.5

-5.0

-7.5

-10.0

% of Nameplate DC

- Impacts of using Clear-Sky irradiance on normalization
 - Slightly improved model error: 10% vs 11%
 - Reduced variability, transposition error
 - Smaller fraction of the data
 - Average clear-sky duration: 46%

Irregular Performance Filters

- Irregularities can mask the "normal" performance of the plant
 - Flag temporary performance issues
- Detection:
 - Adjacent array

Time/threshold based

11

2500

2000

₹ 1500

1000

© 2022 Electric Power Research Institute, Inc. All rights reserved

Elsi

Trend Analysis

- Normalized data: remaining components
 - Trend (PLR), seasonal, soiling, noise
 - Year-on-year method¹ isolates trend from seasonal, and is resilient to outliers

Image Source: NREL - https://www.nrel.gov/pv/rdtools.html

 Dirk Jordan, Chris Deline, Sarah Kurtz, Gregory Kimball, Michael Anderson, "Robust PV Degradation Methodology and Application", IEEE Journal of Photovoltaics, 8(2) pp. 525-531, 2018 DOI: 10.1109/JPHOTOV.2017.2779779

- Median: -1.16, Mean -1.26
 - 1200 inverters
 - Slightly asymmetric: poor performing outliers
- Slightly lower than other industry estimates
 - -0.75 %/yr¹
 - $-1 \%/yr^2$
- Different methodology and analysis choices yield different results^{3,4,5}

1. Jordan DC, Anderson K, Perry K, et al. Photovoltaic fleet degradation insights. Prog Photovolt Res Appl. 2022;1-10. doi:10.1002/pip.3566

2. Bolinger M, Gorman W, Millstein D, Jordan D, J. Renewable Sustainable Energy 12, 2020.

- 3. B. Paudyal, M. Bolen, and D. Fregosi, "PV Plant Degradation Assessment: Significance of Data Filtering and Aggregation," in IEEE PVSC, Chicago, III, 2019
- 4. D. C. Jordan et al., "Reducing Interanalyst Variability in Photovoltaic Degradation Rate Assessments," in IEEE Journal of Photovoltaics, Jan. 2020
- 5. A. J. Curran, C. Birk Jones, S. Lindig, J. Stein, D. Moser and R. H. French, "Performance Loss Rate Consistency and Uncertainty Across Multiple Methods and Filtering Criteria," 2019 IEEE PVSC

Plant-by-plant breakdown

15

Fairly wide distributions within a plant ~ 1-2%

© 2022 Electric Power Research Institute, Inc. All rights reserved.

EPRI

- Plant-to-plant range slightly higher than intra-plant range
 - Plant-to-plant factors
 - Module degradation-global, climate, soiling, maintenance level
 - Array-to-array factors

16

 BOS faults, module degradation-individual, inverter, localized soiling/shading (vegetation)

© 2022 Electric Power Research Institute, Inc. All rights reserved.

EPGI

- Small differences in module technology and mounting
 - Need more data points for significance

System Capacity Loss

- System capacity loss and PLR are better ways to analyze plant efficiency
 - Clipped energy is effectively counted against a plants Performance Ratio

Future Work

- Further automate data intake, quality control
- Further reduce model error for Normalization
 - More sophisticated, non-linear regression models
 - Measure impact of satellite data, additional model inputs
- Incorporate decomposition algorithms for trend analysis
 - Irregular performance, trend, seasonality, soiling
- Website improvements
 - Plant-specific view (user-controlled)
 - Plotting functionality
 - Additional filters
 - Add more data/users!

© 2022 Electric Power Research Institute, Inc. All rights reserved.

Ebgi