Measuring PV System Soiling Losses

Bill Stueve December 6, 2017

www.atonometrics.com

About Atonometrics

- Test & measurement equipment for the PV industry
- A leader in soiling measurement systems
- Provided 500 soiling stations worldwide on 100 sites
- Founded in 2007 and based in Austin, Texas, USA
- Patents: 5 issued, 6 pending

Pre-construction site surveys:

1. Predict future plant performance

Operating PV plants:

- 2. Assess actual performance
- 3. **Optimize** washing schedule Return on Investment

Basic Soiling Measurement Principle

Expected Output Based on Clean PV

Soiling Loss = SL = 1 - SR

Many Configurations – Cost / Accuracy

Example: Cell-Module, with I-V, & Auto Wash

Example: On Tracking Array

Example: Comparing Modules (Coatings, manufacturers, etc)

Data Output

- Raw Data
 - Current
 - Voltage
 - Power
 - IV Curves
 - Temperature (RTD)

Analyzed Data

- Soiling
- Irradiance (from a calibrated device)
- Temperature (Voc)

Cell	Less rack space
Module	 Captures true soiling effect (Same glass, coatings, frames, wind, rain, etc.)

lsc (Short-Circuit Current)	 Simple to measure But not always proportional to output power
Pmax (Max Power)	 Tracks actual power output of modules in array

Manual	 Lower up-front cost Lower accuracy from weekly or fewer washings
Automated	 Lower ongoing labor cost Better accuracy from daily washings

Uniform & Non-Uniform Soiling

- Uniform
 - Dust **uniformly** distributed across module

- Non-Uniform
 - Dust concentrated on specific parts of the module
 - Typically at module bottoms or edges
 - Rain, condensation, gravity, wind,...

F. Brill, "EnviroPolitics Blog: PSEG building solar farms--and not just in New Jersey," 16-Nov-2012.

Non-Uniform Soiling

E. Lorenzo, R. Moretón, and I. Luque, Progress in Photovoltaics: Research and Applications, 2013.

F. Brill, "EnviroPolitics Blog: PSEG building solar farms--and not just in New Jersey," 16-Nov-2012.

Uniform vs. Non-Uniform – Effect on IV Curve

For non-uniform soiling: Isc may not track power loss

→ Pmax more accurate for non-uniform cases

Gostein¹, Littmann², Caron², Dunn¹, IEEE PVSC 2013 ¹Atonometrics. ²First Solar.

Uniform vs. Non-Uniform – Isc vs. Pmax

Isc loss can over- or under-predict soiling, based on non-uniformity

→ Pmax measurement more accurate for non-uniform cases

Gostein¹, Littmann², Caron², Dunn¹, IEEE PVSC 2013 ¹Atonometrics. ²First Solar.

Soiling loss can change by time of day

Soiling loss greater at high incidence angles

Misalignment Artifact

Misalignment (azimuth / tilt) causes measurement artifact – apparent changes by time of day

Soiling Loss = SL = 1 - SR

Irradiance Stability – Need Sophisticated Data Analysis

Daily Irradiance-Weighted Average Soiling Ratio:

$$\langle SR \rangle_d = \frac{\sum SR \cdot G}{\sum G}$$
 Correct for time-of-day variation

Filter points prior to average, to remove **outliers**

Soiling Loss = SL = 1 - SR

Analysis: Filtered Daily Average

Typical Data Features

Incidence Angle & Alignment Effects

Gostein¹, Caron², Littmann², IEEE PVSC, 2014 ¹Atonometrics. ²First Solar

Long-Term Data Example – c-Si in U.S. Southwest

Fig. 2. Measured daily average values of the $SR^{I_{sc}}$ and $SR^{P_{max}}$ metrics (top) along with daily rainfall (bottom, y-axis limited to 10 mm) over a 24-month period. The four lettered arrows (a, b, c, d) indicate the days shown in the module photographs in Fig. 1.

Gostein¹, Stueve¹, Chan², 44th IEEE PVSC, 2017 ¹Atonometrics. ²E-On Climate & Renewables

System Type		Soiling Ratio
PV Configuration	Measured Parameter	Measurement Uncertainty
Cell-Module	Power	1-2%
Module-Module	Power	1-2%
Cell-Module	Current	3-5%
Module-Module	Current	3-5%
Cell-Cell	Current	4-7%

Fig. 3. Time-series plots of daily soiling ratio (thick line) and normalized weekly PPI (thin line) for the five PV power plants from April 2013 through April 2014. Bars show rainfall in mm (right axes).

Gostein¹, Caron², Littmann², IEEE PVSC, 2014 ¹Atonometrics. ²First Solar

Soiling Method Correlations – PV vs. Pyranometers

Fig. 1. Monitoring Station with SR20 (Left), LP02-1 (center), LP02-2 (right), self-cleaning reference cell (foreground), and reference module (back right)

Soiling Method Correlations – PV vs. Pyranometers

Fig. 2. Measured daily average values of the soiling ratios for the POA PV module and thermopile pyranometer and daily rainfall.

Waters¹, Tirumalai¹, Gostein², Stueve² IEEE PVSC, 2017 ¹Recurrent Energy, ²Atonometrics

Summary

- Soiling measurements provide insight into plant performance
- Compare "soiled" reference to "clean" reference
 - Note that modules/cells may soil differently
- Wash the clean reference routinely
- Non-uniform soiling affects Isc & Pmax differently
 - Measure both Isc & Pmax to get most complete information
- Soiling loss measurement varies by time of day
 - Perform daily average, filtering out cloud movements

