## $11^{\text {th }}$ PV Performance and Modeling Workshop （PVPMC）

# Model of In－Plane Solar Irradiance for Front and Rear Side of PV Arrays 

## 光伏方阵正反面辐照度的计算模型

Wang Sicheng ERI，NDRC
Dec．4－5，2018，Weihai，China

## In－plane solar irradiance is the basic data to estimate PV power generation and useful in PV system designes：



Battery Capacity Sizing蓄电池容量设计


Balancing of Load Profile发电与负荷的平衡

BENEFITS OF DIFFERENT DC／AC POWER RATIOS


USP：Unlimited DC Overloading without any impact on the inverter lifetimel＊＊
USP：Unlimited DC Overloading without any

PV－Inverter Capacity Ratio光伏－逆变器容配比

In－plane solar irradiance can not be got from weather stations，they only have horizontal solar data．气象局没有方阵面辐射量和辐照度的数据，只能提供水平面辐照度和辐射量的数据。

## PV Arrays in Ground Horizontal Coordinates


(a) Fixed Array

(b) Manual Regulating
(b) Azimuth Tracking
(c) Double-Axis Tracking

## The solar trackers are tracking the solar altitude and the solar azimuth by regulating the array tilted angle and array azimuth.

## Ground Horizontal PV Arrays



## Manual Regulated Arrays



Solar Azimuth Trackers


Double Axis Trackers


## PV Arrays in

(a) H-E-W Tracking
(b) Tilted E-W Tracking Equatorial Coordinates

(c) Pole Axis-Tracking (d1) D-Tracking-1 (d2) D-Tracking-2



The solar trackers are tracking the solar declination and the solar hour angle by regulating the array tilted angle and rotating angle of main axis.

## Equatorial Tracking Systems



Pole-Axis Tracking

Double Axis Tracking

# 3 Basic Rules and Concept <br> 1．Cosine Rule of Arc in Spherical Tringles ${ }^{[5]}$ 



The tringle at celestial sphere

Arc：$a, b, c$
Angle：$A, B, C$
Cosine Rule：
$\cos a=\cos b \cos c+\sin b \sin c \cos A$

## 2．Cosine Rule of Direct Incidence （直接辐射的余弦定律）


$S_{T}{ }^{\prime}$ ：solar irradiance on tilted array $S_{D}{ }^{\prime}$ ：direct solar irradiance $Z$ ：tilted angle of PV array $\theta$ ：incident angle of solar beam


$$
S_{T}^{\prime}=S_{D}{ }^{\prime} \cos \theta
$$

$$
S_{H}^{\prime}=S_{D}^{\prime} \cos \theta_{Z}=S_{D}^{\prime} \sin \alpha
$$

$$
S_{D}^{\prime}=S_{H}^{\prime} / \sin \alpha \quad \text { So: } \quad S_{T}^{\prime}=S_{H}^{\prime} \cos \theta / \sin \alpha
$$

## 3．Formula of Solar Altitude $\alpha$

［3，11］

## 太阳高度角的公式能够在很多教科书上

## 找到。



## Can be found from any

 text book ${ }^{[3,11]}$
$A$ ：Solar zenith angle $Z a$ ， $Z a=90^{\circ}-\alpha ;$ $B=90^{\circ}-\varphi$ ；
$C=90^{\circ}-\delta ;$
$\omega$ ：hour angle．$a=\omega$
$\cos A=\cos B \cos C+\sin B \sin C \cos a$
$\cos \mathrm{A}=\sin \alpha$
$\cos \mathrm{B}=\sin \varphi \quad \sin \mathrm{B}=\cos \varphi$
$\cos \mathrm{C}=\sin \delta \quad \sin \mathrm{C}=\cos \delta$
$\cos \mathrm{a}=\cos \omega$

So： $\sin \alpha=\sin \varphi \sin \delta+\cos \varphi \cos \delta \cos \omega$

## Solar Declination太阳赤纬角

## Cooper＇s Formula：



## How to get the Irradiance on PV front surface?

$$
\begin{gathered}
Q_{T}^{\prime}=S_{T}^{\prime}+D_{T}^{\prime}+R_{T}^{\prime} \\
S_{T}^{\prime}=S_{H}^{\prime} \times \cos \theta / \sin \alpha=S_{H}^{\prime} \times R_{\mathbf{b}}
\end{gathered}
$$

( $\mathrm{R}_{\mathrm{b}}=\cos \theta / \sin \alpha$ is the ratio of tilted irradiance to the horizontal irradiance)

$$
D_{T}^{\prime}=D_{H}^{\prime}\left(1+\cos Z^{\prime}\right) / 2 \quad R_{T}^{\prime}=\rho Q_{H}^{\prime}\left(1-\cos Z^{\prime}\right) / 2
$$

5 variables are required for the calculation of in-plane total irradiance $Q^{\prime}{ }_{T}$ :

1) $Q_{H}{ }_{H}$ :Total irradiance on horizontal surface ( $\mathbf{k W} / \mathrm{m} 2$ )
2) $S_{H}{ }_{H}$ : Direct irradiance on horizontal surface ( $\mathrm{kW} / \mathrm{m} 2$ )
3) $D^{\prime}{ }_{H}$ : Diffuse irradiance on horizontal surface ( $\mathrm{kW} / \mathrm{m} 2$ )
4) $\cos \theta$ : cosine of solar incident angle
5) $\cos Z^{\prime}$ : the instantaneous tilted angle of $P V$ array

## Diffuse Irradiance can be either Isotropic or Anisotropic

Isotropic model ${ }^{[1][ }{ }^{2]}$ is for low irradiation and cloudy days:

$$
D_{T}^{\prime}=D_{H}^{\prime}\left(1+\cos Z^{\prime}\right) / 2 \text { (by RetScreen) }
$$

For clear and sunny day, anisotropic model should be used: ${ }^{[6][8][9]}$

$$
D_{T}^{\prime}=D_{H}^{\prime} \quad\left(K(\cos \theta / \sin \alpha)+1 / 2\left(1+\cos Z^{\prime}\right)(1-K)\right)
$$ anisotropic diffuse from circumsolar isotropic sky diffuse

$K=S_{H} / Q_{0} \quad K$ : the share of circumsolar diffuse which has the same characteristic of direct irradiance.

## How to get Horizontal Irradiance Data？

$$
Q_{H}^{\prime}=D_{H}^{\prime}+S_{H}^{\prime}
$$

Q＇$_{\mathrm{H}}$ ：global irradiance at each hour（kW／m2）
$\mathrm{D}^{\prime}{ }_{\mathrm{H}}$ ：diffuse irradiance at each hour（kW／m2）
$S_{H}{ }_{H}$ ：direct irradiance at each hour（kW／m2）
1．Multi－Year average real－tested hourly data：can be found at Weather station or the database of NASA，PVSyst or Meteonorm database or NREL database．多年平均实测数据（小时量）
2．The horizontal hourly data can be got from Daily global and diffuse irradiation data by the distribution models（Klein distribution［2，9，10］or Bouguer－Lambert distribution［4］）．从日总辐射量和日散射辐射量，通过日辐射分布模型得到。
3．Daily Irradiation data can be got from Monthly Irradiation Data by the way of interpolation［4］．日辐射量可以通过插值从月辐射量得到。

## $\cos \theta$ for

Ground Horizontal Coordinates ${ }^{[3,11]}$

By J.E. Braun and J.C. Mitchell and used by RetScreen [3,10,11].


V:vertical Axis from ground to sky; N: Normal of PV array; Z: Tilted angle of PV array;
S: Solar beam;
$\alpha$ : Solar altitude;
$\beta$ : Solar azimuth
r: PV array azimuth

## Derived from the rule of spherical tringle:

 $\cos \theta=\cos Z^{\prime} \sin \alpha+\sin Z^{\prime} \cos \alpha \cos (\beta-\gamma)$

## Referenced by the formula of solar altitude $\alpha$, we can get: $\cos \theta=\sin \varphi \sin \delta+\cos \varphi \cos \delta \cos (\omega-\Omega)$



$$
\begin{aligned}
& \mathrm{a}=\theta \\
& A=\omega-\Omega ; \\
& b=90^{\circ}-\varphi+Z+z ; \\
& c=90^{\circ}-\delta ;
\end{aligned}
$$

$\theta$ : solar incident angle
$\omega$ : solar hour angle
$\Omega:$ main axis rotating angle $\delta$ : solar declination
$Z$ : tilted angle of main axis $z$ : module tilt on main axis

Key Facor: $\quad b=90^{\circ}-\varphi+Z+z$
$\cos a=\cos b \cos c+\sin b \sin c \cos A$
$\cos \theta=\cos \left(90^{\circ}-\varphi+Z+z\right) \cos \delta+\sin \left(90^{\circ}-\varphi+Z+z\right) \sin \delta \cos (\omega-\Omega)$

## Instantaneous Tilted Angle of Array Z' ${ }^{\text {[3,11] }}$

## Ground Horizontal Coordinates


(a) Fixed Array (b) Azimuth Tracking (c) Double-Axis Tracking
(a) Fixed Array: $Z^{\prime}=Z$; (it is the same with manual regulated arrays)
(b) Azimuth Tracking: $Z^{\prime}=Z$;
(c) Double Axis Tracking: $Z^{\prime}=90^{\circ}-\alpha$ 。


## Now we have all required formulas for $\theta$ and $Z$ '

For $\theta$ :
Ground Horizontal Coordinates: $\cos \theta=\cos Z^{\prime} \sin \alpha+\sin Z^{\prime} \cos \alpha \cos (\beta-\gamma)$

Equatorial Coordinates: $\cos \theta=\sin (90-\varphi+Z+z) \sin \delta+\cos (90-\varphi+Z+z) \cos \delta \cos (\omega-\Omega)$

For Z':
Ground Horizontal Coordinates: $Z^{\prime}$ is always known.
Equatorial Coordinates:
$\cos Z^{\prime}=\sin Z \sin Z+\cos Z \cos Z \cos \Omega$

The In-plane Solar Irradiance for Front-side

$$
\begin{array}{ll}
Q_{T}^{\prime}=S_{T}^{\prime}+D_{T}^{\prime}+R_{T}^{\prime} & \\
S_{T}^{\prime}=S_{D}^{\prime} \cos \theta=S_{H}^{\prime} R_{\mathrm{b}} & \left(R_{b}=\cos \theta / \sin \alpha\right) \\
D_{T}^{\prime}=D_{H}^{\prime}\left(1+\cos Z^{\prime}\right) / 2 & \text { (take diffuse irradiance as isotropic) } \\
R^{\prime}{ }_{T}=\rho Q^{\prime}{ }_{H}\left(1-\cos Z^{\prime}\right) / 2 &
\end{array}
$$

The in-plane solar daily irradiation by integrating the irradiance from sunrise $\left(\omega_{\mathrm{r}}\right)$ to sunset $\left(\omega_{\mathrm{s}}\right)$ :

$$
\begin{aligned}
& \boldsymbol{S}_{\boldsymbol{T}}=\int_{\omega_{r}}^{\omega_{s}} S_{T}^{\prime} d \omega=\int_{\omega_{r}}^{\omega_{s}} \frac{S_{H^{\prime}} \cos \theta}{\sin \alpha} d \omega \\
& \boldsymbol{D}_{T}=\int_{\omega_{r}}^{\omega_{s}} D_{T}^{\prime} d \omega=\int_{\omega_{r}}^{\omega_{s}} \frac{D_{H^{\prime}}\left(1+\cos Z^{\prime}\right)}{2} d \omega \\
& \boldsymbol{R}_{\boldsymbol{T}}=\int_{\omega_{r}}^{\omega_{s}} R_{T}^{\prime} d \omega=\int_{\omega_{r}}^{\omega_{s}} \frac{\rho Q_{H^{\prime}\left(1-\cos Z^{\prime}\right)}^{2}}{2} d \omega
\end{aligned}
$$

The monthly and yearly irradiation on PV array can be got simply sum-up the daily solar irradiations on PV array.

If we use anisotropic model for diffuse irradiance

$$
\begin{aligned}
& Q_{T}{ }^{\prime}=S_{T}{ }^{\prime}+D_{T}{ }^{\prime}+R_{T}{ }^{\prime} \\
& S^{\prime}{ }_{T}=S^{\prime}{ }_{D} \cos \theta=S^{\prime}{ }_{H} \mathrm{R}_{\mathrm{b}} \quad\left(R_{b}=\cos \theta / \sin \alpha\right) \\
& \boldsymbol{D}^{\prime}{ }_{T}=\boldsymbol{D}^{\prime}{ }_{H}\left[\frac{S_{H}}{Q_{0}} R_{b}+\frac{1}{2}\left(1-\frac{S_{H}}{Q_{0}}\right)\left(1+\cos Z^{\prime}\right)\right] \\
& R^{\prime}{ }_{T}=\rho Q^{\prime}{ }_{H}\left(1-\cos Z^{\prime}\right) / 2
\end{aligned}
$$

And the in-plane daily irradiation by integrating the irradiance from sunrise $\left(\omega_{\mathrm{r}}\right)$ to sunset $\left(\omega_{\mathrm{s}}\right):$

$$
\begin{aligned}
& \boldsymbol{S}_{\boldsymbol{T}}=\int_{\omega_{r}}^{\omega_{s}} S_{T}^{\prime} d \omega=\int_{\omega_{r}}^{\omega_{s}} \frac{S_{H} \cos \theta}{\sin \alpha} d \omega \\
& \boldsymbol{D}_{\boldsymbol{T}}=\int_{\omega_{r}}^{\omega_{s}} D_{T}^{\prime} d \omega=\int_{\omega_{r}}^{\omega_{s}} \frac{D_{H}^{\prime}\left[\frac{\left.S_{H} R_{b}+\frac{1}{2}\left(1-\frac{S_{H}}{Q_{0}}\right)\left(1+\cos Z^{\prime}\right)\right]}{2} d \omega\right.}{\boldsymbol{R}_{\boldsymbol{T}}=\int_{\omega_{r}}^{\omega_{s}} R_{T}^{\prime} d \omega=\int_{\omega_{r}}^{\omega_{s}} \frac{\rho Q_{H^{\prime}\left(1-\cos Z^{\prime}\right)}^{2}}{2} d \omega}
\end{aligned}
$$

## How about Bifacial PV Modules?

How to calculate the irradiance on the rear side

## surface?

## The Main Differences

## between Front side

 and Rear side

1, All irradiance received by front side and rear side: direct irradiance, diffuse irradiance (anisotropic circumsolar and isotropic sky diffuse), and reflected irradiance by the ground; 2, The models for direct and circumsolar diffuse on backside, and the sky diffuse irradiance on backside are the same as that for front side;
3, The main difference is the reflected irradiance.


## Reference [1]

## A Practical Irradiance Model for Bifacial PV Modules

## Preprint

Bill Marion, Sara MacAlpine, and Chris Deline National Renewable Energy Laboratory

Amir Asgharzadeh and Fatima Toor University of lowa

Daniel Riley, Joshua Stein, and Clifford Hansen Sandia National Laboratories

Presented at 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC)
Washington, DC
June 25-30, 2017

$$
\begin{equation*}
\mathrm{BSI}=b \cdot F_{b} \cdot\left(\mathrm{DNI}+I_{\text {cir }}\right)+\sum_{i=1^{\circ}}^{180^{\circ}} C F_{i} \cdot F_{i} \cdot I_{i} \tag{4}
\end{equation*}
$$

where $b=$ maximum $(Q$ cosine of the AOI of the DNI$) ; F_{b}$ is the AOI correction for the DNI using the air-glass model or Sjerps-Koomen et al. [10]; CK is the $C F$ for the $i$ th onedegree segment; $F_{i}$ is the AOI correction for the $i$ th onedegree segment; and $I_{i}$ is the irradiance tiewed by the $i$ th onedegree segment (either $I_{s k y}, I_{\text {hor }}, \rho \cdot G R I_{n}$, or $X_{f}()$. The $C F_{i}$ is represented by Eqn. 5:

$$
C F_{i}=1 / 2 \cdot[\cos (i-1)-\cos (i)]
$$

where $i$ is in degrees with a range from $1^{\circ}$ to $180^{\circ}$. The field-of-view corresponding to a $C F_{i}$ is shown in Fig. 2.


## Sum of Sky Diffuse Irradiance and the Reflected Irradiance by Ground Segment

## Direct Irradiation and circumsolar diffuse

Fig. 2. Field-of-view of the ground for a one-degree segment depicted by the angles $i$ and $i-1$.

# German Paper: Model for Rear side Ground Reflection 

4th International Conference on Silicon Photovoltaics, SiliconPV 2014
Simulation of energy production by bifacial modules with revision
of ground reflection
Ufuk Alper Yusufoglu ${ }^{\text {a,* }}$, Tae Hun Lee ${ }^{\text {a }}$, Tobias Markus Pletzer ${ }^{\text {a }}$, Andreas Halm ${ }^{\text {b }}$, Lejo
Reference [2] Joseph Koduvelikulathu ${ }^{\text {b }}$, Corrado Comparotto ${ }^{\mathrm{b}}$, Radovan Kopecek ${ }^{\text {b }}$, Heinrich Kurz ${ }^{\mathrm{a}}$
${ }^{a}$ RWTH Aachen University, Institute of Semiconductor Electronics, Sommerfeldstraße 24, D-52074, Aachen, Germany
${ }^{b}$ International Solar Energy Research Center Konstanz e.V., Rudolf-Diesel-Str. 15, D-78467, Konstanz, Germany

## Key Points:

1. The beam and diffuse sky irradiance components received on the backside may be modeled with the same model used for the front side. This paper only study on reflected irradiance; 2. Assuming that the shadowing is caused only by the direct irradiance, and the reflected direct part of irradiance to the backside only from area outside of the shading.
2. The principle of View Factor (Fv) can be applied for the calculation of ground reflected irradiance at the module rear side.
3. The View Factor denotes the ratio of the irradiance reaching the back surface to the available irradiance on the ground.

## German Reference: the Backside Reflected Irradiance



Fig. 1. (a) Definition of view factor and; (b) its implementation for the ground reflected radiation.

The Reflected Irradiance to the backside:

$$
E_{\text {POM, Albedo,rear }}=\alpha D H I \frac{1+\cos \beta}{2}+\alpha(G H I-D H I)\left(\frac{1+\cos \beta}{2}-F_{V}\right)
$$

## Fraunhofer Developed a Ray Tracing Model

## RAY TRACING

- $2^{\text {nd }}$ approach : ray tracing
- Tracing back the path of light: from the PV cell to the light source (= sun and diffuse) by taking into account its encounters with obstacles
- Rays of light = straight lines
- Diffuse and/or specular reflection
- Example : one PV cell $\rightarrow 1$ million of rays are sent by Monte Carlo, equiprobably distributed on the hemisphere $\rightarrow$ by successive reflections, they reach the light sources: sun and diffuse from the sky


Illustration of ray-tracing in 2D from one cell on the rear of a bifacial module
A large number of rays (only 80 are shown) are sent from the cell in every directions
Rays reaching the ground are randomly reflected

For a $3 M W p$ plant, about 20 billions rays are sent, calculation time is about tens of minutes

## The Main Factors to Affect the Irradiance on Rear Side



## Assumptions for the model on rear side irradiance

1) the direct and isotropic sky diffuse irradiation on backside will follow the same models as that of front side;
2) the Direct and Circumsolar Diffuse part can only be reflected by the area without shading;

3 ) the installation height above the ground is high enough, so the non-uniformity on backside can be neglected, otherwise we need calculate the backside irradiance column by column ( string by string) from bottom to top.;
4) the installation height above the ground is high enough, so the transparent ratio does not further affect the backside irradiance. Or, we add a percentage of transparent ratio to the formulas;
5) The affect from the incident angle will be ignored, if calculating the power generation from backside, we can add a coefficient;
6) the reflected Direct part of irradiance will relay on the Shading Ratio or Shining Ratio, and not relevant to GCR.

## We may define several View Factors

$F_{\mathrm{SR}}$ : denotes the shading ratio or shading factor to the total used land.
$\underline{F}_{\text {SR }}=$ shading area/total land usage of PV array (\%)
(How to get shading area and total land usage can be found in IEC/TR 63149-2018)
$1-\mathrm{F}_{\mathrm{SR}}$ : effective land ratio without shading (\%)
$\left(1+\cos Z^{\prime}\right) / 2$ : sky view factor for front side $\mathrm{F}_{\mathrm{SF}}(\mathbf{0} \mathbf{- 1 0 0 \%}$ )
(1- cosZ')/2: sky view factor for backside $\mathrm{F}_{\mathrm{SB}}$ ( 0 - 100\%)
(1- cosZ')/2 : ground view factor for front side $F_{G F}$ ( 0 - 100\%)
$\left(1+\cos Z^{\prime}\right) / 2$ : ground view factor for backside $\quad F_{G B} \quad(0-100 \%)$
$F_{S R}$ : Shading Ratio
$K$ : Array width
$D_{\text {shad-SN }}$ : shading distance, $S-N$ direction
$D_{\text {shin-SN: }}$ : shined distance under PV array, $S-N$ direction
$D_{r t t-S N}$ : row to row distance, $S-N$ direction
$h_{A 1}$ : the array height


$$
\begin{aligned}
& F_{S R}=\left(K \times D_{\text {shad }-S N} / K \times D_{\text {rtt-SN }}\right)=D_{\text {shad }-S N} / D_{r t t-S N} \\
& D_{\text {shad-SN }}=D 1+D 2(\text { IEC TR 63149) } \\
& D_{\text {rtt-SN }}: \text { is known (IEC/TR 63149) } \\
& D_{\text {shin }-S N}=\cos \beta \times h_{A 2} / \tan \alpha
\end{aligned}
$$

$F_{S R}$ : shading ratio
$K$ : Array width
$D_{\text {shad }-S N}$ : shading distance, $S-N$ direction
$D_{\text {shin-SN: }}$ shined distance under PV array, $S-N$ direction
$D_{r t t-S N}$ : row to row distance, $S-N$ direction
$h_{A 1}$ : the height of array
$h_{A 2}$ : lowest point of array


If we take diffuse irradiance as isotropic, we have:

$$
Q^{\prime}{ }_{T B}=S_{T B}^{\prime}+D_{T B}^{\prime}+R_{T B}^{\prime}
$$

$S^{\prime}{ }_{T B}=\cos \theta S^{\prime}{ }_{D B}=S^{\prime}{ }_{H} R_{b} \quad\left(R_{b}=\cos \theta / \sin \alpha\right)$
(when $\beta>90^{\circ}, S^{\prime}{ }_{\text {тв }}$ will shine on backside of fixed arrays)

$$
\begin{aligned}
D_{T B}^{\prime} & =D_{H}^{\prime}\left[1+\cos \left(Z^{\prime}+180^{\circ}\right)\right] / 2=D_{H}^{\prime}\left(1-\cos Z^{\prime}\right) / 2 \\
R_{T B}^{\prime} & =\rho D_{H}^{\prime}\left(\frac{1+\cos Z^{\prime}}{2}\right)+\rho\left(G_{H}^{\prime}-D_{H}^{\prime}\right)\left(\frac{1+\cos Z^{\prime}}{2}\right)\left(1-\mathrm{F}_{\mathrm{v}}\right) \\
& =\rho D_{H}^{\prime}\left(\frac{1+\cos Z^{\prime}}{2}\right)+\rho S_{H}^{\prime}\left(\frac{1+\cos Z^{\prime}}{2}\right)\left(1-\mathrm{F}_{\mathrm{v}}\right) \\
& G_{H}^{\prime}=D_{H}+S_{H}^{\prime}
\end{aligned}
$$

## Formulas for rear side irradiance (2)

If we take diffuse irradiance as anisotropic, we have:
For the front side:

$$
\mathrm{D}_{\mathrm{T}}^{\prime}=\mathrm{D}_{\mathrm{H}}^{\prime}\left[\frac{S_{H}}{Q_{0}} R_{b}+\frac{1}{2}\left(1-\frac{S_{H}}{Q_{0}}\right)\left(1+\cos Z^{\prime}\right)\right]
$$

$$
\begin{array}{cc}
\mathrm{T} \\
\text { Circumsolar } & \text { Sky Isotropic Diffuse }
\end{array}
$$

For the backside:

$$
\mathrm{D}_{\mathrm{TB}}^{\prime}=\mathrm{D}_{\mathrm{H}}^{\prime}\left[\frac{S_{H}}{Q_{0}} R_{b}+\frac{1}{2}\left(1-\frac{S_{H}}{Q_{0}}\right)\left(1-\cos Z^{\prime}\right)\right]
$$

Circumsolar Sky Isotropic Diffuse
$S_{H}$ : direct daily irradiation on horizontal surface
$Q_{0}:$ is the extraterrestrial total daily solar irradiation on horizontal surface. [6]
So, we propose the rear side irradiance models as the followings:

$$
\begin{aligned}
& Q^{\prime}{ }_{T B}^{\prime}=S_{T B}^{\prime}+D_{T B}^{\prime}+R_{T B}^{\prime} \\
& S_{T B}^{\prime}+\text { Diffuse of Circumsolar }=S_{H}^{\prime} R_{b}+D_{H}^{\prime}\left(\frac{S_{H}}{Q_{0}} R_{b}\right) \\
& \quad=\left[S_{H}^{\prime}+D_{H}^{\prime}\left(\frac{S_{H}}{Q_{0}}\right)\right] R_{b} \quad\left(R_{b}=\cos \theta / \sin \alpha\right) \quad\left(\text { when } \beta>90^{\circ}\right) \\
& D_{T B}^{\prime}=D_{H}^{\prime}\left[\frac{1}{2}\left(1-\frac{S_{H}}{Q_{0}}\right)\left(1-\cos Z^{\prime}\right)\right] \\
& R_{T B}^{\prime}=\rho D_{H}^{\prime}\left[\frac{1}{2}\left(1-\frac{S_{H}}{Q_{0}}\right)\right]\left(\frac{1+\cos Z^{\prime}}{2}\right)+\rho\left(S_{H}^{\prime}+D_{H}^{\prime} \frac{S_{H}}{Q_{0}}\right)\left(\frac{1+\cos Z^{\prime}}{2}\right)(1-\mathrm{Fv})
\end{aligned}
$$

## References for the Model of Front Side

［1］B．Y．H Liu and R．C Jordan，A Rational Procedure for Predicting The Long－Term Average Performance of Flat－Plate Solar－Energy Collectors．Solar Energy，1963，Vol．7，pp 53－74
［2］S．A．Klein，Calculation of Monthly Average Insolation on Tilted Surfaces．Solar Energy，1977，Vol．19，pp 325－329
［3］J．E．Braun and J．C．Mitchell，Solar Geometry for Fixed and Tracking Surfaces，Solar Energy 1983， Vol．31，No．5，pp 439－444
［4］Wang Sicheng，Computer Aided Design for the Photovoltaic Power Systems，Acta Energiae Solaris Sinica， 1986，Vol．7，No．3，pp 251－264（in Chinese）
［5］Zhang Chubin，《Spherical Tringle》，People’s Education Press， 1959.2 （in Chinese）
［6］John E，Hay，Calculation of Monthly Mean Solar Radiation for Horizontal and Inclined Surfaces，Solar Energy 1979，Vol．23，pp 301－307
［7］T．M．Klucher，Evaluation of Models to Predict Insolation on Tilted Surfaces，Solar Energy 1979，Vol．23， pp 111－114
［8］Richard Perez and Robert Seals，A New Simplified Version of the Perez Diffuse Irradiance Model for Tilted Surfaces，Solar Energy 1987，Vol．39，No．3，pp 221－231
［9］S．A．Klein and J．C．Theilacker，An Algorithm for Calculating Monthly－Average Radiation on Inclined Surfaces．Journal Solar Energy Engineering，1981，Vol．103，pp 29－33
［10］Natural Resources Canada（NASA，UNEP，GEF），RETSCREEN® ENGINEERING \＆CASES TEXTBOOK，www．retscreen．net， 2004.
［11］Duffie J．A．and Beckman W．Z．，《Solar Engineering of Thermal Process》，2 ${ }^{\text {nd }}$ edition，John Wiley \＆ Sons， 1991
［12］Japan Solar Energy Society，《Solar Energy Basic Principle and Applications》，Shanghai Scientific and Technical Publishers， 1982.5 （in Chinese）

## References for the Model of Rear Side

[1] Bill Marion, Sara MacAlpine, and Chris Deline (NREL), A Practical Irradiance Model for Bifacial PV Modules, 2017 IEEE 44th Photovoltaic Specialists Conference, June 25-30, 2017
[2] Ufuk Alper Yusufoglua, Tae Hun Leea (Germany), Simulation of energy production by bifacial modules with revision of ground reflection, 4th International Conference on Silicon Photovoltaics, SiliconPV 2014
[3] Thomas Baumann, Markus Klenk, ILLUMINATION HOMOGENEITY OF BIFACIAL SYSTEMS - OUTDOOR MEASUREMENTS WITH SYSTEMATICALLY VARIED INSTALLATION CONDITIONS, EU PV Solar Energy Conference, Sep. 2017
[4] Chris Deline, Sara MacAlpine (NREL), Assessment of Bifacial Photovoltaic Module Power Rating Methodologies -Inside and Out, Article in IEEE Journal of Photovoltaics • January 2017. [5] Paper by Solar World, Calculating the additional energy yield of bifacial solar modules, [6] Natural Resources Canada (NASA, UNEP, GEF), RETSCREEN® ENGINEERING \& CASES TEXTBOOK,www.retscreen.net, 2004.

