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• Increased Amount of Data in Power Systems

2Motivation
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• Data
o Nonpervasive
o Heterogeneous
o Highly variable
o Different 

resolution
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• Data
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• Renewable with Smart Inverters
o Able to adjust power generation
o Providing grid services

• Smart Loads
o Smart appliances
o Flexible power consumption

• Challenge – Lack of Coordination
o Not necessary to benefit the overall system operations
o Not fully utilizing the flexibility brought by these resources

Flexible Resources

Source: PV Magazine

Source: Microchip Technology Inc.
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Flowchart of the load forecasting approach
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GTA for Parameter Optimization
10

• Objective: Transfer the global optimization problem to one or several 
local optimization problems.

• Initialization: Initialize γ, C, and ε; then compute Λj, and build the 
traverse vector H.

• Grid Traverse Searching: For the element factor Hj2,
• Hj2 ∈ H, j2 ∈ {1, 2, … ,m1 × m2 × m3}, the RCV can be computed.
• Determine Local Solution Space: With the generated contour map, the 

local solution space with minimum RCV is selected for next step of 
optimization.
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PSO for Parameters Optimization
11

• Initialization

• Velocity Updates

• Position Updates
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Numerical Results

• The tested data set composes 80 days of load captured from a partner 
utility’s distribution feeder. It includes data from winter (Dec.-Feb.), spring 
(Mar.-May.), summer (Jun.-Aug.), and autumn (Sep.-Nov.) for 20-days each 
season. With the sampling rate of 1 Hz, the total data length is 6,912,000.

12

Minutes-ahead forecasting

Performance Comparison

Time Consumption Comparison

H. Jiang, Y. Zhang, J.J. Zhang, and E. Muljadi, “A Short-term Load Forecasting Approach Using Support Vector  Regression with Hybrid Parameter Optimization in Distribution System," IEEE Transactions on Smart Grid, 2016.
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Application in Network Reconfiguration: Background
Ø Distribution system loads become more fluctuant and

unpredictable.
– Large impacts from end users to distribution system
– More stochastic abrupt deviations than transmission systems.

Ø Traditional distribution reconfiguration cannot meet the requirements of
modern distribution systems.
– Traditional distribution reconfiguration is static.
– Dynamic end user profiles require a dynamic control strategy for distribution system

reconfiguration.

Ø An automatic distribution network reconfiguration
approach is designed based on short-term load
forecasting.

Application in Network Reconfiguration
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Basic Framework of Network Reconfiguration

Decide the Optimal 
Locations and 

Capacity of DG Units

Opened 
Switches... ...

System Data Acquisition

Reconfigure

Hour t

Q1P1

Q2P2

QKPK

Determine system 
topology and the actual 
output power of all DG 

units for the current 
operation time window

... ...

!

Objective: minimize total energy losses in the unbalanced distribution 
system with the initial topology 

Basic Framework of Network Reconfiguration
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How to use load forecast?

vThe short-term load forecasting is executed using the historic 
actual high-resolution data. 

vThe reconfiguration problem is solved for every 5 min in this 
paper, finally leading to 12 results of the system topology for 
the next hour and each result for a 5-min time slot. 

vAmong all 12 system topologies for the 5-min time slots, the 
topology that achieves the most loss reduction will be selected 
and used for the entire next hour. 
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Four initially opened tie switches (TS-1, TS-2, TS-3 and TS-
4) are added to make the system topology changeable, 
and all voltage regulators are removed to fully address the 
impact of network reconfiguration on reducing losses.
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Numerical Results (1): One day (24 hours) Simulation

Hour Opened Switches Loss Reduction

1 93-95, TS-2, 29-30, 101-105 36.71%

2, 3, 4, 5 93-95, TS-2, 29-30, 101-105 --

6

TS-1, TS-2, 29-30, 101-105 (for 0–15 
mins)

0.089%

TS-1, TS-2, 29-30, 105-108 (for 15–30 
mins)

2.686%

87-89, TS-2, 29-30, 108-300 (for 30–60 
mins)

2.55%

7 87-89, TS-2, 29-30, 108-300 --

8

87-89, TS-2, 29-30, 105-108 (for 0–10 
mins)

3.356%

87-89, TS-2, 29-30, 57-60 (for 10–60 
mins)

53.02%

9

91-93, TS-2, 29-30, 57-60 (for 0–20 
mins)

0.484%

67-72, TS-2, 29-30, 57-60 (for 20–60 
mins)

5.513%

10

67-72, TS-2, 29-30, 57-60 (for 0–5 
mins)

--

67-72, TS-2, TS-3, 57-60 for (5–10 
mins)

2.336%

67-72, TS-2, 29-30, 57-60 for (10–15 
mins) 

1.685%

67-72, TS-2, TS-3, 57-60 for (15–45 
mins)

0.575%

67-72, TS-2, 18-21, 57-60 for (45–60 
mins)

23.32%

11, 12, 13 67-72, TS-2, 18-21, 57-60 --

Hour Opened Swithes
Loss Reduction

14

67-72, TS-2, 18-21, 57-60 (for 0–15 mins) --

67-72, TS-2, 21-23, 57-60 (for 15–20 mins) 0.721%

67-72, TS-2, 18-21, 57-60 (for 20–30 mins) 3.212%

67-72, TS-2, 21-23, 57-60 (for 30–35 mins) 3.805%

67-72, TS-2, 18-21, 57-60 (for 35–45 mins) 1.080%

67-72, TS-2, 21-23, 57-60 (for 45–55 mins) 2.547%

67-72, TS-2, 18-21, 57-60 (for 55–60 mins) 0.975%

15
67-72, TS-2, 18-21, 57-60 (for 0–10 mins) --

67-72, TS-2, 21-23, 57-60 (for 10–30 mins) 2.435%

67-72, TS-2, 18-21, 57-60 (for 30–60 mins) 0.862%
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67-72, TS-2, 18-21, 57-60 (for 0–25 mins) --

67-72, TS-2, 21-23, 57-60 (for 25–30 mins) 3.060%

67-72, TS-2, 18-21, 57-60 (for 30–35 mins) 1.783%

67-72, TS-2, 21-23, 57-60 (for 35–45 mins) 1.745%

67-72, TS-2, 18-21, 57-60 (for 45–50 mins) 4.084%

67-72, TS-2, 21-23, 57-60 (for 50–60 mins) 2.053%

17

67-72, TS-2, 21-23, 57-60 (for 0–10 mins) --

67-72, TS-2, 18-21, 57-60 (for 10–15 mins) 2.420%

67-72, TS-2, 21-23, 57-60 (for 15–25 mins) 7.240%

67-72, TS-2, 18-21, 57-60 (for 25–60 mins) 3.520%

18, 19, 20, 
21, 22, 23 67-72, TS-2, 18-21, 57-60 --

24
67-72, TS-2, 18-21, 57-60 (for first 15 mins) 0.354%

67-72, TS-2, 21-23, 57-60 (for last 45 mins) 0.501%
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Numerical Results (2): Results comparison

• The total energy losses in a day for these three scenarios are 60.49 kWh
(with load forecasting), 71.81 kWh (without load forecasting), and 
164.23 kWh (no network reconfiguration), respectively. 

• In addition, compared to the traditional network reconfiguration 
approach, the proposed approach reduces system energy loss by 
approximately 15% and network reconfiguration operations by 50%.

H. Jiang, F. Ding, Y. Zhang, “Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration”, 2017 IEEE Power & Energy Society General Meeting (PESGM), pp. 
1-5, 2017.
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• State Forecasting-Based 
Voltage Regulation [1, 2]

Applications

• Consumer Behavior-
Aided Dispatch [3-5]

Coordinated 
Optimization
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• Goals
o Accurately forecasting system states in the near future
o Prioritizing the control needs

• Approach

State Forecasting-Based Voltage Regulation
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Dynamically Weighted OPF

Power balance

Voltage constraints

PV plant

Smart load

Dynamically 
determined by the 
forecasted voltages
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22

Voltage
Magnitude

Voltage
Angle

Results – State Forecasting Error

Accurate state forecast with machine learning methods
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23

Voltage Violation

Voltage violations reduced significantly with state forecasting-
based optimal scheduling

Results – Voltage Regulation
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• Goals
o Actively engaging electricity consumers
o Achieving system-level control objectives without 

sacrificing consumers’ needs

• Integrated Optimization Approach

Consumer Behavior-Aided Dispatch
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Model-Based Load Forecasting
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• Example – One House
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System performance improved without significant load deviation

Results – Home Level
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• Predictive Analytics for Coordinated Optimization
o Data analytics methods to facilitate the decision-making
o Optimal coordination of various resources 

• Ongoing Work
o Data-driven, model-based, and hybrid methods for 

resource and load forecasts [6]

o Integrated framework for system state estimation and 
forecasting [7]

o Incentives to drive desirable behaviors of consumers [8]

Summary
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