PLANTPREDICT

Incorporating Storage Modeling Capabilities

Lauren Ngan and Rob van Haaren, First Solar, Inc.

Motivation

Battery Energy Storage Systems (BESS) are increasing in popularity as more PV is connected to the grid and PV penetration levels increase. Rather than being constrained by irradiance, operators of PV + Storage ("PVS") systems can dispatch energy at times when it is most economically favorable. First Solar has identified substantial cost and operational synergies from combining these assets and has pioneered a procurement framework for PVS to support utilities with publishing RFPs. Several utilities have adopted this framework and First Solar has successfully transacted around it. The PlantPredict PVS modeling capability shown here corresponds to that framework, allowing bidders to use PlantPredict to prepare their offer based on the energy off-taker's inputs.

LANTPREDICT	Projects > Project Title > Prediction Title > Energy Storage System Energy Storage System																			SAVE E ⊘ S	energ Save P	Y STOR	RAGE ss 前	×	
Projects	ENERGY	CAPACI	ΤÝ		DIS	PATCI	HALG	ORITHM	4																
oonent Libraries /eather iverters lodules	Dispatch	n Algo	brithr	m				C) Fr	narow I	Availa	able) Cu	etom	8760							
nt Predictions ame-of-prediction ame-of-prediction	Plant Output Limit Charge							Plant Output Limit Charge							Upload your own 8760 excel file										
lame-of-prediction																									
lame-of-prediction Prediction Queue Resources	Target P Select desir	eriod ed disp during	l Tab atch h which	ole iours maxin	num av	/ailabi	e stor	ed en	ergy is	to be	disch	arged	to grid.											Clear	Table
Name-of-prediction Prediction Queue Resources	Target P Select desire C = Times Months	eriod ed disp during Hou	l Tab atch h which rs	ole iours maxin	num av	/ailabl	e stor	ed ene	ergy is	to be	disch	arged	to grid.											Clear	Table
ame-of-prediction rediction Queue esources	Target P Select desire	eriod ed disp during Hou o	I Tab atch h which rs	ole iours maxin	num av	/ailabl	e stor	ed ene	ergy is	to be	disch	arged	to grid.	12	13	14	15	16	17	18	19	20	21	Clear 22	Table 23
ame-of-prediction rediction Queue esources	Target P Select desire = Times Months January	eriod ed disp during v Hou o	Tab atch h which	ole iours maxin	num av	vailabl	e stor	ed ene	ergy is	to be	disch	arged	to grid	12	13	14	15	16	17	18	19	20	21	Clear 22	Table 23
lame-of-prediction rediction Queue lesources	Target P Select desire Times Months January February	eriod ed disp during Hou o	I Tab atch h which rs	ole iours maxin	num av	/ailabi	e stor	ed ene	ergy is	to be	9	arged	to grid.	12	13	14	15	16	17	18	19	20	21	Clear 22	Table 23
ame-of-prediction ediction Queue esources	Target P Select desire = Times Months January February March	eriod ed disp during v Hou o	Tab atch h which	ole iours maxin	num av	/ailabl	e stor	ed ene	ergy is	to be	9 9	arged	to grid.	12	13	14	15	16	17	18	19	20	21	Clear 22	Table 23
ame-of-prediction ediction Queue esources	Target P Select desire = Times Months January February March April	eriod ed disp during 1 Hou o	Tab atch h which	ole iours maxin	num av	4	e stor	ed ene	ergy is	to be	9 9	arged	to grid.	12	13	14	15	16	17	18	19 ~ ~	20	21	Clear 22	Table 23
ediction Queue esources	Target P Select desire = Times Months January February March April May	eriod ed disp during v Hou o	Tab atch h which	ole iours maxin	num av	/ailabl	e stor	ed end	ergy is	to be	9 9	arged	to grid	12	13	14	15	16	17	18	19 • •	20	21	Clear 22	Table

Inverter			T
Real Power	Efficiency		
kW	%		
MV Transformer			
Power Rating	No Load Loss	Full Load Loss	
kVA	%	%	
HVAC Losses			
No Load Loss	Full Load Loss		
kW/MWh	kW/MW		

sers start by defining their physical system, including energy capacity (which dictates how nuch energy the batteries can hold) and inverter capacity (which dictates how much power ne system can charge or discharge at once), among other inputs.

PlantPredict Integration

PlantPredict, the most sophisticated and easy-to-use software for modeling utility-scale PV energy production, was a natural selection for incorporating ACcoupled storage modeling. With the release of this powerful new feature, users will be able to:

- Specify DC batteries, alongside inverter and MV transformers to build their PVS system
- Select from two charging algorithms: LGIA Excess and Energy Available
- Define discharge hours where energy is of highest value from a 12x24 selectable table

August	× .	*	*	*	≁ .
September	*	×	~		
October		2			
November		2			
December		3			

Users have the flexibility to decide how to charge and discharge the BESS. Charging schedules include the: (1) "Interconnect Excess" algorithm where the system sends any PV power that would have been clipped at the interconnect into the BESS and (2) "Energy" Available" algorithm which sends any available PV energy to the BESS when the battery is not filled to capacity. The Target Period Table allows users to define when energy is most valuable and should be discharged. A "custom" importable .csv is also planned to allow users to define more advanced charging and discharging schedules.

Open Access to PlantPredict's Storage Modeling

PlantPredict licenses are currently offered on a complimentary basis. To request a free license, e-mail support@plantpredict.com or fill out the Contact Us form at www.plantpredict.com.

For more information about PlantPredict, please review some of our other resources:

www.plantpredict.com (for models & algorithms, user guide, upcoming events and release notes)

- Review energy output from the PV system, the Storage system and the combined PVS system in both time series and 12x24 format with target period hours highlighted
- Export detailed nodal data to support engineering and/or more complex analyses

Development for this feature is underway with release **scheduled June 2018**!

OVERVIEW BLOCKS					CHARTS				12 X 24															
One-Yeai	ne-Year Prediction												Predi	ction S	tart (03 MA	6	Prediction End 03 MAR 20						
O PV + Ene	ergy S	torage	e () PV (Only	0	Storage	9 Only																
Months	Hours																							
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
January	0	0	0	o	0	0	0	0	4.67	4.67	4.67	4.67	4.67	4.67	4.67	4.67	4.67	0	0	0	0	0	0	0
February	0	0	0	0	0	0	0	0.24	4.30	4.30	4.30	4.30	4.30	4.30	4.30	4.30	4.30	0.24	0.04	0	0	0	0	0
March	0	0	0	0	0	0	0	1.48	4.81	4.81	4.81	4.81	4.81	4.81	4.81	4.81	4.81	1.48	1.48	0	0	0	0	0
April	0	0	0	0	0	0	0	1.61	4.85	4.85	4.85	4.85	4.85	4.85	4.85	4.85	4.85	1.61	1.61	0	0	o	0	0
May	0	0	0	0	0	0	0.03	1.58	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	1.58	1.58	0.03	0	0	0	0
June	0	0	0	0	0	0	0.03	0.86	3.93	3.93	3.93	3.93	3.93	3.93	3.93	3.93	3.93	0.86	0.86	0.03	0	0	0	0
July	0	0	0	0	0	0	0.01	0.78	2.95	2.95	2.95	2.95	2.95	2.95	2.95	2.95	2.95	0.78	0.78	0.01	0	o	0	0
August	0	0	0	0	0	0	0	1.04	2.98	2.98	2.98	2.98	2.98	2.98	2.98	2.98	2.98	1.04	1.04	0	0	0	0	0
September	0	0	0	0	0	0	0	2.13	3.58	3.58	3.58	3.58	3.58	3.58	3.58	3.58	3.58	2.13	2.13	0	0	0	0	0
October	0	0	0	o	0	0	0	2.64	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.64	2.64	0	0	0	0	0
November	0	0	0	0	0	0	0	1.66	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	1.66	1.66	0	0	0	0	0
December	0	0	0	0	0	0	0	0.02	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	0.02	0.02	0	0	0	0	0

https://www.linkedin.com/showcase/plantpredict/

https://vimeo.com/plantpredict

A 12x24 summary of energy production is available for review along with a full time-series graph to help users understand how integrating storage with their PV system affects energy production.

©Copyright 2018 First Solar Inc.