Mismatch Losses in HelioScope

Paul Gibbs May 2, 2013

FULSOM LABS

Presented at the 2013 Sandia PV Performance Modeling Workshop Santa Clara, CA. May 1-2, 2013 Published by Sandia National Laboratories with the Permission of the Author.

What is HelioScope?

- Component-driven
- Design-integrated
- Cloud-based
- Launching summer 2013

HelioScope defines mismatch as any power lost due to a module being driven off-MPP

- Mismatch losses are *not* an input factor
- Sources of mismatch are hard to disaggregate

Mismatch is actually a system integration loss

Traditionally, mismatch is primarily based on two sources

In reality, there are many second-order sources of mismatch loss

Orientation: can define heterogeneous arrays with one or multiple inverters

Orientation: mismatch losses are low when the strings are wired in parallel

Trina PA04 240W, Sacramento, 20° Tilt, Strings of 12, 10:00AM 1/12

Near Shading: each module is treated as a single diode, string effects are modeled based on design

- 3d Models from Google Sketchup
- Every model in the array impaired individually
 - Considered single-diode
 - Only beam-irradiance lost
 - Impacts cell temperature
- HelioScope intrinsically calculates all string-effects

Near Shading: each module is treated as a single diode, the inverter must choose to bypass or not

Diffuse Shading: modules have location specific loss factors which can cause mismatch

Diffuse Shading: losses change based on the stringing pattern

Along-Bank Stringing

Performance Ratio:87.6%Mismatch:0.2%

Across-Bank Stringing

Performance Ratio:	87.2%
Mismatch:	0.7%

20° Tilt; 225° Azimuth; San Francisco, CA; 1.5m between rows

Irradiance Variation: ambient mismatch losses are determined by defining an irradiance distribution

- User defines the standard deviation
 - Normal distribution
 - Zero-mean
- Attempts to model cloud and other ambient effects
- Each module sampled independently, every hour
- All designs seeded equivalently

Irradiance Variation: NREL's Oahu dataset had a 15.4% average standard deviation¹ in irradiance

¹Power-Weighted Average of the Std. Deviation of each one-second timeslice

Module Quality: defined by a binning range, but mismatch losses are nominal

- Users define a lower and upper bound
 - Uniform Distribution
- Attempts to model module manufacturing tolerance
- Each module sampled once per design
- All designs seeded equivalently

Includes baseline 5% standard deviation in irradiance, 4° temperature spread

Module Quality: flash test voltage and current are correlated

Module Quality: module voltages and currents appear to be normally distributed

Module Quality: Re-binning from a 5% range to a 1% range has small benefits

Baseline design: C-Si modules in 600V design, Imperial CA TMY3, standard mismatch factors

Temperature: available, but has almost no impact on performance

- Users define a total temperature range (°C)
 - Uniform Distribution
 - Zero-centered
- Attempts to model module-tomodule differences in temperature at the same point in time
- Each module sampled independently, every hour
- All designs seeded equivalently

Includes baseline 5% standard deviation in irradiance, 5% module binning

Temperature: Back-of-module temperatures vary considerably

Source: Tigo Fleet Data

¹²R Losses: Voltage drop across the array affects all upstream components

Our Path Forward

- Design granularity enables losses to flow directly through to mismatch
- We have introduced new mismatch parameters based on random distributions, but we need better physical models
 - Spatially correlated irradiance or temperature
 - Superior binning/quality distribution
- Will have to think carefully about how and when to disaggregate mismatch calculations, since they are inherently mixed in HelioScope

We look forward to working with the community to improve PV models

Research Interests

- Spatially correlated cloud models
- Spatially correlated temperature models
- More sophisticated binning distributions

Contact Us

Paul Gibbs

- Founder, Folsom Labs
- paul.gibbs@folsomlabs.com

Folsom Labs

- www.folsomlabs.com
- San Francisco, CA

