

Optimizing Voltage on Feeders with Distributed PV Using Dynamic Secondary Voltage Controllers

PV Systems Symposium 2018

Rohit Moghe, PhD

Director, Advanced Research and Applications

rmoghe@varentec.com

Mar 3rd, 2018

Utility Challenges

Generation

Distribution

Load

Traditional Utility Network

Energy Flow Paradigm

Predictable Loads

AMI data confirms high variability on Low Voltage side affects VVO/CVR benefits:

- All meters show consistent V < ANSI low voltage violation on a daily basis for several hours
- Max, variation between lowest and highest meter read at any time is around 19-21 V - a 17% variation (120V base)

Higher Uncertainty Fast growth of distributed solar PV is increasing challenges today:

High voltage fluctuation due to PV generation volatility (especially during daytime)

Generation

Transmission

Distribution

Load

Paradigm

Change

New Utility Network Energy

Flow Paradigm

- Voltage boost at peak insolation
- V > ANSI high voltage violations
- Interference with VVO/CVR objectives (Energy Savings, Peak Demand Reduction)

ENGO[®] + GEMS[™] provides enhanced CVR from the Edge Up

Real-Time Single Phase VVC/VVO (Local Impact)

Californian Municipality: November 14th – November 17th 2016

Real-Time Single Phase VVC/VVO (System-Wide Impact)

CVR can be used to achieve multiple utility Objectives:

- PV Hosting Capacity
- Energy Savings
- Peak Demand Reduction

Voltage Problems with Low-Moderate PV Penetration

Distribution Feeder with low-moderate PV

Penetration

Voltage Problem Mitigation with Low-Moderate PV Penetration

Minute of Date Time [December 2017]

HECO Project Objectives

Hawaiian Electric Maui Electric Hawai'i Electric Light

Primary Objectives (VVO)

- Demonstrate ability to avoid out of tariff voltages by reducing the large voltage fluctuations caused by PV
- Estimate any increased PV hosting capacity potential

ENGO Pole Unit -

ENGO Installation

Secondary Objectives

- Measure VVO/CVR benefits for Energy Savings
- Estimate economic benefits

Pilot Deployment

F1 Circuit 7 ENGO Units

F2 Circuit 54 ENGO Units

12.47kV Keolu substation

- Day Time Peak Load: 4.7MW ... 5.7MW
- Night Time Peak Load: 6.7 MW
- PV Generation: 4.3 MW
- LTC/LDC Control (SP=120V, R=6,X=6)

Substation Name	Type of Circuits Connected	Feeder Names	Length (miles)	Peak MW	Average MW	Installed PV (MW)	# of Cap Bank	# of Line Voltage Regulator
Sub A	Residential Feeder	F1	3.3	3.38	1.74	2.15	0	0
		F2	1.8	3.19	1.88	2.15	0	0

Historical Load and PV Generation Capacity

Increasing PV Hosting Capacity

ENGO Provides Extra Upper and Lower Margin

(System-Wide Effect)

Varentec, Inc. | Confidential & Proprietary 2018

Swarm Effect due to Multiple ENGO

Note: 8 over 31 OptaNodes overlapped with ENGO units

ENGO Reduces LTC Operation

PV Hosting Capacity Calculator

PV Hosting Calculator Tool

Solution #	Solution	PV Hosting Capacity (MW)	Energy Saving	Avg. LTC Tap Operation / Day
1 (Basecase)*	LDC control (R=6, X=6) (Band Center = 120) ENGO OFF	2.7 - 3.2		34 Ops/day
2	Fixed LTC (Band Center = 120.5V) ENGO ON	5 - 5.4	0.7 -1.4%	15 Ops/day
3	Fixed LTC (Band Center = 120V) ENGO ON Relocation of 13 ENGO Devices	5.5 – 5.7	1.4 - 1.7%	15 Ops/day
4	LDC control (R=8, X=8) (Band Center = 119.5) ENGO ON	6.3 – 6.9		>15 but < 34
5	LDC control (R=8, X=8) (Band Center = 119.5) ENGO ON Relocation of 4 ENGO Devices	6.9 – 7.1		>15 but < 34

GEMS+ENGO solution helps to increase PV hosting capacity on the substation from 3.2 MW to 7.1 MW PV hosting capacity increases by ~ 123%

PV Hosting QSTS Simulations: Smart Inverter + ENGO Complementary Solution

Varentec, Inc. | Confidential & Proprietary 2018

Perspectives on Smart Inverters for Voltage Support

- Buck-boost capability: role is to primarily solve local over-voltage problems that are introduced by PV injecting real power
- Volt-Var Curve: Use Volt-VAr curve (priority) with Volt-Watt used on a case-by-case basis
- **Curtailment**: With VW, there may be curtailment that reduces sales revenue for PV owner
- **Critical Mass**: As per the default VV curves, to inject 10 kVAr need 25 inverters
- **Ownership & Location**: Utilities do not control where the next PV panel (and hence smart inverter) appears
- **Communication**: reliability and fidelity of comms is an issue
- Night Time Support: As inverters are not responsible for creating low-voltage they are not responsible for fixing it
- Losses: Draw 1-5% losses that may be \$50 \$100 per year per consumer
- **Inevitability**: But, Smart Inverters are being adopted and they are the way to move forward for PV owners

A complementary solution of ENGO and Smart Inverters can work wonders for the grid.

ENGO being utility-owned and in complete control by Utilities brings tremendous value today and future proofs the grid for tomorrow!

Let's see what happens under various scenarios (ENGO-only, Smart Inverters-only, ENGO+Smart Inverters)

PV Hosting Capacity with LDC Control

- Under basecase (4.86 MW PV or 77% hosting capacity), even with optimal LDC control, voltage volatility is higher than 12V
 - With only ENGO, 146% PV hosting (9.23 MW PV) can be supported without voltage violations
 - A complementary solution of ENGO and Smart inverter does provide marginal additional benefit, 150% PV hosting can be supported without voltage violations

HECO Project Results

- Ensure that secondary voltages are above the required lower voltage limit (ANSI-A 114 V – 126V)
- Coordinate LTC and ENGO SetPoint to ensure no lower/upper voltage limit violation
- Reduce voltage fluctuation from 10.8% to 6.8%
- Improve voltage margin by 3.7% to 4.0% based on 114V 126V range
- Alternative to primary investment (LVRs or conductor/transformer upgrade)
 - Increase PV hosting capacity from 87% to 123%
 - 7 MW (Simulated per field results)

PV Solar Integration

2

Reduce O&M costs (LTC operation reduced by 55% from 34 daily operations to 15)

Potential of 0.7% - 1.4% Energy Savings (CVR factor for Energy = 0.8)

Energy Savings

Rohit Moghe, PhD

Director, Advanced Research and Applications

rmoghe@varentec.com