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Introduction
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• Accurate output power prediction is crucial for PV performance assessment
• Predictive models are required for data-analytic features of advanced PV

monitoring systems

• System health state 
• Failure diagnosis

Data-analytic featuresAdvanced PV system monitoring



Objective

4

Development of an optimized location- and technology-independent predictive
modeling methodology at minimum requirements

OutputInput

• Features
• Dataset split method
• Dataset split partition
• Filtering stages
• Weather conditions



Methodology – Approach
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Methodology – Experimental setup
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• Recording of meteorological and PV operational measurements (IEC 61724)
• Measurement resolution 1-sec and recording intervals 1-, 15-, 30- and 60-min

UCY OTF – Nicosia, Cyprus
PV String level

GI OTF –Arizona, USA
PV Module level



Methodology – Data quality routines (DQRs)
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• Identification of repetitive data and duplicates
• Identification of missing or erroneous data, outliers and outages
• Correction of erroneous/missing data through data imputation techniques



Methodology – Data quality routines (DQRs)
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Methodology – Predictive model selection
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Empirical 

Feed-Forward Neural Network (FFNN)

Machine Learning

MECHANISTIC PERFORMANCE MODEL ‘MPM’ 



Methodology – Train model and test data
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Dataset (1 year of hourly historical actual data)

GI Tmod RH WS Walpha AzS AlS Pmp

Measured Inputs Calculated Inputs Output

• Continuous 
• Random

• 70:30% train and test set 
• 30:30% train and test set 
• 10:30% train and test set 



Results – Input features (Machine Learning)
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• Machine learning model with measured and calculated features 

2 Inputs 4 Inputs 7 Inputs

nRMSE 1.13% nRMSE 0.93%

Best performance FFNN

Random      70:30% nRMSE 1.18%

nRMSE 1.33%

nRMSE 1.12% nRMSE 0.91%

Continuous 70:30% 
UCY OTF



Results – Output features (Machine Learning)
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• Machine learning model with measured and calculated features 

7 Inputs – 𝑃𝑚𝑝 output

nRMSE 1.33% nRMSE 0.93%

Best performance FFNN

nRMSE 1.30% nRMSE 0.91%

7 Inputs – 𝑃𝑅 output

Random      70:30%

Continuous 70:30% 
UCY OTF

Random – Recommended
dataset split method



Results – Input features (Mechanistic)
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Inputs:
• Module temperature (𝑇𝑚𝑜𝑑) 
• Global irradiance (𝐺𝐼)
• Wind speed (𝑊𝑆)

Requirements for optimal devised model: 
• Irradiance Filter (𝐺𝐼 > 100𝑊/𝑚2)
• Time Filter (08:00 ≤ Time ≤ 17:00)

• Mechanistic model with measured and meaningful, orthogonal, robust and
normalized features



Results – Input features (Mechanistic)
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Coefficient Value

C1 (%) 114.09

C2 (%/K) -0.39

C3 (%) 25.05

C4 (%) -17.87

C5 (%/ms-1) 0.08

Random 70:30% - GI OTF



Results – Influence of filtering (Mechanistic)
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Random 70:30% - GI OTF

MPM – Improved performance
at high irradiance levels



Results – Influence of filtering (Mechanistic)
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• Filtering at different irradiance levels (GI OTF)

nRMSE 1.03%

nRMSE 0.88%

nRMSE 0.87%

𝐺𝐼 > 100𝑊/𝑚2

𝐺𝐼 > 400𝑊/𝑚2

𝐺𝐼 > 600𝑊/𝑚2

MPM – Higher accuracy by
applying irradiance filters
(2.15% without any filter)

• Filtering at 𝐺𝐼 > 100𝑊/𝑚2 (GI OTF)



Results – Influence of filtering (Mechanistic)
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72% of days exhibiting daily nRMSE accuracies below 1% 
independent of the type of day (clearness index)

• Filtering at 𝐺𝐼 > 100𝑊/𝑚2 (GI OTF)



Results – Influence of filtering (Machine Learning)
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• Filtering at different irradiance levels (UCY OTF)

nRMSE 1.31%

nRMSE 0.91%

ML - Improved performance 
at increased data for training

𝐺𝐼 > 100𝑊/𝑚2

Without filter

ML – Accuracy not improved
by applying irradiance filter



Results – Influence of filtering (Machine Learning)
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• Filtering at different irradiance levels (UCY OTF)

nRMSE 1.31%

nRMSE 1.36%

nRMSE 1.29%

𝐺𝐼 > 100𝑊/𝑚2

𝐺𝐼 > 400𝑊/𝑚2

𝐺𝐼 > 600𝑊/𝑚2

ML – Accuracy not improved
by applying irradiance filter

• Filtering at 𝐺𝐼 > 100𝑊/𝑚2 (UCY OTF)



Results – Influence of filtering (Machine Learning)
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62% of days exhibiting daily nRMSE accuracies below 1.3% 
independent of the type of day (clearness index)

𝐺𝐼 > 100 𝑊/𝑚2

• Filtering at 𝐺𝐼 > 100𝑊/𝑚2 (UCY OTF)



• Training at different dataset split partitions (10, 30 and 70% of yearly data)

Results – Dataset split partitions
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Random GI OTF

MPM - Robust model at low
training data partitions

ML - Accurate predictions
at higher amount of
training data partitions

Random training - Accurate
predictions for both models
even at small amount of
training data partitions

Continuous training –
Seasonal errors

Continuous GI OTF



• Simple implementation (low complexity)

• Robustness at high irradiance conditions 

• Irradiance filter improves prediction 
accuracy 

• Robust model at low duration data set 
partitions

• Useful, physically meaningful coefficients 

• Higher complexity for implementation

• Robust at all irradiance conditions only
after training at different data
combinations

• No data filtering requirements

• Higher training data partitions yield more 
accurate predictions

• No direct usable coefficients

Summary
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Mechanistic Machine Learning



Conclusions
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• The MPM and the FFNN predictive models were compared in terms of input/output

features (model complexity), filtering criteria, dataset split method and partition

• Optimal models: 7 inputs parameter FFNN compared with 5 inputs parameter MPM

• Application of irradiance filter yielded higher predictive accuracy only for the MPM

• Random dataset split method is recommended for both models

• FFNN - Lowest nRMSE of 0.91% for a random 70:30% train/test set approach (UCY OTF)

• MPM - Lowest nRMSE of 1.12% for a random 10:30% train/test set approach (GI OTF)



Next steps…

• Influence of irradiance profiles classification

and establishment of minimum requirements

for daily weather classification

• Further improvement of the MPM (spectral and

AOI corrections) for more accurate predictions

• Benchmarking on several PV systems installed

at different locations

Class kd POPd Description

1 kd ≥ 0.6 POPd ≥ 0.9
High Quantity
High Quality

2 0.3 ≤ kd < 0.6 POPd ≥ 0.9
Medium Quantity 
and High Quality

3 kd < 0.3 POPd ≥ 0.9
Low Quantity
High Quality

4 kd ≥ 0.6 0.7 ≤ POPd < 0.9
High Quantity

Medium Quality

… … … …

8 0.3 ≤ kd < 0.6 0.5 ≤ POPd < 0.7
Medium Quantity

Low Quality
10 - POPd < 0.5 Very Low Quality
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Thank you for your attention
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Website: www.pvtechnology.ucy.ac.cy
www.gi-cloud.io
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