

Hukseflux Thermal Sensors

10th PVPMC Workshop 2019

LATEST DEVELOPMENTS IN SOLAR IRRADIANCE MEASUREMENT

- Kees VAN DEN BOS
- Hukseflux Thermal Sensors
- Member ISO TC 180 / SC1
- Candidate member IEC TC 82

Pyranometers

Weakest link in the chain

- solar irradiance measurement
- improving measurement accuracy
- improving data availability
- IEC 61724-1: PV system performance monitoring
- ISO 9060: classification standard
- ASTM G213: uncertainty evaluation of irradiance measurement
- ISO TR 9901: recommended practices

- Monitoring according to IEC 61724 rapidly becomes the standard
- ISO 9060 classification standard has been approved
- Monitoring for bifacial systems (albedo)

- A: Input: solar irradiance in W/m²
- B: System: PV system in m²
- C: Output: Electrical power in W
- D: System efficiency: C/(A·B)
- Degradation: change of D versus time dD/dt

Performance Ratio

- Technical: Failure detection
- Technical: Creating a performance baseline
- Financial: Increase income
- Financial: Risk profile reduction
- Financial: Sale of the PV power plant

PV monitoring

- Monitoring is an industry
- Utility scale PV plants hire independent monitoring companies

IEC 61724-1: 2017

EC.	IEC 61724-1
INTERNATIO	NAL STANDARD
Photovoltaic system performant Part 1: Monitoring	ce –
INTERNATIONAL ELECTROTECHNICAL COMMISSION	
ICS 27.160	

POA + GHI + RHI

PV monitoring according to IEC 61724

NEW: IEC 61724-1: 2017 defines monitoring systems of 3 accuracy classes (A, B and C) -4 -IEC 61724-1 © IEC 2017 $\lambda = \left|\frac{P}{c}\right|$ NEW: IEC 61724-1: 2017 you must define if the system complies with class A, B or C **4** Monitoring system classification The required accuracy and complexity of the monitoring system depends on the PV system size and user objectives. This standard defines the classifications of monitoring systems providing varying levels of accuracy, as listed in Table 1. The monitoring system classification shall be stated in any conformity declarations to this standard. The monitoring system classification may be referenced either by its letter code (A, B, C) or its name (High accuracy, Medium accuracy, Basic accuracy) as indicated in Table 1. In this document, the letter codes are used for convenience.

Class A or Class B would be most appropriate for large PV systems, such as utility-scale and large commercial installations, while Class B or Class C would be most appropriate for small systems, such as smaller commercial and residential installations. However, users of the standard may specify any classification appropriate to their application, regardless of PV system size.

Throughout this standard, some requirements are designated as applying to a particular classification. Where no designation is given, the requirements apply to all classifications.

Table 1 – Monitoring system cla	ssifications and suggested applications

Typical applications	Class A High accuracy	Class B Medium accuracy	Class C Basic accuracy
Basic system performance assessment	Х	Х	х
Documentation of a performance guarantee	х	х	
System losses analysis	х	х	
Electricity network interaction assessment 🗡	х		
Fault localization	х		
PV technology assessment	х		
Precise PV system degradation measurement	х		

NEW: IEC 61724-1: 2017 see above: utility scale PV monitoring needs class A

IEC: Electrical

Table 11 – Inverter-level electrical measurement requirements

	Measurement Uncertainty		
Parameter	Class A	Class B	Class C
	High accuracy	Medium accuracy	Basic accuracy
Input voltage (DC)	±2,0 %	n/a	n/a
Input current (DC)	±2,0 %	n/a	n/a
Input power (DC)	±2,0 %	n/a	n/a
Output voltage (AC)	±2,0 %	±3,0 %	n/a
Output current (AC)	±2,0 %	±3,0 %	n/a
Output power (AC)	±2,0 %	±3,0 %	n/a

Table 12 lists the requirements for electrical measurements at the output of the power plant, i.e. the aggregate output produced by all inverters in the system.

For multi-phase systems, each phase shall be measured, or 2 of 3 phases shall be measured (two wattmeter method).

Table 12 – Plant-level AC electrical output measurement requirement	Table	12 - Plant-level	AC electrical	output measurement	requirements
---	-------	------------------	---------------	--------------------	--------------

Parameter	Class A	Class B	Class C
	High accuracy	Medium accuracy	Basic accuracy
Active power and energy	Class 0,2 S	Class 0,5 S	Class 2
	as per IEC 62053-22	as per IEC 62053-22	per IEC 62053-21
Power factor	Class 1 as per IEC 61557-12	Class 1 as per IEC 61557-12	n/a

- 32

IEC: pyranometer class

NEW: IEC 61724-1:2017 requires use secondary standard pyranometers

IEC 61724-1 © IEC 2017 – 2/1 –

Table 5 lists sensor choices and accuracy requirements for in-plane and global irradiance measurement, and Table 7 lists maintenance requirements for these sensors.

The sensor, signal-conditioning electronics, and data storage shall provide a range including at least $0 \text{ W} \cdot \text{m}^{-2}$ to $1500 \text{ W} \cdot \text{m}^{-2}$ and a pesolution of $\leq 1 \text{ W} \cdot \text{m}^{-2}$.

NOTE Over-irradiance in the range 1000 W m⁻² to 1500 W m⁻² or higher can occur due to reflections from clouds under partly cloudy conditions.

Sensor Type	Class A	Class B	Class C
	High accuracy	Medium accuracy	Basic accuracy
	Secondary standard per ISO 9060	First class per ISO 9060	
Thermopile	or	or	A Brenner
pyranometer High quality per WMO	High quality per WMO Guide	Good quality per WMO Guide	Any
	(Uncertainty ≤ 3 % for hourly totals)	(Uncertainty ≤ 8 % for hourly totals)	
	Uncertainty ≤ 3 %	Uncertainty ≤ 8 %	
PV reference device from 100 W⋅m ⁻² to 1500 W⋅m ⁻²	from 100 W ⋅m ⁻² to 1500 W ⋅m ⁻²	Any	
Photodiode sensors	Not applicable	Not applicable	Any

Table 5 – Sensor choices and requirements for in-plane and global irradiance

Each irradiance sensor type has its benefits:

 Thermopile pyranometers are insensitive to typical spectral variations and therefore measure total solar irradiance. However, this can vary from the PV-usable irradiance by 1 % to 3% (monthly average) under typical conditions. In addition, thermopile pyranometers have long response times compared to PV devices and photodiodes.

Matched PV reference devices measure the PV-usable portion of the solar irradiance which correlates with the monitored PV system output. However, this may device from

IEC: calibration

7.2.1.7 Sensor maintenance

Irradiance sensor maintenance requirements are listed in Table 6.

Table 6 – Irradiance sensor maintenance requirements

Item	Class A High accuracy	Class B Medium accuracy	Class C Basic accuracy
Recalibration	Once per year	Once every 2 years	As per manufacturer's requirements
Cleaning	At least once per week	Optional	
NEW: IEC 61724	1-1:2017 once per year calib	pration is required for cl	ass A systems

IEC: heating + ventilation

NEW: IEC 61724-1:2017 heating of pyranometers and PV reference cells is required in class A and B systems. Hukseflux models SR30, SR20 (not the digital version) and SR12 are heated. We do not know of heated PV reference cells.

Heating to prevent accumulation of condensation and/or frozen precipitation	Required in locations where condensation and/or frozen precipitation would affect measurements on more than 7 days per year	Required in locations where condensation and/or frozen precipitation would affect measurements on more than 14 days per year	
Ventilation (for thermopile pyranometers)	Required	Optional	
Desiccant inspection and replacement (for thermopile pyranometers)	As per manufacturer's requirements	As per manufacturer's requirements	As per manufacturer's requirements

NEW: IEC 61724-1:2017 ventilation of pyranometers is required in class A systems. Hukseflux model SR30 is ventilated

possible to minimize the time that sensors are offline. If sensors are to be sent off-site for laboratory recalibration, the site should be designed with redundant sensors or else backup sensors should be used to replace those taken offline, in order to prevent interruption of monitoring.

Cleaning of irradiance sensors without cleaning the modules can result in a lowering of the measured PV system performance ratio (defined in **Fout! Verwijzingsbron niet gevonden.**). In some cases contract requirements may specify that irradiance sensors are to be maintained in the same state of cleanliness as the modules.

Night-time data should be checked to ensure accurate zero-point calibration.

NOTE It is common for pyranometers to show a small negative signal, -1 W·m⁻² to -3 W·m⁻², at night time.

7.2.1.8 Additional measurements

7.2.1.8.1 Direct normal irradiance

Direct normal irradiance (DNI) is measured with a pyrheliometer on a two-axis tracking stage

Summary: IEC 61724-1

- recommends the use of the best instruments if accuracy must be high
- high accuracy reduces "risk profiles"
- IEC 61724-1 identifies pyranometers as "weakest link" in analysis,
- stresses maintenance & calibration

GroundWork Typical IEC Class A station

ASTM G213-17

This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Designation: G213 – 17

Standard Guide for Evaluating Uncertainty in Calibration and Field Measurements of Broadband Irradiance with Pyranometers and Pyrheliometers¹

This standard is issued under the fixed designation G213; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This guide provides guidance and recommended practices for evaluating uncertainties when calibrating and performing outdoor measurements with pyranometers and pyrheliometers used to measure total hemispherical- and direct solar irradiance. The approach follows the ISO procedure for evaluating uncertainty, the Guide to the Expression of Uncertainty in Measurement (GUM) JCGM 100:2008 and that of the joint ISO/ASTM standard ISO/ASTM 51707 Standard Guide for Estimating Uncertainties in Dosimetry for Radiation Processing, but provides explicit examples of calculations. It is up to the user to modify the guide described here to their specific application, based on measurement equation and mendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:²
- E772 Terminology of Solar Energy Conversion
- G113 Terminology Relating to Natural and Artificial Weathering Tests of Nonmetallic Materials
- G167 Test Method for Calibration of a Pyranometer Using a Pyrheliometer
- Guide for Estimating Uncertainties in Dosimetry for Radiation Processing
- 2.2 ASTM Adjunct:2
- ADICIDATION CONTRACTOR AND A DIVERSION OF A DIVERSIONO OF A DIVERI A DIVERSIO

Not easy to attain a high accuracy

- Uncertainty depends on:
- Moving sun
- Variable environmental conditions
- Maintenance
- Data availability (dew, frost, snow)
- Horizon
- Reflections (tilted installation)
- Albedo (bifacials)

Typical uncertainty budget

- Calibration uncertainty
- Instrument specifications
- Maintenance
- •

. . .

Analuysis according to ASTM

Fig. 2: Expanded uncertainty as function of time, split per uncertainty source. The expanded uncertainty is expressed in a) absolute values in W m⁻², b) relative values in %.

ISO 9060 revision

		ISO/DIS 90
	ISO/TC 180 /SC 1	Secretariat: SA
	Voting begins on: 2017-04-17	Voting terminates on: 2017-07-09
	— Specification and o	
instruments	for measuring hemis	lassification of oherical solar and dire
instruments f solar radiatio	for measuring hemispon	

Summary ISO 9060

- issued NOV 2018
- "Secondary Standard" replaced by "Spectrally Flat Class A"
- distinction between "normal" and "spectrally flat" instruments
- why use "spectrally flat" pyranometers in PV monitoring:
- POA requires spectrally flat response
- albedo requires spectrally flat response

Class A instruments

- Test reports required for every instrument
- Temperature dependence + Directional response

- IEC requires compliance to latest version of ISO
- Not all installed base is OK

ISO to IEC connection

IEC monitoring class	Α	В
ISO 9060:1990 pyranometer class	secondary standard	first class
ISO 9060:2018 pyranometer class	spectrally flat A	spectrally flat B
heating	yes	yes
ventilation	yes	no
calibration	1 yr	2 yr
cleaning	1 wk	2 wk

JRC Ispra / Sandia

 Anton Driesse, Willem Zaaiman, Daniel Riley, Nigel Taylor, Joshua S. Stein, *Investigation of Pyranometer and Photodiode Calibrations under Different Conditions*, conference paper presented at IEEE PVSC 2016, published on internet, accessed 10-Oct-2016.

Errors in the 1 to 3 % range / ideal conditions

Meanwhile, in the real world, ...

powder snow in Utah USA

Webcam: NOAA USA

The Netherlands

Met office (KNMI) comparison

Unreliable data % of time

China ventilation not effective against soiling

Clean after rain shower

Not ventilated

After a few days

Dew example

Good practices: calibration

Calibrating to a higher standard Solar radiometer calibration services

Products Supported

Net Radiometers

O PAR Sensors

LUX Sensors

O Pyranometers

O Pyrheliometers

OUV Radiometers

FIR Pyrgeometers

Multi-Standard Compliance

Traceability

WRR (World Radiometric Reference) NIST (National Institute of Standards and Technology)

新气象 NEWSKY

www.isocalnorthamerica.com

Good practices: Cleaning

What sensor to use?

Data availability

• Our opinion: Dew and frost are # 1 in creating unreliable data

Heated pyranometers (model SR30)

Hukseflux

Thermal Sensors

- heated
- homogeneously by internal ventilation
- internal humidity sensor
- tilt measurement

Low power

Unreliable data % of time

ISO TR 9901 revision

TECHNICAL REPORT	- ISO TR 9901 First edition 1990-08-01
	Reviewed and confirmed in 2013
Solar Energy — F Recommended pr	ield Pyranometers — ractice for use
Énergie solaire — Pyranor pour l'emploi	nêtres de champ — Pratique recommandée

ł.

Discussion points

- follow/ repeat IEC recommendations or not
- how to define benefits of heating
- how to define benefits of ventilation

GroundWork Class A monitoring system

GroundWork Pyanometer with tilt sensor on tracker (insulated)

GroundWork Albedometer (facing up and down)

GroundWork How to monitor for bifacial systems

GroundWork How to monitor for bifacial systems

- measuring versus modelling (satellite measurement based)
- sensor locations in the array?
- Pyranometer versus PV reference cell
- averaging over many locations?
- Horizontal or tilted PVSYST?
- IEC recommends 1 x RHI for every POA
- at least 1 station away from arrays for reference albedo

GroundWork Reference station for albedo

Summary recent developments

- many different developments
- combination leads to higher accuracies
- IEC 61724-1 acts as accelerator
- instruments and calibration become better
- under the best, IEC Class A, conditions uncertainties in the order of 3 % (k=2)
- watch out: specify "spectrally flat" instruments
- monitoring for bifacial systems is "work in progress"

Hukseflux Thermal Sensors

Thank you!