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Parameter and Topology Estimation
 Utility customer meter (AMI) voltage and power measurements 

to resolve distribution grid secondary (low-voltage):
 Parameters – resistance and reactance from transformer to 

customer
 Topology – arrangement (series or parallel) of customers 

connected to the same transformer

 Result: more detailed and accurate 
distribution grid modeling
 Hosting capacity
 PV volt/var response
 Conservation voltage reduction

Low-voltage
Medium-
voltage



Need for Detailed Secondary Models

 Distribution system secondary (low-voltage) circuit models 
are typically not modeled or modeled with limited detail

 It is becoming important to have accurate secondary circuit 
models
 A large number of DERs and sensors are connected to the secondary circuits
 A large portion of the per-unit voltage drop/raise occurs over the secondaries
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 Typical ways to enhance the GIS 
models
 Manual inspections, utilizing added 

measurements, etc.
 Require considerable man hours and 

extra resources ⇒ not cost-effective
 May be hard to perform in urban areas 

with wiring underground and in 
buildings
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Three feeders evaluated
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Three feeders evaluated
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Data
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 AMI data at 15-minute intervals for 
6-months to 1-year
 Voltage (V)
 Real Power (kWh)
 Reactive Power (kVArh)

 Transformer each customer is 
connected to

 Latitude and longitude of each 
customer and transformer
 Generally accurate but not fully verified

 Utility’s unverified, manually-
entered secondary model 
 In some cases, matches actual wiring path
 In other cases, simply a straight line from 

transformer to customer



Procedure
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1. Resolve the parameters and topology 
for all transformers with 2+ customers. 

2. Resolve the parameters for 
transformers with only a single 
customer by pairing them with other 
single-customer transformers. 

3. Pair transformers resolved in step 1 
with one another to resolve any 
additional parameters between the 
virtual nodes where the customers 
meet and the transformers. 

1.

2.

3.



Step 1
 For all customers on a transformer, find R1, R2, X1, X2
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𝑽𝑽1 − 𝑽𝑽2 = 𝑰𝑰𝑅𝑅1𝑅𝑅1 + 𝑰𝑰𝑋𝑋1𝑋𝑋1 + 𝑰𝑰𝑅𝑅2𝑅𝑅2 + 𝑰𝑰𝑋𝑋2𝑋𝑋2 + 𝝐𝝐

Known Unknown
 Basic concept

 Fit R1, R2, X1, X2 values which best fit the V1-V2 fluctuations

 For comparison to satellite imagery
 R values were used to compute a distance 

in feet of triplex cable, assuming 0.058Ω/100ft (2/0 triplex)
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Transformer 233 on Feeder 1
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Transformer 301 on Feeder 2
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Transformer 322 on Feeder 1
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Step 2
 Pair customers on transformers with only one customer with 

other solo customers
 Topology is always parallel – step 3 virtual node is on primary
 Should always be additional resistance beyond the transformer due to 

the customer being located away from the transformer

12



Step 3
 Pair transformers with one another, run parameter estimation 

on virtual nodes created in step 1
 Topology is always parallel – step 2 virtual node is on primary
 Most likely scenario is that virtual node from step 1 is at transformer low 

side and any found impedance will be due to transformer impedance
 In some cases, step 1 virtual node will be away from transformer 

– Serial connection between customers
– Parallel connection that meets before the transformer

 It is important to derive the additional impedance to fully resolve the 
secondary circuit
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Transformer size (kVA) 3 5 10 15 25 37.5 50 75
Assumed resistance 1.5% 1.5% 1.2% 1.3% 1.16% 0.96% 1% 0.87%



Transformer 29 on Feeder 1
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Results for Entire Feeders
 Ran all transformers with > 1 customer, all transformer pairs, 

and all single customer pairs for Feeders 1, 2, and 3
 Filtered out:

 Customers with <1 week (4*24*7) of data
 Customers with clearly errant voltage data (e.g., >>1 or <<1 p.u.)

 Compared resistance found to distances for a direct path 
based on latitude/longitude
 Several reasons why lat/lon distances may disagree

 Customer location is wrong in lat/lon
 Customer meter is not at same location as customer
 Circuitous wire route
 Transformer -> customer mapping is incorrect
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Feeder 1 Summary of Results 
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Reasons why PE > lat/lon (bottom right)
 Circuitous wire routing
 Lat/lon at wrong location (e.g., at 

transformer)
 Wire higher resistance than assumed 2/0

Reasons why PE < lat/lon (top left)
 Meter closer to transformer than house 

(e.g., before wire goes underground)
 Incorrect transformer – customer pair
 Wire lower resistance than assumed 2/0



Feeder 1 Summary of Results 
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Reasons why PE > lat/lon (bottom right)
 Circuitous wire routing
 Lat/lon at wrong location (e.g., at 

transformer)
 Wire higher resistance than assumed 2/0

Reasons why PE < lat/lon (top left)
 Meter closer to transformer than house 

(e.g., before wire goes underground)
 Incorrect transformer – customer pair
 Wire lower resistance than assumed 2/0



Feeder 2 Summary of Results 
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Reasons why PE > lat/lon (bottom right)
 Circuitous wire routing
 Lat/lon at wrong location (e.g., at 

transformer)
 Wire higher resistance than assumed 2/0

Reasons why PE < lat/lon (top left)
 Meter closer to transformer than house 

(e.g., before wire goes underground)
 Incorrect transformer – customer pair
 Wire lower resistance than assumed 2/0



Feeder 2 Summary of Results 
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Reasons why PE > lat/lon (bottom right)
 Circuitous wire routing
 Lat/lon at wrong location (e.g., at 

transformer)
 Wire higher resistance than assumed 2/0

Reasons why PE < lat/lon (top left)
 Meter closer to transformer than house 

(e.g., before wire goes underground)
 Incorrect transformer – customer pair
 Wire lower resistance than assumed 2/0



Feeder 3 Summary of Results 
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Reasons why PE > lat/lon (bottom right)
 Circuitous wire routing
 Lat/lon at wrong location (e.g., at 

transformer)
 Wire higher resistance than assumed 2/0

Reasons why PE < lat/lon (top left)
 Meter closer to transformer than house 

(e.g., before wire goes underground)
 Incorrect transformer – customer pair
 Wire lower resistance than assumed 2/0



Feeder 3 Summary of Results 
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Reasons why PE > lat/lon (bottom right)
 Circuitous wire routing
 Lat/lon at wrong location (e.g., at 

transformer)
 Wire higher resistance than assumed 2/0

Reasons why PE < lat/lon (top left)
 Meter closer to transformer than house 

(e.g., before wire goes underground)
 Incorrect transformer – customer pair
 Wire lower resistance than assumed 2/0



Impact on Voltage Estimates
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Customer voltages vary between the methods
 Up to 7V differences in lat/lon or 100ft versus parameter estimation

 Could result in voltage violation and/or unexpected advanced inverter behavior (e.g., if set to volt/var)
 100ft estimation often (>50% of the time) underestimates the voltage rise
 Lat/lon distances often overestimated the voltage rise due to many meters on pole (then underground 

wiring to house)



Summary 
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 Parameter and topology method successful in creating an enhanced model 
of the low-voltage secondary system for three distinct feeders

 Results highlighted quickly potential errors in the existing secondary model
 If no secondary model exists results could have been used to create one
 Enhanced secondary models enable more accurate hosting capacity 

analysis, better understanding of advanced inverter actions such as 
volt/var, and efficient operational strategies such as conservation voltage 
reduction

 Ongoing challenges/additional work
 Data availability: need power and voltage at regular intervals (some utilities do 

not have AMI or only measured power)
 How to handle bad/missing data
 Validation (extremely manually intensive – Google Street View)
 Accurate transformer -> customer and transformer phase details
 Further automation including implementation into feeder models
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