## Online apps for solar prospecting: New challenges and industry needs

All-in-one app for pre-feasibility of solar plants



#### Artur Skoczek apps.solargis.com

PV Systems Symposium in Albuquerque, NM, May 14-16, 2019



### New generation of Solargis online apps

#### Why industry needs new prospecting tool?

- PV becoming global
- Less known environments high uncertainty
- Environmental risk assessment
- Prospecting multiple projects shared between multiple project partners

#### How Prospect addresses these needs?

- All basic environmental info in one place
- High accuracy solar resource database
- Reduced uncertainty
- Results available in few clicks
- Sharing projects



#### New generation of Solargis online apps



iMaps (interactive maps) & pvPlanner are integrated with new features: more data, new PV simulation tool, economy calculator, site management and sharing tool, new reports, compare tool, collaborative work.

3



#### Prospect Solar radiation database



### Prospect – underlaying radiation database

# Modelling **cloud attenuation** from geostationary satellites

- From 1994/1999/2007 to the end of 2018
- Time resolution 10, 15 and 30 minutes
- Native grid resolution approx. 2 to 7 km

# Modelling clear-sky (cloudless) atmospheric conditions:

- Aerosols and water vapour from global models: MERRA-2, CFSR, CFSv2, GFS, MACC-II, CAMS
- Digital Elevation Model SRTM-3



#### 







Geographical coverage of satellite data analyzed in SolarGIS model

#### Volume of data increases

|                             | GB/day  | TB/year | Active               |
|-----------------------------|---------|---------|----------------------|
| Meteosat MFG (IODC)         | 0.6 GB  | 0.3 TB  | No                   |
| Meteosat MSG                | 7.2 GB  | 2.6 TB  | Yes (2x PRIME, IODC) |
| GOES West                   | 12.5 GB | 4.5 TB  | Yes                  |
| GOES East                   | 12.5 GB | 4.5 TB  | No                   |
| GOES-R(S)                   | 50 GB   | 18 TB   | Yes                  |
| MTSAT                       | 2.6 GB  | 0.9 TB  | No                   |
| HIMAWARI 8                  | 80 GB   | 30 TB   | Yes                  |
| Meteosat MTG,<br>HIMAWARI 9 | +       | +       | No, but soon         |

- Increasing spatial resolution (Himawari 8 and GOES-R: 0.5-2.0 km)
- Higher data frequency (Himawari 8: 10 min., GOES-R 15 min)
- More spectral channels (Himawari 8, GOES-R: 16 channels)
- Redesign of HW infrastructure and storage
- Optimization of management software performance

Source: SolarGIS

### Solargis worldwide database validation Public validation sites – support from the World Bank

Solar meteorological stations with high quality measurements Red color shows meteo sites supported by the World Bank since 2015



#### This information may not be complete



# Extensive validation with existing PV software packages: pvSyst, SAM



### Simulation results: Solargis vs NREL SAM vs PVsyst

|                                                        | Solargis vs SAM | Solargis vs PVsyst |
|--------------------------------------------------------|-----------------|--------------------|
| Mean energy yield difference simulation at 9 locations | -0.41% ± 0.86%  | 0.33% ± 0.36%      |





#### New features in Prospect online application



#### Interactive maps

Prospect offers 250-m grid resolution data for exploration of solar climate and for reliable PV energy assessment





#### New maps

#### Data reveal striking geographical variability

Select map layer





#### More meteorological parameters

Prospect shows 20+ solar meteo and enviro parameters that are critical for preliminary assessment of PV power plants worldwide

Global tilted irradiation at optimum angle Yearly average 2345<sub>kWh/m<sup>2</sup> ~</sub> Air temperature Yearly average **28.3**°C - The most important project-specific meteorological parameter that determines solar electricity production is solar radiation, which fuels a PV power system. Power production is also influenced by air temperature. Other meteorological parameters also affect the performance, availability and ageing of a PV system.

#### Solar radiation and meteorological parameters

|        | <b>GHI</b><br>kWh/m <sup>2</sup> | <b>DNI</b><br>kWh/m <sup>2</sup> | <b>DIF</b><br>kWh/m <sup>2</sup> | D2G  | <b>GTI opta</b><br>kWh/m <sup>2</sup> | ALB  | <b>TEMP</b><br>℃ | WS<br>m/s | <b>RH</b><br>% | <b>PWAT</b><br>kg/m <sup>2</sup> | PREC<br>mm | CDD<br>degree<br>days | HDD<br>degree<br>days |
|--------|----------------------------------|----------------------------------|----------------------------------|------|---------------------------------------|------|------------------|-----------|----------------|----------------------------------|------------|-----------------------|-----------------------|
| Jan    | 128                              | 150                              | 48                               | 0.38 | 172                                   | 0.24 | 20.5             | 3.9       | 61             | 17                               | 19         | 79                    | 1                     |
| Feb    | 140                              | 141                              | 54                               | 0.38 | 173                                   | 0.25 | 21.4             | 4.2       | 59             | 18                               | 28         | 98                    | 1                     |
| Mar    | 181                              | 158                              | 72                               | 0.40 | 202                                   | 0.26 | 23.8             | 4.3       | 57             | 18                               | 26         | 179                   | 0                     |
| Apr    | 201                              | 158                              | 81                               | 0.41 | 204                                   | 0.27 | 27.6             | 4.0       | 52             | 19                               | 7          | 288                   | 0                     |
| May    | 232                              | 184                              | 91                               | 0.39 | 218                                   | 0.27 | 31.5             | 4.1       | 51             | 19                               | 0          | 419                   | 0                     |
| Jun    | 223                              | 164                              | 95                               | 0.43 | 203                                   | 0.27 | 33.4             | 3.9       | 53             | 22                               | 0          | 461                   | 0                     |
| Jul    | 210                              | 128                              | 107                              | 0.51 | 195                                   | 0.27 | 34.9             | 3.9       | 51             | 32                               | 1          | 525                   | 0                     |
| Aug    | 209                              | 144                              | 97                               | 0.47 | 205                                   | 0.27 | 35.2             | 3.8       | 47             | 32                               | 0          | 533                   | 0                     |
| Sep    | 195                              | 163                              | 78                               | 0.40 | 210                                   | 0.27 | 32.8             | 3.6       | 51             | 25                               | 0          | 444                   | 0                     |
| Oct    | 177                              | 182                              | 62                               | 0.35 | 213                                   | 0.27 | 30.0             | 3.3       | 53             | 21                               | 1          | 372                   | 0                     |
| Nov    | 137                              | 159                              | 48                               | 0.35 | 181                                   | 0.25 | 26.1             | 3.6       | 55             | 21                               | 5          | 243                   | 0                     |
| Dec    | 123                              | 150                              | 45                               | 0.37 | 169                                   | 0.23 | 22.4             | 3.7       | 59             | 18                               | 20         | 138                   | 0                     |
| Yearly | 2156                             | 1883                             | 879                              | 0.41 | 2345                                  | 0.26 | 28.3             | 3.9       | 54             | 22                               | 107        | 3778                  | 2                     |

### New primary source of meteorological parameters

#### Current data source





1994-2010 2011 -yesterday

MERRA2 resolution: 0.5° x 0.5° CFSv2 resolution: 0.2° x 0.2°

#### Upcoming data source

ERA5



1994-2019

Last 3 months

Difference

ERA5 resolution:  $0.25^{\circ} \times 0.25^{\circ}$ CFSv2 resolution:  $0.2^{\circ} \times 0.2^{\circ}$ 







### Introductory information for any project

Pre-feasibility assessment can be further evaluated in any design software, by Solargis time series and TMY data, consistently and in a full detail



#### User interface and reports in multiple languages

#### User interface and reports in English, Spanish and Mandarin Chinese



#### **Economy calculator**

Payback, return on investment, levelized cost of electricity for any PV configuration



### Collaborative work & Management of portfolios

In Prospect app, teams can collaborate on projects. Organize projects using tags, share them and manage permissions.

| Users           |                              |             |          |        |          |        |
|-----------------|------------------------------|-------------|----------|--------|----------|--------|
| Name            | Email                        | System role |          | Status |          |        |
| Martin Ďuriš    | martin.duris@solargis.com    | Admin       | •        | Active | ~        | Delete |
| Branislav Cief  | branislav.cief@solargis.com  | Admin       | <b>.</b> | Active | ~        | Delete |
| Daniel Chrkavy  | daniel.chrkavy@solargis.com  | Admin       | -        | Active | ~        | Delete |
|                 | marcel.suri@solargis.com     | Admin       | -        | Active | <b>.</b> | Delete |
| Shihying Lin    | shihying.lin@solargis.com    | Admin       | -        | Active | •        | Delete |
| Tomas Cebecauer | tomas.cebecauer@solargis.com | Admin       | -        | Active | •        | Delete |
| daniel ranusa   | daniel.ranusa@solargis.com   | Admin       | -        | Active | •        | Delete |
|                 |                              | Admin       | -        | Active | •        | Delete |
| Nada Suriova    | nada.suriova@solargis.com    | Admin       | -        | Active | ~        | Delete |

#### More detailed solar analytics and comparison

Data output aggregated as:

- Long-term yearly and monthly averages
- Average hourly profiles for each month
- ... to better understand the PV electricity potential and PV performance.



### Global and most accurate data

Solargis data has been recognized as the most accurate by independent studies and confirmed in thousands of large-scale PV commercial projects, worldwide.

Accurate information consulted in the pre-feasibility stage prevents disappointment in the solar project development and operation

| = (    | SOLARGIS  | PROSPECT | ~ | MAP | PROJECTS   | COMPARE              | PROJECT DETAIL            | Contact                   | Help English              | ı 🗸 | Θ                                     |
|--------|-----------|----------|---|-----|------------|----------------------|---------------------------|---------------------------|---------------------------|-----|---------------------------------------|
| All pi | rojects   |          |   |     |            |                      |                           | $(\neq$                   | ) Add to Compare          | Ŋ   | 0                                     |
|        | Name      |          |   |     | Created    | PVOUT csi<br>kWh/kWp | GHI<br>kWh/m <sup>2</sup> | DNI<br>kWh/m <sup>2</sup> | DIF<br>kWh/m <sup>2</sup> |     | <b>GTI</b> opta<br>kWh/m <sup>2</sup> |
|        | Dubai     |          |   |     | Mar 22, 20 | 019 1746             | 2156                      | 1883                      | 879                       |     | 2345                                  |
|        | Abu Dhabi |          |   |     | Mar 22, 20 | 019 1755             | 2190                      | 1914                      | 883                       |     | 2376                                  |
|        | Riyadh    |          |   |     | Mar 22, 20 | 019 1806             | 2228                      | 2074                      | 823                       |     | 2416                                  |
|        | Mumbai    |          |   |     | Mar 22, 20 | 019 1577             | 1942                      | 1459                      | 913                       |     | 2064                                  |
|        | Tehran    |          |   |     | Mar 22, 20 | 019 1748             | 1928                      | 1945                      | 723                       |     | 2208                                  |
|        | Muscat    |          |   |     | Mar 22, 20 | 019 1811             | 2242                      | 2089                      | 814                       |     | 2436                                  |

### Advanced online PV simulator

New PV simulation tool based on the latest scientific developments and new concepts which consider all critical technical details of the PV power plant.

#### Pre-defined PV configurations for an easier system set-up.

| ) | Rooftop small<br>Photovoltaic system mounted on a tilted roof of a residen                    |                                                       |
|---|-----------------------------------------------------------------------------------------------|-------------------------------------------------------|
| ) | <b>Rooftop large flat roof</b><br>Photovoltaic system mounted on a large horizontal roof o    |                                                       |
| ) | <b>Rooftop large tilted roof</b><br>Photovoltaic system mounted on a large tilted roof of a c |                                                       |
| ) | Building integrated<br>Photovoltaic system integrated into a facade or roof of a r            | Svetem size                                           |
| ) | Ground based fix-mounted<br>Large-scale commercial photovoltaic system mounted on             | PV module type<br>Geometry of PV modules              |
| ) | Tracker with 1 horizontal axis<br>Tracker with one horizontal axis North-South bound. Rotat   | Row spacing<br>Inverter type                          |
| ) | No PV System<br>Only solar and meteorological parameters are calculated                       | Transformer type Snow and soiling losses at PV module |
|   |                                                                                               | Cabling losses                                        |
|   |                                                                                               | System availability                                   |



#### Ground based fix-mounted

Large-scale commercial photovoltaic system mounted on leveled ground. Azimuth and tilt of PV modules are homogeneous, usually facing towards the Equator and inclined at the optimum tilt to maximize yearly energy yield. The modules are fix-mounted on tilted structures aligned in rows. During low-sun angles, they may be partially shaded by preceding rows. The modules are well ventilated. This type of PV system is connected to a medium- or high-voltage grid through an inverter and distribution transformer, and an additional transformer may also be used. No electricity storage is considered.

|    | Installed capacity: 1000kWp                                                        |
|----|------------------------------------------------------------------------------------|
|    | c-Si - crystalline silicon (mono or polycrystalline)                               |
|    | Azimuth: 180° • Tilt: 26°                                                          |
|    | 2.5                                                                                |
|    | Centralized high-efficiency inverter                                               |
|    | High efficiency                                                                    |
| es | Yearly average soiling losses 3.5 $\%$ $\star$ Yearly average snow losses 0.0 $\%$ |
|    | DC cabling 2 $\%$ + DC mismatch 0.3 $\%$ + AC cabling 0.5 $\%$                     |
|    | 99.5 %                                                                             |



### PV system losses

Detailed shading calculation and analysis of all system losses.

Specific photovoltaic power output Long-term yearly average  $1785_{\text{kWh/kWp}}$ 

Performance ratio Long-term yearly average **76.3**%

#### Loss diagram

| 0.0%                                                                              | 76.3% | 100.0% |                                                     |
|-----------------------------------------------------------------------------------|-------|--------|-----------------------------------------------------|
| Global tilted irradiation (theoretical):2340kWh/m <sup>2</sup>                    |       |        | Solar losses                                        |
|                                                                                   |       | 0.0%   | Terrain shading                                     |
|                                                                                   |       | -2.7%  | Angular reflectivity                                |
|                                                                                   |       | 0.0%   | Snow                                                |
|                                                                                   |       | -3.4%  | Dirt, dust and soiling                              |
| Global tilted irradiation (effective):2196kWh/m <sup>2</sup>                      |       |        | Electric system losses                              |
|                                                                                   |       | -11.0% | Conversion of solar irradiance to DC in the modules |
|                                                                                   |       | -0.9%  | Electrical losses due to inter-row shading          |
|                                                                                   |       | 0.0%   | Power tolerance at PV modules                       |
|                                                                                   |       | -1.9%  | Mismatch and cabling in DC section                  |
|                                                                                   |       | -2.4%  | Inverters (DC/AC) conversion                        |
|                                                                                   |       | -1.1%  | Transformer and AC cabling losses                   |
| Total system performance (initial):1794kWh/kWp                                    |       |        |                                                     |
|                                                                                   |       | -0.4%  | Technical availability                              |
| Total system performance (initial) considering technical availability:1785kWh/kWp |       |        |                                                     |

### Outputs: monthly or hourly averages

#### Solargis Prospect delivers outputs as long-term averaged monthly & hourly data

GHI DNI TEMP

|         |      |      |      |      | Global horiz | zontal irradia | tion Wh/m <sup>2</sup> |      |      |      |      |      |
|---------|------|------|------|------|--------------|----------------|------------------------|------|------|------|------|------|
|         | Jan  | Feb  | Mar  | Apr  | May          | Jun            | Jul                    | Aug  | Sep  | Oct  | Nov  | Dec  |
| 0 - 1   | -    | -    | -    | -    | -            | -              | -                      | -    | -    | -    | -    | -    |
| 1 - 2   | -    | -    | -    | -    | -            | -              | -                      | -    | -    | -    | -    | -    |
| 2 - 3   | -    | -    | -    | -    | -            | -              | -                      | -    | -    | -    | -    | -    |
| 3 - 4   | -    | -    | -    | -    | -            | -              | -                      | -    | -    | -    | -    | -    |
| 4 - 5   | -    | -    | -    | -    | -            | -              | -                      | -    | -    | -    | -    | -    |
| 5 - 6   | -    | -    | -    | -    | 1            | 2              | -                      | -    | -    | -    | -    | -    |
| 6 - 7   | -    | -    | 1    | 41   | 101          | 101            | 69                     | 31   | 28   | 13   | 1    | -    |
| 7 - 8   | 29   | 42   | 125  | 232  | 308          | 298            | 239                    | 229  | 227  | 184  | 112  | 33   |
| 8 - 9   | 203  | 252  | 332  | 441  | 525          | 502            | 433                    | 432  | 441  | 406  | 313  | 231  |
| 9 - 10  | 370  | 444  | 532  | 641  | 720          | 694            | 621                    | 628  | 644  | 604  | 488  | 397  |
| 10 - 11 | 520  | 614  | 707  | 798  | 878          | 847            | 777                    | 791  | 804  | 755  | 622  | 535  |
| 11 - 12 | 621  | 731  | 831  | 905  | 970          | 946            | 873                    | 887  | 899  | 841  | 703  | 617  |
| 12 - 13 | 652  | 775  | 865  | 922  |              | 971            | 907                    | 920  | 919  | 845  | 701  | 630  |
| 13 - 14 | 620  | 738  | 809  | 867  | 927          | 923            | 866                    | 881  | 857  | 771  | 634  | 579  |
| 14 - 15 | 517  | 625  | 696  | 745  | 801          | 807            | 751                    | 766  | 726  | 634  | 511  | 474  |
| 15 - 16 | 377  | 469  | 526  | 570  | 631          | 640            | 591                    | 594  | 541  | 446  | 344  | 322  |
| 16 - 17 | 187  | 282  | 329  | 367  | 426          | 438            | 397                    | 385  | 327  | 215  | 136  | 129  |
| 17 - 18 | 14   | 52   | 123  | 148  | 214          | 233            | 205                    | 169  | 82   | 16   | 1    | 1    |
| 18 - 19 | -    | -    | 2    | 4    | 26           | 32             | 31                     | 11   | 1    | -    | -    | -    |
| 19 - 20 | -    | -    | -    | -    | -            | -              | -                      | -    | -    | -    | -    | -    |
| 20 - 21 | -    | -    | -    | -    | -            | -              | -                      | -    | -    | -    | -    | -    |
| 21 - 22 | -    | -    | -    | -    | -            | -              | -                      | -    | -    | -    | -    | -    |
| 22 - 23 | -    | -    | -    | -    | -            | -              | -                      | -    | -    | -    | -    | -    |
| 23 - 24 | -    | -    | -    | -    | -            | -              | -                      | -    | -    | -    | -    | -    |
| Sum     | 4111 | 5024 | 5879 | 6681 | 7513         | 7433           | 6762                   | 6724 | 6495 | 5729 | 4566 | 3949 |



### Old and new Solargis tools Changes in PV simulation



### Old and new Solargis tools



### Aggregated solar radiation data





### Aggregated solar radiation data





PV Systems Symposium in Albuquerque, NM, May 14-16, 2019

### Detailed inter-row shading analysis

| Choose system type<br><sub>自庄禛</sub>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×   |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| rstem type                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|                                       | Cround based fix-mounted<br>Large-scale commercial photovoltaic system mounted on leveled ground. Azimuth and tilt of PV modules<br>are homogeneous, usually facing towards the Equator and inclined at the optimum tilt to maximize yearly<br>energy yield. The modules are fix-mounted on tilted structures aligned in rows. During low-sun angles,<br>they may be partially shaded by preceding rows. The modules are well ventilated. This type of PV system<br>is connected to a medium- or high-voltage qrid through an inverter and distribution transformer, and an<br>additional transformer may also be used. No electricity storage is considered.<br>Change system type Restore default setting UNSAVED CHANCES |     |
| ttings                                | Expand all Collapse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | all |
| System size                           | Installed capacity: 1000kWp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ~   |
| PV module type                        | c-Si - crystalline silicon (mono or polycrystalline)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~   |
| Geometry of PV modules                | Azimuth: 180* • Tilt: 30*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ~   |
| Row spacing                           | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ^   |
|                                       | Row spacing 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| Inverter type                         | Centralized high-efficiency inverter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~   |
| Transformer type                      | High efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~   |
| Snow and soiling losses at PV modules | Yearly average soiling losses 3.5 $\%$ + Yearly average snow losses 0.0 $\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~   |
| Cabling losses                        | DC cabling 2 % • DC mismatch 0.3 % • AC cabling 0.5 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ~   |
|                                       | 00.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |



#### Fix mounted systems

- direct and diffuse shading
- per cell simulation
- varius strings layouts
- modules orientation V and H
- mono and bifacial modules

### **Combined AM and PWAT correction**



SOLARGIS

#### Change in PV simulation chain



A power-rating (performance surface) model developed by Huld T. **ESTI Laboratory** based on King L. PV array model **The Sandia National Laboratories** 

#### IEC-61853 Module Model

Recall: single diode models consist of two parts:

 $_{\rm o}~$  The nonlinear I-V curve equation defined by parameters: a, I\_{\rm L}, I\_{\rm o}, R\_{\rm sr}  $R_{\rm sh}$ 

$$I = I_L - I_o \left( \exp\left[\frac{V + IR_s}{a}\right] - 1 \right) - \frac{V + IR_s}{R_{sh}}$$

• These five parameters are STC values (@ 1000 W/m<sup>2</sup> & 25 C)



The **De Soto model**, also known as the five-parameter model, uses the following equations to express each of the five primary parameters as a function of cell temperature and irradiance :

SOLARGIS

$$I_{L} = \frac{S}{S_{ref}} \frac{M}{M_{ref}} \left[ I_{L,ref} + \alpha_{Isc} \left( T_{c} - T_{c,ref} \right) \right]$$

$$I_{0} = I_{0,ref} \left( \frac{T_{c}}{T_{c,ref}} \right)^{3} \exp \left[ \frac{1}{k} \left( \frac{E_{g} \left( T_{ref} \right)}{T_{ref}} - \frac{E_{g} \left( T_{c} \right)}{T_{c}} \right) \right]$$

$$E_{g} \left( T_{c} \right) = E_{g} \left( T_{ref} \right) \left[ 1 - 0.0002677 \left( T_{c} - T_{ref} \right) \right]$$

$$R_{s} = \text{constant}$$

$$R_{sh} = R_{sh,ref} \frac{S_{ref}}{S}$$

$$n = \text{constant}$$

### Evolution of inverter model complexity



PV Systems Symposium in Albuquerque, NM, May 14-16, 2019



#### Further developments



#### PV simulator development roadmap

Detailed PV power plant configuration available through API PV simulator is independent of input data

It works with:

- Modelled or measured data, site-adapted data
- Sny time-step 1, 5, 10, 15, 30, 60 min
- Timeseries,

Supports all most popular mounting scenarios (mono and bifacial, fix and trackers)





statistical data (percentiles



Lambertian surface

#### Ground albedo





PV Systems Symposium in Albuquerque, NM, May 14-16, 2019



#### NMMB/BSC-Dust model: history and forecast



Latest dust forecast for Northern Africa, Middle East and Europe

Model reproduces significantly well daily variability and seasonal geographical distribution of dust optical depth over Northern Africa, Middle East and Europe



#### Maximum wind gusts: history and forecast





#### Snow losses – history and forecast



#### Monthly Loss, $\% = C_1 \times Se' \times cos^2(T) \times GIT \times RH / T_A^2 / POA^{0.67}$



### PV system sizing – minimum temperature



#### IEC 62548:2016

Photovoltaic (PV) arrays - Design requirements





#### Thank you!

apps.solargis.com

