Overview of Photovoltaic Module Performance Modeling Approaches

7th PVPMC Workshop on Energy Rating and Module Performance Modeling Lugano, Switzerland March 30-31, 2017

Joshua S. Stein PhD. Sandia National Laboratories, Albuquerque, NM USA

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Exceptional service in the national interest

SAND2017-3087 C

PV Module Modeling Approaches

- Equivalent Circuit Models
 - Describe full I-V curve at desired irradiance and temperature conditions
 - Single diode equation ('5 parameter') is most common
 - Auxiliary equations relate the 5 parameters to irradiance and temperature
 - Different among PVsyst, De Soto, CEC, PV*SOL
- Point Models
 - Describe cardinal points on the IV curve: Pmp, Imp, Vmp, Isc, Voc
 - PVWatts
 - Algebraic equations relating Pmp to irradiance and temperature
 - Huld model
 - Sandia PV Array Performance Model (SAPM)
 - Loss Factors Model
- 'Data' Models

Set of equations describing Imp, Vmp, Isc and Voc

Module model is only one part of a modeling process

Stein, J. S. and B. H. King (2013). Modeling for PV plant optimization. <u>Photovoltaics International, Solar Media Ltd. **19th: 101-109.**</u>

"Single Diode" Models

- CEC, PVsyst, CEC, PV*SOL, others
 - IV curve described by single diode equation
 - "5 parameters" <u>for each IV curve</u>
- Auxiliary equations describe how '5 parameters' change with irradiance, temperature
 - Different equations for each PV model
 - Auxiliary equations contain the model parameters
 - E.g., De Soto model has 7 parameters, PVsyst v6 has 9 parameters

 $R_{sh} = R_{sh0} \frac{E}{E}$

 (R_s, n) constant

De Soto et al, 2006

Ancillary Equations

Diode equation term (unit) symbol	PVsyst v6	CEC '6 parameter' model
light current (A) I_L	$I_{L}(E,T_{C}) = \frac{E}{E_{0}} \left[I_{L0} + \alpha_{Isc} \left(T_{C} - T_{0} \right) \right]$	$I_{L}(E,T_{C}) = \frac{E}{E_{0}} \left[I_{L0} + \alpha'_{Isc} \left(T_{C} - T_{0} \right) \right]$
		$\alpha'_{lsc} = \alpha_{lsc} \left(1 - Adjust / 100 \right)$
dark current (A) I_o	$I_{O}(T_{C}) = I_{OO}\left[\frac{T_{C}}{T_{0}}\right]^{3} \exp\left[\frac{q\varepsilon_{G}}{k\gamma}\left(\frac{1}{T_{0}} - \frac{1}{T_{C}}\right)\right]$	$I_O(T_C) = I_{OO}\left[\frac{T_C}{T_0}\right]^3 \exp\left[\frac{1}{k}\left(\frac{E_g(T_0)}{T_0} - \frac{E_g(T_C)}{T_C}\right)\right]$
		$E_{g}(T_{C}) = E_{g0}(1 - 0.0002677(T_{C} - T_{0}))$
series resistance (Ω) R_s	$R_{s} = R_{s0}$	$R_{S} = R_{S0}$
shunt resistance (Ω) $R_{_{SH}}$	$R_{SH} = R_{SH,base} + \left(R_{SH,0} - R_{SH,base}\right) \exp\left(-R_{SH\exp}\frac{E}{E_0}\right)$	$R_{SH}(E) = R_{SH0} \frac{E_0}{E}$
	$R_{SH,base} = \max\left[\frac{R_{SH,ref} - R_{SH,0} \exp\left(-R_{shexp}\right)}{1 - \exp\left(-R_{shexp}\right)}, 0\right]$	
ideality factor (unitless) γ or n	$\gamma = \gamma_0 + \mu_{\gamma} \left(T_C - T_0 \right)$	$n = n_0$

Open issues with diode models

- Simulated IV curves often don't match measurements at low irradiance
- Methods to estimate model parameters are often not carefully scrutinized
 - Many methods return non-physical values, e.g., n < 1</p>
 - As a consequence, the same data lead to different parameter sets
 - Could have reference cases to test estimation methods (a common practice in other disciplines)
- Can we validate the auxiliary equations?
 - Light, dark current forms derive from device physics
 - Others are eyeballed from data (e.g., *R*_{SH} in CEC model)
 - May involve corrections to match IV curves (e.g., γ in PVsyst v6)
 - Equations for R_s , *n* or γ are most promising targets

Single Point Models

• **PVWatts :**
$$P_{dc} = \frac{I_{tr}}{1000} P_{dc0} (1 + \gamma (T_{cell} - T_{ref}))$$

- Huld Model : $P(G',T') = G'(P_{STC,m} + k_1 \ln(G') + k_2 \ln(G')^2 + k_3 T' + k_4 T' \ln(G') + k_5 T' \ln(G')^2 + k_6 T'^2)$
- **PVUSA**: $P = I \cdot (A + B \cdot I + C \cdot T_a + D \cdot WS)$
 - Because P is P_{AC}, PVUSA combines cell temperature and inverter efficiency model with module performance model
- PVWatts is (almost) module-agnostic: the only term which derives from measurement is the temperature coefficient γ
- PVUSA is not a module model per se; it's a whole system model
- Huld model is intended to be fit to common measurements: backof-module temperature and broadband plane-of-array

The Sandia Array Performance Model

- Describes module output at SC, OC and MP points
- As a function of beam and diffuse irradiance (E_b and E_{diff}), cell temperature (T_c), air mass (AM_a) and angle of incidence (AOI)
- 14 empirical coefficients, 2 empirical functions (f_1 and f_2)
- With exception of f₂, coefficients must be determined for individual modules

$$V_{OC} = V_{OC0} + N_{S}n\delta(T_{C})\ln(E_{e}) + \beta_{OC}(T_{C} - T_{0})$$

$$V_{MP} = V_{MP0} + C_{2}N_{S}n\delta(T_{C})\ln(E_{e}) + C_{3}N_{S}(n\delta(T_{C})\ln(E_{e}))^{2} + \beta_{MP}(T_{C} - T_{0})$$

$$I_{SC} = I_{SC0}f_{1}(AM_{a})E_{e}(1 + \alpha_{SC}(T_{C} - T_{0}))$$

$$I_{MP} = I_{MP0}(C_{0}E_{e} + C_{1}E_{e}^{2})(1 + \alpha_{MP}(T_{C} - T_{0}))$$

$$E_{e} = E_{b}f_{2}(AOI) + E_{diff}f_{d}$$

Loss Factors Model

 $pImp = nIscT * nRsc * nImp * rImp * MMF * G_i \div T_{CORR.Isc}$ $pVmp = nVmp * nRoc * nVocT * rVmp \div T_{CORR.Voc}$

MMF = spectral mismatch, G_i = irradiance

LFM fits each of the LFM variables to a function of irradiance for a total of $6 \times 3=18$ coefficients

$$nf(G_i) = c_1 + c_2 \log(G_i) - c_3 \times G_i^2$$

$$T_{CORR,Voc} = 1 + \beta_{Vmp} \times (25 - T_c)$$

$$T_{CORR,Isc} = 1 + \alpha_{Imp} \times (25 - T_c)$$

SRCL

Gantner

'Data' models

- These models are based <u>directly</u> on measure data (e.g., 61853-1) or outdoor IV curves collected over time or trained on these data.
- Models describe how to interpolate and extrapolate from a measured reference data set.
 - Janine Freeman will describe one such model developed at NREL.
 - These models do not have parameters but rather are descriptions of a procedure that results in a result.
- Another type of "Data" model is Machine Learning
 - Birk Jones from Sandia has used a Gaussian Process Regression algorithm to simulate IV curves
 - Jones, C. B., M. Martınez-Ramonz, R. Smith, C. K. Carmignani, O. Lavrova and J. S. Stein (2016). Automatic Fault Classification of Photovoltaic Strings Based on an In-Situ IV Characterization System and a Gaussian Process Algorithm. <u>43rd IEEE Photovoltaic</u> <u>Specialist Conference. Portland, OR.</u>

Issues common to all performance moders Sandia Laboratories

- Parameter estimation is generally not transparent nor reproducible
- Data requirements are not well understood:
 - <u>Thought</u> to be either:
 - Minimal, e.g., fit a diode model using single IV curve and a temperature coefficient, or
 - Extensive, e.g., requiring days of measurements outdoors on a two-axis tracker
 - Both are wrong
 - 61853-1 is enough for diode or point models, with the exception of the spectral mismatch function
- Multiple models in use but underlying data is not shared
 - Some resort to creating "models of models", e.g., fitting the SAPM to a PVsyst simulation
 - A modeled model inherits the problems of the source model

Useful Module Model Characteristics

- Parameters are easy/straightforward to obtain
 - Standards exist for the collection of the characterization data
 - Calculations yield consistent parameter values (solutions are unique)
 - Estimation is transparent and reproducible from a common data set
 - Parameter values are easily shared and published
 - Values of parameters with physical meaning do not violate physics
- Model predicts performance well across the entire range of environmental conditions
 - High and low irradiance
 - High and low temperatures
 - Spectral effects

Questions?

Joshua S. Stein jsstein@sandia.gov