

LATEST DEVELOPMENTS IN SOLAR IRRADIANCE MEASUREMENT

(9th PVPMC Workshop 2017)

Kees VAN DEN BOS

Hukseflux Thermal Sensors

Pyranometers in use

Example: monitoring services

Improvements needed

- solar irradiance measurement
- improving measurement accuracy
- improving data availability
- IEC 61724-1: PV system performance monitoring
- ASTM G213: uncertainty evaluation of irradiance measurement

- A: Input: solar irradiance in W/m²
- B: System: PV system in m²
- C: Output: Electrical power in W

- D: System efficiency: C/(A·B)
- Degradation: change of D versus time dD/dt

- Measurement in POA
- A: Input: solar irradiance in W/m²
- Maximum possible yield for a 100 % efficiency solar panel
- Independent of PV cell type
- Independent of PV cell Antireflection coating
- Independent of temperature

NEW IEC 61724-1: 2017

IEC 61724-1
LSTANDARD

- Measure improve
- Monitoring = tool for building a green society

- Technical: Failure detection
- Technical: Creating a performance baseline

- Financial: Increase income
- Financial: Risk profile reduction
- Financial: Sale of the PV power plant

PV Monitoring: service industry

Global Top 25 Players Map by Total Fleet and Growth in Megawatts, and Segment Mix

Source: SOLICHAMBA

PV Monitoring

- Monitoring is an industry
- Utility scale PV plants hire independent monitoring companies

IEC: 3 classes

$\lambda = \frac{ P }{s}$	
NEW: IEC 61724-1: 2017 you must define if the s	ystem complies with class A, B or C
Monitoring system classification	
The required accuracy and complexity of the mon size and user objectives. This standard defines t providing varying levels of accuracy, as listed in Ta	thee classifications of monitoring systems
The monitoring system classification shall be standard. The monitoring system classification may as C) or its name (High accuracy, Medium accuracy n this document, the letter codes are used for conv	y be referenced either by its letter code (A cy, Basic accuracy) as indicated in Table 1
Class A or Class B would be most appropriate for arge commercial installations, while Class B or Cl systems, such as smaller commercial and reside tandard may specify any classification appropria system size.	lass C would be most appropriate for smal ential installations. However, users of the

Throughout this standard, some requirements are designated as applying to a particular classification. Where no designation is given, the requirements apply to all classifications.

Table 1 – Monitorin	g system cla	ssifications and	d suggested	applications
---------------------	--------------	------------------	-------------	--------------

Typical applications	Class A High accuracy	Class B Medium accuracy	Class C Basic accuracy
Basic system performance assessment	Х	Х	х
Documentation of a performance guarantee	х	х	6
System losses analysis	х	х	
Electricity network interaction assessment 📝	х		
Fault localization	х		
PV technology assessment	х		2
Precise PV system degradation measurement	x		

NEW: IEC 61724-1: 2017 see above: utility scale PV monitoring needs class A

5 General

NEW: IEC 61724-1:2017 requires use of 2 x pyranometers, horizontal and plane of array

Table 3 – Measured parameters and requirements for each monitoring system class

					Required?		
Parameter	Symbol	Units	Monitoring Purpose	Class A	Class B	Class C	Number of Sensors
				High accuracy	Medium accuracy	Basic accuracy	
		22.	λ μ	radiance (see section	ו 7.2)	0	
In-plane irradiance (POA)	G	W.m ^{−2}	Solar resource	V	√ or E	√ or E	Table 4 column 1
Global horizontal irradiance	GHI	W ⋅m ⁻²	Solar resource, connection to historical and satellite data	1	√ or E		Table 4 column 1
Direct normal	DAIL	W·m ^{−2}	L	V	√ or E	1	Table 4 solution d
irradiance	DNI	vv∙m ~		for CPV	for CPV		Table 4 column 1
		1	Solar resource,	Solar resource, √ √ or E	√ or E		
Diffuse irradiance	G _d	W∙m ⁻²		for CPV with < 20× concentration	for CPV with < 20× concentration		Table 4 column 1
Circumsolar ratio	CSR						
	50 C	~	E	Environmental factors	s (see section 7.3)		
PV module temperature	T_{mod}	°C	Determining temperature- related losses	1	√ or E		Table 4 column 2
Ambient air temperature	T _{amb}	°C	Connection to historical data, plus estimation of PV temperatures	4	√ or E	√ or E	Table 4 column 1
Wind speed		m·s ^{−1}	Estimation of PV	1	√ or E		Table 4 column 1
Wind direction		degrees	temperatures	1			Table 4 column 1
Soiling ratio	SR		Determining soiling- related losses	√ if soiling losses expected to be >2 %			Table 4 column 1

IEC: Electrical

– 32 – IEC 61724-1 © IEC 2017

		Measurement Uncertainty	
Parameter	Class A	Class B	Class C
	High accuracy	Medium accuracy	Basic accuracy
Input voltage (DC)	±2,0 %	n/a	n/a
Input current (DC)	±2,0 %	n/a	n/a
Input power (DC)	±2,0 %	n/a	n/a
Output voltage (AC)	±2,0 %	±3,0 %	n/a
Output current (AC)	±2,0 %	±3,0 %	n/a
Output power (AC)	±2,0 %	±3,0 %	n/a

Table 11 – Inverter-level electrical measurement requirements

Table 12 lists the requirements for electrical measurements at the output of the power plant, i.e. the aggregate output produced by all inverters in the system.

For multi-phase systems, each phase shall be measured, or 2 of 3 phases shall be measured (two wattmeter method).

Parameter	Class A	Class B	Class C
Parameter	High accuracy	Medium accuracy	Basic accuracy
Active power and	Class 0,2 S	Class 0,5 S	Class 2
energy	as per IEC 62053-22	as per IEC 62053-22	per IEC 62053-21
Power factor	Class 1	Class 1	n /a
Power lactor	as per IEC 61557-12	as per IEC 61557-12	n/a

Table 12 – Plant-level AC electrical output measurement requirements

IEC: pyranometer class

NEW: IEC 61724-1:2017 requires use secondary standard pyranometers

IEC 61724-1 © IEC 2017

Table 5 lists sensor choices and accuracy requirements for in-plane and global irradiance measurement, and Table 7 lists maintenance requirements for these sensors.

- 21 -

The sensor, signal-conditioning electronics, and data storage shall provide a range including at least 0 W·m⁻² to 1500 W·m⁻² and a resolution of \leq 1 W·m⁻².

NOTE Over-irradiance in the range 1000 W m⁻² to 1500 W m⁻² or higher can occur due to reflections from clouds under partly cloudy conditions.

Sensor Type	Class A	Class B	Class C
	High accuracy	Medium accuracy	Basic accuracy
	Secondary standard per ISO 9060	First class per ISO 9060	
Thermopile pyranometer	or High quality per WMO Guide (Uncertainty ≤ 3 % for hourly totals)	or Good quality per WMO Guide (Uncertainty ≤ 8 % for hourly totals)	Any
PV reference device	Uncertainty ≤ 3 % from 100 W⋅m ⁻² to 1500 W⋅m ⁻²	Uncertainty ≤ 8 % from 100 W⋅m ⁻² to 1500 W⋅m ⁻²	Any
Photodiode sensors	Not applicable	Not applicable	Any

Table 5 – Sensor choices and requirements for in-plane and global irradiance

Each irradiance sensor type has its benefits:

- Thermopile pyranometers are insensitive to typical spectral variations and therefore measure total solar irradiance. However, this can vary from the PV-usable irradiance by 1 % to 3% (monthly average) under typical conditions. In addition, thermopile pyranometers have long response times compared to PV devices and photodiodes.
- Matched PV reference devices measure the PV-usable portion of the solar irradiance

IEC: calibration

7.2.1.7 Sensor maintenance

Irradiance sensor maintenance requirements are listed in Table 6.

Item	Class A High accuracy	Class B Medium accuracy	Class C Basic accuracy
Recalibration	Once per year	Once every 2 years	As per manufacturer's requirements
Cleaning	At least once per week	Optional	

Table 6 – Irradiance sensor maintenance requirements

IEC: heating + ventilation

NEW: IEC 61724-1:2017 heating of pyranometers and PV reference cells is required in class A and B systems. Hukseflux models SR30, SR20 (not the digital version) and SR12 are heated. We do not know of heated PV reference cells.

Heating to prevent accumulation of condensation and/or frozen precipitation	Required in locations where condensation and/or frozen precipitation would affect measurements on more than 7 days per year	Required in locations where condensation and/or frozen precipitation would affect measurements on more than 14 days per year	
Ventilation (for thermopile pyranometers)	Required	Optional	
Desiccant inspection and replacement (for thermopile pyranometers)	As per manufacturer's requirements	As per manufacturer's requirements	As per manufacturer's requirements

NEW: IEC 61724-1:2017 ventilation of pyranometers is required in class A systems. Hukseflux model SR30 is ventilated

possible to minimize the time that sensors are offline. If sensors are to be sent off-site for laboratory recalibration, the site should be designed with redundant sensors or else backup sensors should be used to replace those taken offline, in order to prevent interruption of monitoring.

Cleaning of irradiance sensors without cleaning the modules can result in a lowering of the measured PV system performance ratio (defined in **Fout! Verwijzingsbron niet gevonden.**). In some cases contract requirements may specify that irradiance sensors are to be maintained in the same state of cleanliness as the modules.

Night-time data should be checked to ensure accurate zero-point calibration.

NOTE It is common for pyranometers to show a small negative signal, -1 W·m⁻² to -3 W·m⁻², at night time.

7.2.1.8 Additional measurements

7.2.1.8.1 Direct normal irradiance

Direct normal irradiance (DNI) is measured with a pyrheliometer on a two-axis tracking stage which automatically tracks the sun

Summary : IEC 61724-1

- measurement accuracy is important in PV monitoring
- IEC 61724-1 confirms pyranometers as "weakest link" in analysis,
- recommends the use of the best instruments
- Stresses maintenance & calibration

ASTM G213-17

This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Designation: G213 – 17

Standard Guide for Evaluating Uncertainty in Calibration and Field Measurements of Broadband Irradiance with Pyranometers and Pyrheliometers¹

This standard is issued under the fixed designation G213; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This guide provides guidance and recommended practices for evaluating uncertainties when calibrating and performing outdoor measurements with pyranometers and pyrheliometers used to measure total hemispherical- and direct solar irradiance. The approach follows the ISO procedure for evaluating uncertainty, the Guide to the Expression of Uncertainty in Measurement (GUM) JCGM 100:2008 and that of the joint ISO/ASTM standard ISO/ASTM 51707 Standard Guide for Estimating Uncertainties in Dosimetry for Radiation Processing, but provides explicit examples of calculations. It is up to the user to modify the guide described here to their specific application, based on measurement equation and

mendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:²
- E772 Terminology of Solar Energy Conversion
- G113 Terminology Relating to Natural and Artificial Weathering Tests of Nonmetallic Materials
- G167 Test Method for Calibration of a Pyranometer Using a Pyrheliometer
- Guide for Estimating Uncertainties in Dosimetry for Radiation Processing

21

- 2.2 ASTM Adjunct:2

- Methods based on GUM
- ISO/IEC Guide 98-3 Guide to the expression of uncertainty in measurement
- Type "B" evaluation

- Uncertainty depends on:
- Moving sun
- Variable environmental conditions
- Maintenance
- Data availability (dew, frost, snow)
- Horizon
- Reflections (tilted installation)

Uncertainty evaluation

Follow BIPM's 'GUM' 1. Define the measurand

Global Horizontal Irradiance *E*

- 2. Write down the measurement equation $E = \frac{U}{S}$
- 3. Assign uncertainties to input variables

The calibration uncertainty on the product certificate

4. Calculate

JCGM 100:2008 Evaluation of measurement data - Guide to the expression of uncertainty in measurement

Spreadsheets (Excel)

- Calibration uncertainty
- Instrument specifications
 - known systematic errors may be corrected
- Datalogger accuracy
- Maintenance
- •

Result: sources of uncertainty

Fig. 2: Expanded uncertainty as function of time, split per uncertainty source. The expanded uncertainty is expressed in a) absolute values in W m⁻², b) relative values in %.

example, offset a: 7 W/m²

Hukseflux Thermal Sensors

2016 performance testing

 Anton Driesse, Willem Zaaiman, Daniel Riley, Nigel Taylor, Joshua S. Stein, *Investigation of Pyranometer* and Photodiode Calibrations under **Different Conditions**, conference paper presented at IEEE PVSC 2016, published on internet, accessed 10-Oct-2016.

JRC Ispra / Sandia

Errors in the 1 to 3 % range

31

Latest developments

 Quality assurance software for PV power plants

Example software: "pyro shield"

Hukseflux Thermal Sensors

Pyro Shield

Faulty readings, Data Loss, Diverging behavior, Irradiance at Night, Stuck values.

These definitely represent common irradiance data problems that result to unreliable calculation of KPIs, thus causing invalid performance analysis and misleading reporting.

Pyro Shield is an intelligent analytics tool for evaluation of solar plants pyranometers' proper operation and measurement accuracy. The new analytic enables plant operators to identify communication issues, malfunctioning instruments, underperformance due to delayed maintenance or need for re-calibration.

Pyro Shield analyzes measurements by performing a set of checks for data availability, validity and consistency, as well as intra-plant pyranometers correlation. It classifies the pyranometer alarm states and periodically notifies the user on their health status through a scheduled report.

Pyro Shield comes to meet the increasing operator needs for solar plant data quality, accurate performance analysis and asset health evaluation, built on top of the standard integrated pyranometers monitoring offered by Inaccess.

Latest developments

Calibration companies for pyranometers

Example: calibration companies

Products Supported

O Pyranometers

O Pyrheliometers

UV Radiometers

FIR Pyrgeometers

O Net Radiometers

Spectroradiometers

PAR Sensors

LUX Sensors

Multi-Standard Compliance

American Society for

Testing and Materials

ISC ISC

ELECTROTECHNICAL Organization for COMMISSION Standardatization

Traceability

WRR (World Radiometric Reference)

NIST (National Institute of Standards and Technology)

www.isocalnorthamerica.com

evolution

- We spent several years of R & D in reduction of dew and frost
- Our opinion: Dew and frost are # 1 in creating unreliable data
- We talk about "data availablility"
- IF (dew or frost)
 THEN (data availability = FALSE)

data availability = FALSE

The new SR30 pyranometer

Internal ventilation animation

New ventilation & heating

Powder snow in Utah USA

ZAMG Austria Sonnblick

Webcam: NOAA USA

frost example

dew example

- many different developments
- Combination leads to higher accuracies
- IEC 61724-1 acts as accelerator
- Instruments and calibration become better
- Under the best, IEC Class A, conditions uncertainties in the order of 3 % (k=2)

Hukseflux Thermal Sensors

Thank you!