

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology &Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2022-11244 PE Clifford Hansen (Sandia National Laboratories), Jan Rippingale (BluBanyan)

2022 PV Performance Modeling and Monitoring Workshop Salt Lake City, UT

August 24, 2022

Data "friction" adds to PV system costs

Soft costs are substantial

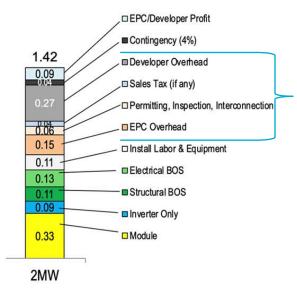


Fig. 6 from U.S. Solar Photovoltaic System and Energy Storage Cost Benchmarks: Q1 2021, NREL/TP-7A40-80694, November 2021 Although difficult to quantify, data friction (cost associated with collecting, reporting and communicating project data) <u>contributes</u> to 36% of total solar project cost, making data exchange costs comparable with some hardware costs.

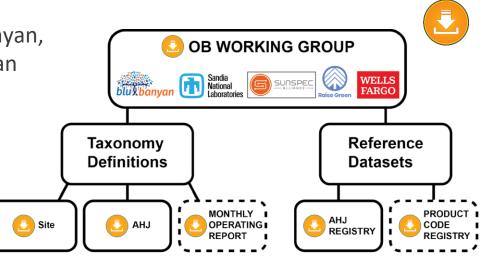
Anecdotal evidence suggests data friction costs are substantial.

Harmonizing data would break additional barriers:

- Increases access to capital by enabling automated risk assessment
- Data clarity translates directly to business process scalability

Terms for GHI used by APIs offering irradiance data

• G(h)

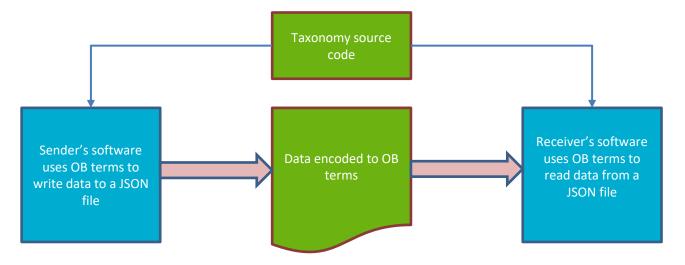

- ghi (interval-beginning timestamp, unit of W/m²)
- ghi (interval-end timestamp, unit of Wh/m²)
- GHI
- GHI (interval-beginning except at 1-minute resolution, then interval-ending)

Vision: Harmonize solar data across the system life-cycle, from sales through operations

The OB Working Group (chaired by BluBanyan, Sunspec Alliance, Sandia) seeks to create an **open data exchange standard** for the distributed solar PV industry.

A data exchange standard comprises:

- A taxonomy
- Tools to access reference data sets
- A compliance test suite (future work)


G

What is a taxonomy?

- "A taxonomy is... a semantic architecture it is about naming things and making decisions about how to map different concepts and terms to a consistent structure."¹
 - More than a dictionary or variable list because a taxonomy can provide hierarchical structure and can attach metadata to values
- A taxonomy provides
 - <u>Consistency</u> (agreement on terms)
 - <u>Connections</u> (related terms can be grouped together into information objects), and
 - removes <u>Ambiguity</u> (terms can possess primitive data such as a timestamp and a unit) (credit to [1]).

The Orange Button taxonomy

- Open-source, public, free-to-use
 - JSON compliant with the OpenAPI 3.0 specification
 - Javascript style conventions
 - <u>https://www.github.com/Open-Orange-Button/Orange-Button-Taxonomy.git</u>
- Editor at https://openobeditor.sunspec.org
- Documentation at <u>www.orangebutton.io</u> (dated)

The OB taxonomy provides common, reusable terms

EnergyProductions [EnergyProduction]							
	SiteID						
	EnergyMeasurements [EnergyMeasurement]						
	DeviceID						
	EnergyAC						
	Decimals						
	EndTime						
	Precision						
	StartTime						
	Unit						
	Value						

Field name	Value	Units	StartTime	EndTime	Decimals	Precision
Energy AC	11.98	MWh	2021-07-20T12:00:00-07:00	2021-07-20T23:59:59-07:00	2	

Examples of instance documents

```
"EnergyAC": {
   "Decimals": "1",
   "EndTime": "2020-02-08 09:59:59+07:00",
   "StartTime": "2020-02-08 09:00:00+07:00",
   "Unit": "kWh",
   "Value": 50.1
```

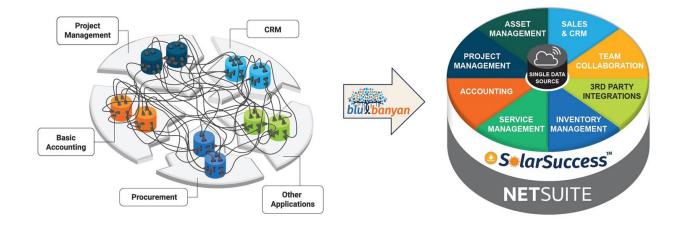
```
"EnergyACArray": [
```

```
{
```

```
"Decimals": "1",
"EndTime": "2020-02-08 09:59:59+07:00",
"StartTime": "2020-02-08 09:00:00+07:00",
"Unit": "kWh",
"Value": 50.1
```

Editor demonstration – PVSystem object

× + 📀 ob-editor ~ - 🛛 × $\leftarrow \rightarrow C$ openobeditor.sunspec.org/#/ Q 🖻 ★ 🗯 🔲 🏩 Orange Button OpenAPI Editor (1) **Detailed View** Create Sample JSON Save As Master-OB-OpenAPI.json x + Attributes Values **PVSystem** Search Modes: Name **PVSystem** Sind By Name ● Find Direct Usage ● Find All Usage Documentation A solar photovoltaic system PVSystem + CapacityAC Object Type CapacityDC ElectricalServiceID Superclasses System RiskCategory StructureID Usage Tips None Description FileFolderURL Create Sample JSON Delete Edit definition OperationalPhase OperationalStatus SystemID SystemPrice SystemType BillOfMaterials BillOfServices EnergyModels [EnergyModel] EnergyProductions [EnergyProduction] PVArrays [PVArray] Devices [Device] AlternativeIdentifiers [AlternativeIdentifier] PVSystems [PVSystem] + PVSystem


Demo of AHJRegistry https://ahjregistry.sunspec.org/

Kimpton Monaco 15 W 200 S, Salt Lake City, UT 84101

Blu Banyan's role in the Solar Industry...

Blu Banyan built **S**elarSuccess[™] - the award-winning fully-integrated business application for the solar industry, eliminating the biggest challenge of disparate and disconnected systems.

Solar installers who account for 25% of the installed residential PV capacity in the US run their business on *S*●*larSuccess*[™]

www.blubanyan.com

OB is enabling scalability

SelarSuccess[™] – integrates with application providers to deliver a cohesive solar applications' ecosystem that **helps reduce solar project costs, grow the addressable market, and scale deployment**.

www.blubanyan.com

Conclusion

We welcome your participation in taxonomy development and want to hear your use cases and friction points

https://github.com/Open-Orange-Button/Orange-Button-Taxonomy.git

Download and save Master-OB-OpenAPI.json for latest version

https://obeditor.sunspec.org/

Open the file you downloaded

For participation in the working group, contact

Cliff Hansen, <u>cwhanse@sandia.gov</u>

Jan Rippingale, jrippingale@blubanyan.com