Modeling Method for Rear-face Spectral Irradiance at Standard Test Condition and Its Application to Power Rating of Bifacial PV Module 标准测试条件下背面光谱辐照度的建模方法及其在双面光伏组件功率标定中的应用

11th PVPMC, 4th – 5th Dec. 2018, Weihai, China

Q. Gao¹, C. Monokroussos¹, X. Y. Zhang¹, E. Lee¹, Y.H. Wang¹, C. Zou¹,
L. Rimmelspacher², J. Bonilla Castro², M. Schweiger² and W. Herrmann²
¹ TÜV Rheinland (Shanghai) Co., Ltd., No.177, Lane 777, West Guangzhong, 200072, Shanghai, P.R. China
² TÜV Rheinland Energy GmbH, Am Grauen Stein, 51105, Cologne, Germany

Outline

- Introduction and Motivation 研究背景
- Standard and Literature Review 双面光伏器件测试标准回顾
- Modelling Approach and Simulation Results 双面组件光谱辐照度建模方法与模拟结果
- Comparison with Outdoor Measurements 户外测试结果验证
- Definition of Bifacial Standard Test Conditions (BSTC) 双面标准测试条件
- Application to Power Rating BSTC在双面光伏组件标定中的应用
- Summary and Conclusions 总结

Introduction and Motivation 研究背景

- Sales price of PV modules is based on STC measurements
 光伏组件在标准测试条件下的标定功率直接影响其定价基准
- Bifacial modules have higher performance (PR>100%) than monofacial, due to the contribution of rear face irradiance 由于背面辐照度增益,双面光伏组件性能比往往大于100%
- PV-modules with unclear rating conditions were seen in the market 在光伏市场中,双面光伏组件的标定条件依然不明确

The albedo of light bare soil is about 0.2, which means backside reflected irradiance is about 200W/m². (...) So, the test condition in 60904-1-2 is the same as in IEC 60904-3. Nameplate refers to: Technical Standard Test Condition AM1.5, 25°C, G_{comp}=(1+0.2BiFi)*1000W m⁻²

> **TÜV**Rheinland® Precisely Right.

Introduction and Motivation 研究背景

- Sales price of PV modules is based on STC measurements
 光伏组件在标准测试条件下的标定功率直接影响其定价基准
- Bifacial modules have higher performance (PR>100%) than monofacial, due to the contribution of rear face irradiance 由于背面辐照度增益,双面光伏组件性能比往往大于100%
- PV-modules with unclear rating conditions were seen in the market 在光伏市场中,双面光伏组件的标定条件依然不明确

Do we need a supplementary rating test condition for bifacial module performance? 对于双面光伏组件性能测试,我们是否需要一个补充测试条件?

Extension of STC needed? STC的延伸条件是否必要?

- Fielded bifacial PV modules
 - ⇒ Field parameters greatly affected by rear side irradiance, G_R 双面光伏组件的发电能力极大地受到背面辐照度的影响

⇒ Commercial bifacial module types vary in terms of bifaciality (60-90%) 不同种类双面组件的双面率亦有所不同

- Consumer view: Additional power labelling to differentiate products is necessary 从用户的角度看,额外的功率标签非常必要
- Reference G_R value for BSTC? BSTC中背面参考辐照度应为?
- Ray-tracing simulations: 光线追踪法测试结果?

⇒ Rear side irradiance lies in the range 120-135 W/m² for parameters given in the table using *Radiance* software 如右表中条件,组件背面辐照度在120-135 W/m²。

Reference:

C. Deline et al., Assessment of Bifacial Photovoltaic Module Power Rating Methodologies - Inside and Out, IEEE Journal of Photovoltaics Vol. 7, No. 2 (2017)

TÜVRheinland[®] Precisely Right. IEC 60904-1-2: Test Method for IV Measurement of Bifacial PV-Modules IEC 60904-1-2: 双面光伏组件I-V曲线测试方法

C. Guyemard et al., "SMARTS2: A simple model of the atmospheric radiative transfer of Sunshine: Algorithms and performance assessment", FSEC-PF-270-95 (1995)

TÜVRheinland® Precisely Right.

TÜVRheinland[®] Precisely Right.

- Angular response of bifacial modules 角度响应

<u>Reference:</u>

C. Guyemard et al., "SMARTS2: A simple model of the atmospheric radiative transfer of Sunshine: Algorithms and performance assessment", FSEC-PF-270-95 (1995)

AM1.5G Spectral Irradiance at Rear Face 对应于AM1.5G的背面光谱

- Accounting for the methodology used in **SMARTS2**, a physics-based model was created, which can compute **radiation** distributions **on tilted surfaces** and their **spectrum**. 该物理模型参考SMARTS2的光谱计算方法,可以用于计算倾斜面的光谱辐照度。
- It is shown that **rear face irradiance** distribution for PV-modules deployed in a single row at **1 m** above ground at conditions as defined in AM1.5G is **strongly non-uniform**.

⇒ Landscape mounting configuration is beneficial for bifacial modules. 1m安装高度的光伏组件背面光谱辐照度在组件上分布不均,横向安装方式更为有益。

The spectral distribution of the irradiance at rear face is red-shifted due to spectral albedo effects.
 相比于正面光谱,背面光谱有一定红移,所以功率标定中正反面失配系数不同。

Precisely Right.

10 04.12.2018 11th PVPMC, 4th – 5th Dec. 2018, Weihai, China

Non-Uniformity of Irradiance and Average Photon Energy 背面辐照度与平均光子能量不均匀度分布

 The rear face irradiance,
 1.67 G_R lies in the range of 110-180 W/m².
 1.665 ⇒ Top-row: 110-145W/m²
 1.66 ⇒ Bottom-row: 145-180W/m²
 1.65 Bottom-row: 145-180W/m²
 1.655 顶部阵列110-145W/m²
 1.655 顶部阵列110-145W/m²
 1.656 正he average photon

 ^{1.65} The average photon energy (300-1200nm) varies within 1.64-1.68eV (<1.80eV of front face).

> 在300-1200nm范围内的平均光子能 量为**1.64-1.68eV**。

Example: **2m x 1m sized, frameless PV-module** deployed in **portrait configuration** at **1 m** above ground at conditions as defined in AM1.5G. 2m x 1m无边框双面组件在安装高度,正面光谱辐照度AM1.5G时的背面辐照度与平均光子能量分布。

TÜVRheinland[®] Precisely Right. IEC 60904-1-2: Test Method for IV Measurement of Bifacial PV-Modules IEC 60904-1-2: 双面光伏组件I-V曲线测试方法

Measurement Conditions Site: Cologne Date: 15/08/2018 Time: 13:00, Solar Noon Air Mass: AM1.2 Sky Condition: Clear Skies Height: 1.5m

Model Parameters Air Mass: AM1.2 GHI: SMARTS (2.9.5) DNI: SMARTS (2.9.5) Albedo: Light Sandy Soil Height: 1.5m

The Spectral Albedo was measured with a **spectroradiometer** and **two pyranometers** (Rear Face HI_λ/GHI_λ). 光谱反射率由一台光谱仪与两台辐照计测量。

Significance of Rear Face Spectral Irradiance for Bifacial Module Rating 背面光谱分布对双面光伏组件标定的影响

TÜVRheinland® Precisely Right.

Significance of Rear Face Spectral Irradiance for Bifacial Module Rating 背面光谱分布对双面光伏组件标定的影响

 The rear face spectral mismatch strongly depends on the reterence spectrum choice (AM1.5G or AM1.5R)

背面光谱失配系数依赖于参考光谱选择。

 The weighted spectral mismatch is not significantly affected by the rear face spectral distribution choice (AM1.5G or AM1.5R)

加权光谱失配系数受参考光谱影响不大。

 \Rightarrow Practically **AM1.5G** can be used for **both sides** without significant error

AM1.5G可以应用于实际双面光谱失配系数的计算。

0 04.12.2018 11th PVPMC, 4th – 5th Dec. 2018, Weihai, China

- The variation of bifaciality coefficients, φ, was evaluated by measuring a series of modules in production (10-20 modules per type).
- Bifaciality depends strongly on technology. Coefficients may vary from 60% to 90%
- Bifaciality coefficients may vary from ±2.0% to ±5.0% (k=2) in production for as-produced modules of the same family.
 - $\Rightarrow BSTC tolerance shall account this variation to comply with supplementary label verification in accordance with gate #1 requirements.$

Verification of BSTC Values on the Label (Gate #1) 标签中BSTC相关数值的验证准则

Precisely Right.

Conclusions 结论

- Power **labelling** of **bifacial** PV modules is an **urgent** matter. Sufficient **knowledge** is **available** to define bifacial reference conditions.
- 双面光伏组件的功率标签十分必要,现有理论已足够定义双面测试标准状况
- Bifacial Standard Test Condition (BSTC) has been proposed based on IEC 60904-1-2 CDTS and IEC 60904-3, which intends to provide supplementary information on the label:

双面标准测试条件(BSTC)的制定基于IEC 60904-1-2 CDTS和IEC 60904-3,可用于在标签上提供补充信息:

Bifacial Standard Test Conditions (BSTC) :

- Front irradiance: 1000 W/m²
- Rear irradiance: 135 W/m²
- Equivalent irradiance: 1000 + φ·135 W/m²
- Spectral irradiance: AM1.5G
- Module temperature: 25° C
- BSTC is a simple indicator, which is unsuitable for EY predictions. BSTC只是一个测试条件,不能应用于发电量预测。
- Energy rating standard according to IEC 61853 should be extended for bifacial applications.
 基于IEC 61853的功率标定标准可被拓展到双面光伏组件中。
 04.12.2018 11th PVPMC.4th 5th Dec. 2018. Weibiai. China

ENERGY YIELD RATING

Based on Module Performance Ratio Index (MPRI) Tested outdoors Oct. 2014 - Oct. 2015 Operating Efficiency 14,8%

Acknowledgements

Mr. Yabin Li, Mr. Fan Wang and Dr. Jason Nee from Yingli Solar

- Mr. Thomas Guo and Dr. Jin Hao from Jinko Solar
- Dr. Thomas R. Betts from Loughborough University, UK

for the helpful discussions and data contribution.

TÜV Rheinland TUV Rheinland Thank you for your attention ! TÜV Rheinland TÜV Rheit

TÜV Rheinlar.

amaland

TÜV Rheints

Hand

mano ruv Rhr

mainland

UV Rheinland

TUV Rheinland

TUV Rheinland

TUV Rheinland

TUV Rheinland

TUV Rheinland

TUV Rheim

W Rheinland

TÜV RII-

TÜV Rheinland

TÜV Rheinlan

TÜV Rheir

TUVE

TÜV Rheinland

Rheinland