Exceptional service in the national interest

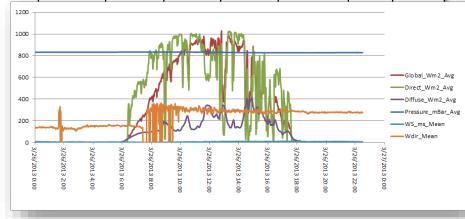
Pecos, Open Source Software for PV Performance Monitoring

8th PV Performance Modeling and Monitoring Workshop Albuquerque, NM, May 9-10, 2017

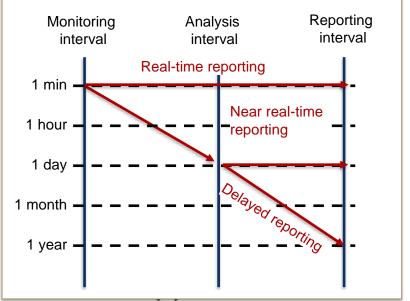
Katherine A. Klise

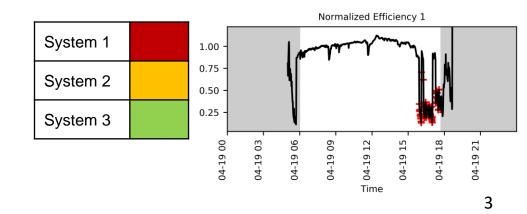
Sandia National Laboratories, Albuquerque, NM

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2017-4987 C



Overview


- What is Pecos? (PAY-cose)
 - Software for automated quality control and performance monitoring of time series data
- Why use Pecos?
 - Collect large amounts of data on multiple systems and locations
 - Run automated quality control tests on that data
 - Alert system operators when the system has changed
 - Generate reports
 - Collect performance statistics to track long term system health
 - Compare system performance across sites


TOA5	CR1000	46385	CR1000.Std.24	CPU:ABQ_RTC_M ET_2013_03_21.C R1	58869	DataOut
TIMESTAMP	Global_Wm2_A vg	Direct_Wm2_A vg	Diffuse_Wm2_ Avg	Pressure_mBar_A vg	WS_ms_M ean	Wdir_Mean
TS						Deg
	Avg	Avg	Avg	Avg	WVc	WVc
3/26/2013 0:00	-1.16195	-0.45458	0	832.121	6.338	135.7
3/26/2013 0:01	-1.14918	-0.5455	0	832.123	5.8	136.4
3/26/2013 0:02	-1.14918	-0.52277	0	832.106	5.988	131.2
3/26/2013 0:03	-1.14918	-0.45458	0	832.0875	6.838	139.6
3/26/2013 0:04	-1.14918	-0.45458	0	832.0799	6.825	136.8
3/26/2013 0:05	-1.14918	-0.45458	0	832.0693	6.775	137
3/26/2013 0:06	-1.14919	-0.40155	0	832.0547	6.825	135.2
3/26/2013 0:07	-1.14919	-0.31063	0	832.0114	6.85	137.4
3/26/2013 0:08	-1.14921	-0.46217	0	832.0062	7.013	136.3
3/26/2013 0:09	-1.14922	-0.45459	0	832.0159	7	135.1
3/26/2013 0:10	-1.14922	-0.45459	0	832.0093	6.063	136.4
3/26/2013 0:11	-1.14921	-0.45459	0	832.0027	6.825	134.6
3/26/2013 0:12	-1.14921	-0.45459	0	831.9932	6.813	135.8
3/26/2013 0:13	-1.14921	-0.36367	0	831.9811	6.65	137.2
3/26/2013 0:14	-1.14921	-0.28791	0	832.0098	7	137.1
3/26/2013 0:15	-1.14921	-0.45459	0	832.0153	6.738	138.6
3/26/2013 0:16	-1.1492	-0.45459	0	831.9963	6.613	141.1
3/26/2013 0:17	-1.1492	-0.60612	0	832.0099	6.125	139.8
3/26/2013 0:18	-1.1492	-0.84099	0	832.0046	6.113	139.9

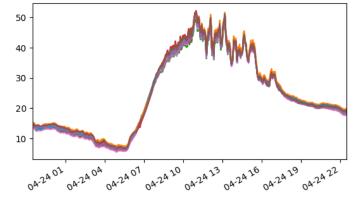
Getting started

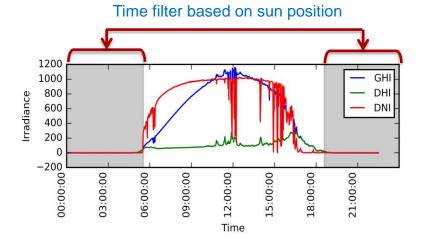
- Retrieve data
 - From sensor, database, files, or from the web
 - 3Vs (volume, velocity, and variety)
 - Single or repeat (automated)
- Define analysis
 - Analysis/reporting time interval
 - Filters
 - Integrate models
 - Quality control tests
 - Metrics
- Final product
 - Simple to complex
 - Red/yellow/green approach
 - Time series or interactive graphics
 - Performance history
 - Dashboards hosted on the web
 - Email alerts

Time series data

- Time series data loaded into Pecos as a Pandas DataFrame
 - Powerful time series analysis options
 - Datetime and timezone recognition
 - Merge multiple DataFrames in a single analysis (i.e. electrical and weather)
 - Data can be easily loaded from database, file, or web
- New Data acquisition methods recently added to Pecos
 - Transfer data from sensors to an SQL database
- User defines the analysis timeframe (minute, hour, day, month, ...)
- Data can be grouped and renamed according to type
- Repeat analysis automated using OS task scheduler (cron, tasks)

```
From database
sql_con= MySQLdb.connect(host=ip_address, port=...)
sql_query = "SELECT * FROM table..."
df = pandas.read_sql(sql_query, con=sql_con)

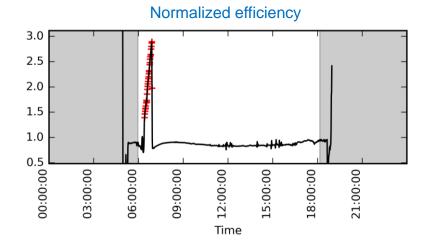

From file
df = pandas.read_csv(filename)

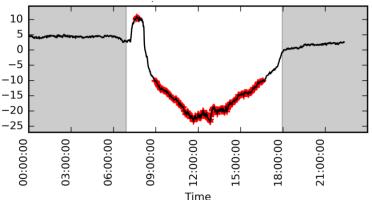

From the web
response = requests.get(url=http://developer.nrel.gov/pvdaq/api/...)
data = json.loads(response.text)
df = pandas.DataFrame(data=data['outputs']['data'])
```

Pre-processing filters

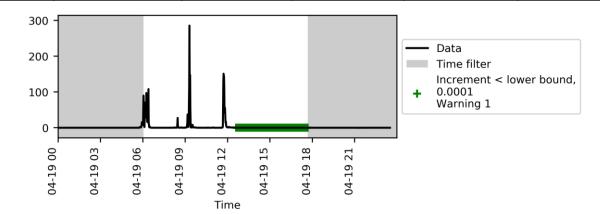
- Filter data
 - Smoothing
 - Upscale/downscale
- Fill missing data
 - Interpolation (linear, polynomial, etc.)
 - Duplicate sensors
 - Historic/regional data
 - Data generated from models
- Time filter
 - Conditional statement that exclude specific timestamps from quality control tests
 - Time filter can be based on:
 - Time of day (i.e. before 8 am and after 5 pm)
 - Sun position (i.e. sun elevation < 10 degrees)
 - Data properties (i.e. irradiance < 200 W/m²)

Module temperatures from 16 sensors

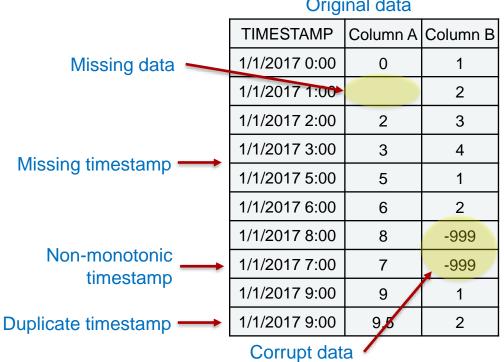



Composite signals

- Composite signals are used to create new data from existing data or from a model
 - Compute relationships between data columns
 - Compare measured data to a model
 - PVLIB performance model
 - Machine learning
- Examples
 - DC Power from current and voltage
 - Inverter efficiency from DC and AC power
 - Normalized efficiency from power and irradiance
 - Module temperature deviation
 - Relative error between model and data
- Composite signals can be used in the quality control tests



Quality Control tests


- Quality controls tests fall into five categories
 - Timestamp test
 - Missing data test
 - Corrupt data test
 - Range test
 - Dead sensor/abrupt change tests
- When a test fails, information is stored in a summary table which can be included in automated reports and saved to file/database. Graphics can be produced that pin point the data points that caused the test failure.

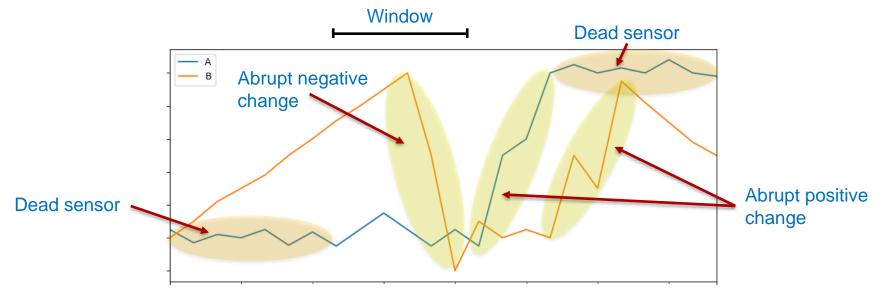
System Name	Variable Name	Start Date	End Date	Timesteps	Error Flag
PV System 1	Direct_Wm2	2017-04-19 12:36:00	2017-04-19 17:40:00	305	Increment < lower bound, 0.0001

Quality Control tests

- Timestamp test identifies duplicate, non-monotonic, and missing timestamps. *New* Irregular timestamps can be preserved.
- Missing data test identifies column-time pairs that are missing.
- Corrupt data test screens for datalogger values that indicate corrupt data.

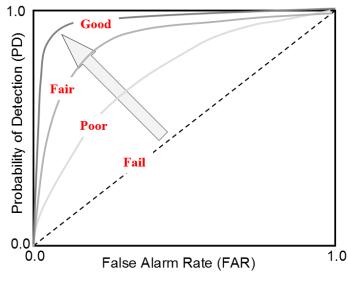
Original data

Corrected data


TIMESTAMP	Column A	Column B
1/1/2017 0:00	0	1
1/1/2017 1:00	NaN	2
1/1/2017 2:00	2	3
1/1/2017 3:00	3	4
1/1/2017 4:00	NaN	NaN
1/1/2017 5:00	5	1
1/1/2017 6:00	6	2
1/1/2017 7:00	7	NaN
1/1/2017 8:00	8	NaN
1/1/2017 9:00	9	1

Quality Control tests

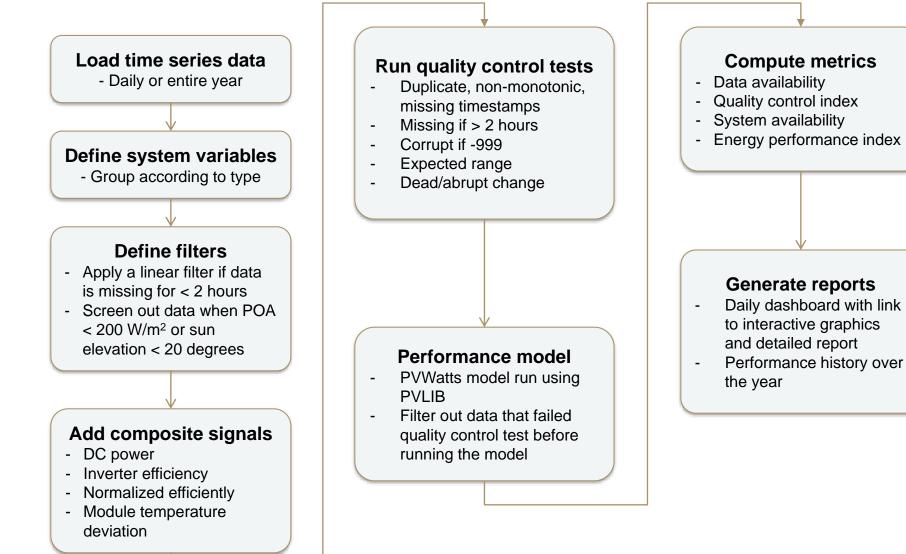
- Range tests checks if data is within expected bounds
 - Ambient temperature should be between -30 and 50 degrees C
 - Normalized efficiency (composite signal) should be between 0.5 and 1
- New Dead sensor/abrupt change test checks if the difference between min and max is within expected bounds over a given time span
 - Voltage should not change by more than 80% rating within 15 minutes
 - The rain gauge should not increase by more than 2 inches in an hour
 - If the irradiance sensor changes by less than 0.0001 in 5 hours, it's probably dead



Evaluating quality control tests

- New Evaluate how well a quality control test (or set of quality control tests) distinguishes normal from anomalous conditions.
 - Probability of detection
 - False alarm rate
- Strategies to reduce false positives and false negatives
 - Adjust thresholds
 - Specify the minimum number of consecutive failures needed to signal a warning
 - Smooth data before running quality control tests

	Actual normal condition	Actual anomalous condition
Estimated normal condition	True negative (TN)	False negative (FN)
Estimated anomalous condition	False positive (FP)	True positive (TP)
	FAR = TN / (TN+FP) FAR = 1-Specificity	PD = TP / (TP+FN) PD = Sensitivity

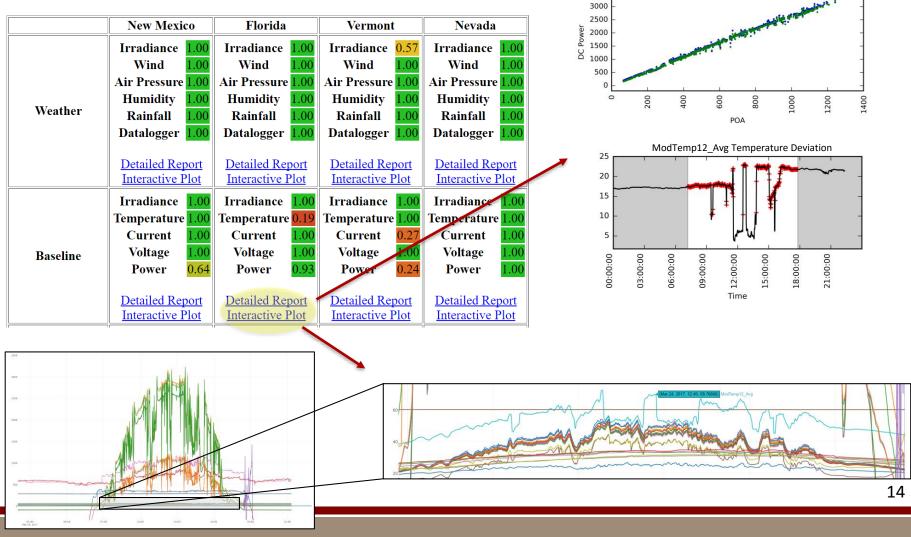

- Regional Test Center Baseline and Weather systems
 - New Mexico, Florida, Vermont, Nevada
 - 2 strings of 12 Suniva Optimus 270 Black modules
- Quality control tests and performance metrics based on IEC 61724
 - Check for data outside expected range, dead sensors, and abrupt changes
 - Compute in-service and all-in energy performance index
- Analysis run daily (near real-time), results emailed to stakeholders.
- End of year report

Module specs: Pmax = 270 W, Vmp = 31.2 V, Voc = 38.5 V, Imp = 8.68 A, Isc = 9.15 A

Weather data	Baseline PV data
GHI, DNI, DHI, air pressure, wind speed, wind direction, relative humidity	For each string: DC voltage, DC current, AC voltage, AC current, AC power, power factor, frequency, reference cell irradiance, and reference cell temperature

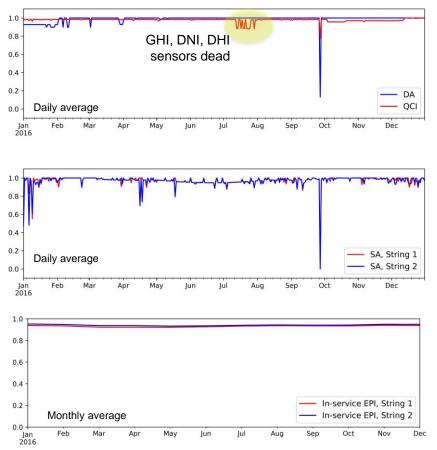
• Expected range, dead sensor, abrupt change thresholds

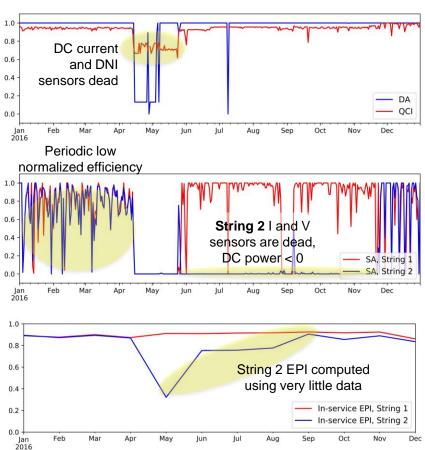
Variable	Expected range	Dead sensor threshold	Abrupt change threshold
DC current and AC current (A) > 0 and < Imp*1.5		< 0.0001 in 5 hours	
DC voltage and AC voltage (V)	> 0 and < Vmp*12*1.5	< 0.0001 in 5 hours	
DC power* and AC power (W)	> 0 and < Pmp*12*1.5	< 0.0001 in 5 hours	> Pmp*12*0.8 in 15 min
Power factor	> -1 and < 1	< 0.0001 in 5 hours	
Frequency(Hz)	> 57 and < 63	< 0.0001 in 5 hours	
POA, DNI, GHI, and ref cell irradiance (W/m ²)	> 0 and < 1500	< 0.0001 in 5 hours	
DHI (W/m ²)	> 0 and < 500	< 0.0001 in 5 hours	
Air pressure (mbar)	> 800 and < 1020	< 0.0001 in 5 hours	> 100 in 15 minutes
Wind speed (m/s)	> 0 and < 32	< 0.0001 in 5 hours	
Wind direction	> 0 and < 360	< 0.0001 in 5 hours	
Relative humidity	> 0 and < 100	< 0.0001 in 5 hours	> 50 in 15 minutes
Ambient temperature (°C)	> -30 and < 50	< 0.0001 in 5 hours	> 20 in 15 minutes
Module and ref cell temp (°C)	> -30 and < 90	< 0.0001 in 5 hours	> 20 in 15 minutes
Module temp deviation (°C)*	> -10 and < 10		
Inverter efficiency*	> 0.5 and < 1		> 0.25 in 15 minutes
Normalized efficiency*	> 0.5 and < 1		> 0.25 in 15 minutes


* Composite signal

Daily report, red/yellow/green dashboard with links to details and interactive graphics

3500


RTC Dashboard for 2017-03-24



Yearly report, daily and monthly metrics

New Mexico

Vermont

Sandia National Laboratories

Pecos

- Open-source python package
 - Python 2.7, 3.4, or 3.5
 - Revised BSD License
- Software repository
 - https://github.com/sandialabs/pecos _____
- Documentation
 - http://pecos.readthedocs.io
- Software testing
 - https://travis-ci.org/sandialabs/pecos
- 'Getting started' examples included with the software
- Version 0.1.5 (master branch)
 - New features include data acquisition, more flexible dashboards, PD and FAR metrics, compatibility with irregular timestamps, improved efficiency

This reposit	tory Search	Pull requests Issue	es Gist		+• 🌡
sandialabs /	pecos		O Unwa	atch 👻 11 🗮 Unstar	12 ¥ Fork
↔ Code ①	Issues 3 👘 Pull req	uests 0 III Projects 0 III	Wiki 🧄 Pulse 🔟 Graph	S	
ython package	for performance mon	toring of time series data			
© 175	commits	រ្រ 1 branch	S releases	11 4 con	tributors
Branch: master 🔻	New pull request		Create new file	Upload files Find file	Clone or download
😃 kaklise Merge	branch 'master' of https://	github.com/sandialabs/pecos		Latest commit	5064d83 4 days a
i ci	added xlrd	to list of packages for CI			10 months a
documentatio	n Updated Sa	ndia funding statement			4 days a
examples	Added capa	ability to include multiple links in th	e dashboard.		5 months a
pecos	Added prol	pability of detection and false alarm	a rate metrics. Updated		18 days a
.gitignore	add _build	to gitignore			a year a
🗎 .travis.yml	added xvfb	to travis.yml to run tests that create	e graphics		a year a
LICENSE.txt	Copyright g	ranted. Updated license.			a year a
MANIFEST.in	added tem	plates to the MANIFEST			9 months a
README.md	Updated Sa	ndia funding statement			4 days a
readthedocs.y	ml more requi	rements for RTD			a year a

Pecos
Search docs
Installation
Composite signals
Configuration file
Custom applications
Copyright and license
Developers

Docs » Performance Monitoring using Pecos

O Edit on GitHub

Performance Monitoring using Pecos Advances in sensor technology have rapidly increased our ability to monitor natural and human made physical systems. In many cases, It is critical to process the resulting large volumes of data

made physical systems. In many cases, it is critical to process the resulting large volumes of data on a regular schedule and alert system operators when the system has changed. Automated quality control and performance monitoring can allow system operators to quickly detect performance issues.

Pecos is an open source Python package designed to address this need. Pecos includes built-in functionality to monitor performance of time series data. The software can be used to automatically run a series of quality control tests and generate customized reports which include performance metrics, test results, and raphics. The software was developed specifically for solar photovoltaic system monitoring, but it can be customized for other applications.

Citing Pecos

To cite Pecos, use one of the following references:

 K.A. Klise and J.S. Stein (2016), Performance Monitoring using Pecos, Technical Report SAND2016-3583, Sandia National Laboratories. <u>Apdf</u>