

Sungrow : The leading Inverter Manufacturer

Utility			Comm	nercial	Residential	Ener	gy Storage
Centra	l Inverters	String Inverters					
SG3125HV	SG3125HV-MV	SG125HV (1500Vdc)	SG33K3L		SG10KTL- M		
SG2500U	SG2500U-MV			504985		Hybrid Inverter SH5k+	Hybrid Inverter SC100/250/500/1000
SG2500H V	SG2500HV-MV SG3000HV-MV	SG80KTL (1000Vdc)	SG33KTL-M SG36KTL-M	SG50KTL-M	SG3KTL-D SG5KTL-D		SAMSUNG
SG3000H SG2000 SG2500	SG2000-MV SG2500-MV	SG60KTL (1000Vdc)	SG30KU SG36KU	SG60KU-M	SG2K-S SG2K5-S SG3K-S	B Supplied by the join	attery Pack nt venture with Samsung SDI

About Sungrow: Global Footprint

01 Challenges of PV System Design

02 Modeling and Optimization of DC Side

03 Modeling and Requirements of Inverter

04 Future Concerns

SUNGRØW

Challenges

Challenge I : Lower Initial Investment

- Lowest PPA prices refresh to 1.77¢
- Civil-Work cost increase
- Grid parity target by 2020

Solution

Through the precise modeling and simulation reduce system costs, improve efficiency and increase power generation Challenge II : Grid-Support Requirements

• PV generation has larger influence to the grid

due to high penetration

• Comprehensive commands required by the grid

Solution

- Inverter Incorporates more grid support functionality
- Inverter manufacturer offer various simulation models for grid study

Traditional PV Plant Design Procedure

Traditioanl PV plant Design Steps

SUNGROW

Traditional Design Problems

- 1. Site Selection: ground power station, hill power station, water power plant, agricultural sheds etc.
- 2. Measurement and Mapping: topography, environmental climatic mapping, contouring terrain mapping, environmental data collection.
 - 3. Design: string design , distance design, block design electrical design
 - 1. Heavy manual terrain survey: mapping inefficient.
- 2. Inaccurate results for irregular terrians: Inconvenient to carry mapping equipment.
- 3. 2-dimension CAD schematics : not intuitive way for final design display
- 4. Each part design is separate cannot verify each other in a closed-loop

Intelligent Closed-loop Design

Intelligent Design with Improved Efficiency

- 1. Convenient Drawing: drone mapping, high efficiency, high precision
- 2. Fast Design: Helios 3D professional design, visual dynamic modeling
- 3. Closed-loop Simulation: System simulation software PVsyst interaction with Helios 3D in

seamless way

50MW ground station project	Traditional design time-consuming (days)	Intelligent design time-consuming (days)	
Topographic Mapping	5~7	0.5-1	
Topographic Processing and Mapping	1~2	0.5-1	
Photovoltaic Board Layout Design	7~10	2-3	
Electrical Design	5~7	3-4	
Cable Statistics	2-3	-	
Total	20~29	6~9	

PV Plant 3D Design Tools Introduction-Helios

3D Design and Simulation :

Helios 3D, is a smart PV plant design software, the design is divided into three parts:

Model Creation	 Create components, scaffolds and other components of 3D model 	
PV Plant Design	 Analyze the terrain, design the power station Export plant 3D model 	
Document Generation	 Power plant equipment list Cable statistics Interacts with the PVsyst 	

PV Plant 3D Design Tools Introduction-PVSyst

Simulation Tool:

PVsyst is a mainstream photovoltaic system simulation software. Three main parts:

Database	 Set or import plant location weather data, components and inverter models 		
Pre-design Mode	 Preliminary simulation and parameter setting according to the meteorological data 		
System Simulation Mode	 Analyze system power generation, efficiency, shading simulation reports, guide design optimization 		

Module Layout Optimization- Tilt Angle Optimization

Plane tilt optimized, 10% land utilization rate can be improved(only 0.49% yield reduced) and land cost reduced.

Golmud, Qinghai, China, 38° optimized Plane tilt:

- 1. Yield difference of 32°-44° plane tilt: less than 0.49%;
- 2. Land utilization rate of 38° plane tilt: 10% higher than that of 32°.

Yearly Yield and Plant Size Curves in Golmud, Qinghai, China (1MW)

Module Layout-String Distance Optimization

Rules for distance Design : No shading from 9:00 am. to 3:00 pm.

Power Station	Parameters	
Site	Telgoan, India	
Module	CS6U-340M-AG 1500V	
Modules/	30	
String		
Combiner	16 input, 1 output	
Inverter	SG125HV	
Inverter Num.	20	
AC Capacity	2.5MW	

a. Tilt: 38°, distance: 15 m b. Tilt: 38°, Distance: 8 m 1194 kWh/m² Horizontal global irradiation 1194 kWh/m² Horizontal global irradiation +14.5% Global incident in coll. plane +14.5% Global incident in coll. plane -2.7% Near Shadings: irradiance loss -6.4% Near Shadings: irradiance loss >-2.2% IAM factor on global ⇒-2.2% IAM factor on global ⇒-3.0% Soiling loss factor 3-3.0% Soiling loss factor 1262 kWh/m2 * 18665 m2 coll. Effective irradiance on collectors 1213 kWh/m2 * 18665 m2 coll. Effective irradiance on collectors efficiency at STC = 17.49% PV conversion efficiency at STC = 17.49% PV conversion 4119 MWh Array nominal energy (at STC effic.) 3960 MWh Array nominal energy (at STC effic.) 9-1.2% PV loss due to irradiance level 9-1.3% PV loss due to irradiance level 9-1.5% PV loss due to temperature ⇒-1.4% PV loss due to temperature >-0.1% Shadings: Electrical Loss detailed module calc. >-2.6% Shadings: Electrical Loss detailed module calc. +0.4% Module quality loss +0.4% Module quality loss >-2.0% LID - Light induced degradation -2.0% LID - Light induced degradation ⇒-1.0% Module array mismatch loss →-1.0% Module array mismatch loss →-0.4% Ohmic wiring loss →-0.4% Ohmic wiring loss 3887 MWh Array virtual energy at MPP 3642 MWh Array virtual energy at MPP 9-1.3% Inverter Loss during operation (efficiency) ⇒-1.3% Inverter Loss during operation (efficiency) -0.8% Inverter Loss over nominal inv. power **→-0.7%** Inverter Loss over nominal inv. power ₩0.0% Inverter Loss due to power threshold >0.0% Inverter Loss due to power threshold ₩0.0% Inverter Loss over nominal inv. voltage ₩0.0% Inverter Loss over nominal inv. voltage ₩0.0% Inverter Loss due to voltage threshold ₩0.0% Inverter Loss due to voltage threshold ₩0.0% ₩0.0% Night consumption Night consumption 3806 MWh Available Energy at Inverter Output 3568 MWh Available Energy at Inverter Output ₩0.0% AC ohmic loss $\rightarrow 0.0\%$ AC ohmic loss 9-1.2% External transfo loss 9-1.3% External transfo loss Energy injected into grid 3759 MWh 3522 MWh Energy injected into grid

Note: In actual design, adjust distance considering land price and real terrain.

Key Points – Cable Selection and Loss Optimization

Through cable matching for a 2.5MW block, compared with the 1.6MW block, the cable cost is even, but the system

cable loss decreased 0.3% to 0.5%.

-

Ъ

Φ

0

-

4

Output

Key Points–DC/AC Ratio

Modeling Optimizaiton Reference: a 50MW Project

the design scheme of a 50MW power station is as follows:

- Total system capacity: 51.9552MW; System sub-array capacity: 1.2672MW; Numbers of system subarrays: 41; Numbers of inverters: 984;
- 2. Traditional Design angle: 32 °; Azimuth: 0 °;
- 3. Optimized Simulation angle: 34 °; Azimuth: -4 °;
- 4. System annual yield: 71047MW, PR: 86.27%

Comparison

Advantages of intelligent design:

- 1. Drone mapping significantly improve the efficiency;
- 2. Rapid terrain analysis, PV modules optimization;
- 3. PV modules layout optimization through simulation ;
- 4. Increase the land utilization, improve system efficiency and reduce system costs;

Parameter	Traditional Design	Intelligent Design
No. of supports	7728	7872
Total Capacity	51.0048 MW	51.9552 MW
Comprehensive Tilt Angle	34°	34°
Integrated Azimuth	-1°	-4°
Slope Variation Range	0~55.8°	0~46.3°
Spacing Range	0.56~39.6 m	0.73~24.9 m
Average Spacing	8.9 m	6.38 m
Annual Generation	70006 MWh/year	71047 MWh/year
Per-watt Power Generation	1.372 kWh/W	1.367 kWh/W
System Per-watt Costs	5.5 USD cent/W	4.9 USD cent/W

Utility Requirement of Inverter

- PV power plants are required to participate in the utility management
- Utility need inverter simulation models to validate PV plant support functions under specific conditions in a fast way

- Inverter and Simulation Model Requirements :
- 1. The inverter has LVRT function and frequency control etc.
- 2. Able to establish the simulation model of the inverter ;
- 3. Able to verify the consistency of inverter and simulation model

Reactive Power Curve

LVRT Requirements

Utility Requirements of Models - Germany

after simulation

21

Utility Requirements of Models -US

- For different region, the utility will require different voltage/frequency protection settings.
- The PSLF/PSSE/PSCAD model should be adjusted according to specific requirement.

Utility Requirements of Models - Australia

1	Simulation Model	AEMO region	West Australia
	Digsilent	NA	Required
	PSS/E	Required	NA
	PSCAD	Required	NA
2	inverter models are used for the assessment of NTS (Network technical study) or GPS(general performance study) report		

Utility Requirements of Models - Malaysia

Simulation model requirement PSSE Power System 30MWac Tran Large Scale S

- PSSE simulation report is mandatory for each project developer, they will submit simulation report to Grid Company– TNB;
- Items in the test report which are directly related with inverter: reactive power capacity, harmonics; flicker; short circuit.

Malaysia grid requirement– PV power station's reactive power could be adjusted from -0.85-0.95.

Utility Requirements of Models -Northern Ireland

3.0

3.5

Inverter Model – SUNGROW Solutions

- LVRT/HVRT/FRT/Active Power/Reactive
 Power Control functions are basics
- Third party PPC or communications
 compatibility shall be extendable
- SUNGROW inverter model has various communication interface, compatible with the majority PPC manufacturers, and meet the grid requirements.

LVRT, FRT Parameter Setting

PPC Interface Setting

Performance Verification Method Requires Innovation

- Higher AC power of inverter lead to harder test platform setup
- Key items like harmonics/flicker/islanding/ resonances is difficult to simulate

Aim to Unify Simulation Platform

- Too many simulation tools that will set high burden for inverter manufacturer :
- SUNGROW suggest to choose 2 or 3 mainstream software to keep comparison under the same benchmark.

Software	Countries and Regions
PSS/E	US, Northern Ireland, AU(AEMO), Malaysia
DigSILENT	Germany, AU(AEMO),
PSCAD	US, Western Australia
PSLF	US
ANATEM	Brazil
ATP	Brazil

Compliant to Smart Grid standards

- Take PV plant control as the normal coal generator : through inverter as is VSG control method (Virtual Synchronous Generator).
- Compliance to latest codes : IEC 61850 / IEEE 2030.5 / SUNSPEC

Combined PV+ Storage makes System more Complex

 Bi-Directional Power Flow/Charge-Discharge Control/ EMS management requires innovate tools for modeling and verification

Other Challenges

- Distributed PV generation control and simulation
- Environmental factors that will affect performance like Dust ,corrosion modeling
- 25 years theoretical/filed reliability prediction(HALT ,ALT ,HASS) and calculation and simulation for better O&M

THANK YOU!

致力于清洁高效

Green and Effective