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* Increased Amount of Data in Power Systems
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* Data
o Nonpervasive
o Heterogeneous
o Highly variable

o Different
resolution
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Power System Situational Awareness

Monitor current states N .
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Power System Situational Awareness
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Flexible Resources

 Renewable with Smart Inverters
o Able to adjust power generation
o Providing grid services

 Smart Loads
o Smart appliances

o Flexible power consumption

Source: Microchip Technology Inc.

e Challenge — Lack of Coordination

o Not necessary to benefit the overall system operations

o Not fully utilizing the flexibility brought by these resources
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Predictive System Operations
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Flowchart of the load forecasting.approach
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GTA for Parameter Optimization

* Objective: Transfer the global optimization problem to one or several
local optimization problems.

* Initialization: Initialize y, C, and g; then compute Aj, and build the
traverse vector H.

* Grid Traverse Searching: For the element factor H;2,
e Hj2€EH,j2 E{1,2,..,mlxm2xm3}, the RCV can be computed.

* Determine Local Solution Space: With the generated contour map, the
local solution space with minimum RCV is selected for next step of
optimization.
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PSO for Parameters Optimization

* |nitialization

aQ L OgQ aQ o aQ ] PSO Initialization with GTA result
g~ LTg,1%04,2 14,MOBJPSO *
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N-fold Cross validation
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Error calculation

0 0 0 0
iy (t) =V, (t—1)+ 90191<77¢4 —Qy, (t—=1)
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Threshold

e Position Updates

Best parameters of SVR

al(t) = all (t— 1) + v2(1)
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Numerical Results

 The tested data set composes 80 days of load captured from a partner
utility’s distribution feeder. It includes data from winter (Dec.-Feb.), spring
(Mar.-May.), summer (Jun.-Aug.), and autumn (Sep.-Nov.) for 20-days each

season. With the sampling rate of 1 Hz, the total data length is 6,912,000.

x1

Methods Max. Error (%) | MAPE (%)
ARIMA 31.25 11.21
GA based SVM | 21.16 5.27
ANN 25.97 6.62
1 3600 7200 Time(s)logsoo 12400 18000 Pl’OpOSCd 14.11 2.53
“ - | S l l Performance Comparison
B Methods 20 minutes (S) | 4 hours (S)
s uf | - ARIMA 11.25 77.21
b sk | | GA based SVM | 45.16 1412.7
| B ANN 0.9 633.62
i | | Proposed 12.89 83.53

Il
-15 -10 -5 2 0 2 5 10 15

Prediction Exror (%) Time Consumption Comparison

Minutes-ahead forecasting

H. Jiang, Y. Zhang, J.J. Zhang, and E. Muljadi, “A Short-term Load Forecasting Approach Using Support Vector Regression with Hybrid Parameter Optimization in Distribution System," IEEE Transactions on Smart Grid, 2016.

NATIONAL RENEWABLE ENERGY LABORATORY



Application in Network Reconfiguration

> Distribution system loads become more fluctuant and
unpredictable.

- Large impacts from end users to distribution system
—  More stochastic abrupt deviations than transmission systems.

» Traditional distribution reconfiguration cannot meet the requirements of
modern distribution systems.

—  Traditional distribution reconfiguration is static.

— Dynamic end user profiles require a dynamic control strategy for distribution system
reconfiguration.

> An automatic distribution network reconfiguration
approach is desighed based on short-term load
forecasting.
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Basic Framework of Network.-Reconfiguration

I
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Objective: minimize total energy losses in the unbalanced distribution
system with the initial topology
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How to use load forecast?

**The short-term load forecasting is executed using the historic
actual high-resolution data.

**The reconfiguration problem is solved for every 5 min in this
paper, finally leading to 12 results of the system topology for
the next hour and each result for a 5-min time slot.

s*Among all 12 system topologies for the 5-min time slots, the
topology that achieves the most loss reduction will be selected
and used for the entire next hour.

Historical /T—\

ake use of the .
Dat/a historical actual net Hour-i
load data to forecast
next time period data

. Use the heuristic
Forecasted | >-™MIN  algorithm to solve the 12 topology geject the best

high-resolution data_ ,etwork reconfigurationL‘llts, topology to use
load data for problem (7) and (8) for the entire Reconfig.
next hour using the forecasted next hour Plan
load data
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Test Bench IEEE 123-bus System

Four initially opened tie switches (TS-1, TS-2, TS-3 and TS-
4) are added to make the system topology changeable,
and all voltage regulators are removed to fully address the
impact of network reconfiguration on reducing losses.
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Numerical Results (1)2 One day (24-hours) Simulation

Hour

Opened Switches

Loss Reduction

36.71%

2,3,4,5

TS-1, TS-2, 29-30, 101-105 (for 0-15
mins)

0.089%

TS-1, TS-2, 29-30, 105-108 (for 15-30
mins)

2.686%

B7:89,75:2,126:30, 108300 (or 30-60

mins)

2.55%

Loss Reduction

~N

10

87-89, TS-2, 29-30, 105-108 (for 0-10
mins)

3.356%

B7:89,75:2,26:30,57:60 (for 10-60

mins)

53.02%

91-93, TS-2, 29-30, 57-60 (for 0-20
mins)

0.484%

B7:7275:2)28:30,57°60 (for 20-60

mins)

5.513%

67-72, TS-2, 29-30, 57-60 (for 0-5
mins)

67-72, TS-2, TS-3, 57-60 for (5-10
mins)

2.336%

67-72, TS-2, 29-30, 57-60 for (10-15
mins)

1.685%

67-72, TS-2, TS-3, 57-60 for (15-45
mins)

0.575%

G772, 75218221, 57:60 for (45-60

mins)

23.32%

11,12,13

Hour Opened Swithes

67-72, TS-2, 18-21, 57-60 (for 0-15 mins) -
67-72, TS-2, 21-23, 57-60 (for 15-20 mins) 0.721%
67572 TS i8 215750 (for 20-30 mins) 3.212%
14 67-72, TS-2, 21-23, 57-60 (for 30-35 mins) 3.805%
67-72, TS-2, 18-21, 57-60 (for 35-45 mins) 1.080%
67-72, TS-2, 21-23, 57-60 (for 45-55 mins) 2.547%
67-72, TS-2, 18-21, 57-60 (for 55-60 mins) 0.975%

67-72, TS-2, 18-21, 57-60 (for 0~10 mins) -
15 675727552 21%33)57%60) (for 10-30 mins) 2.435%
67-72, TS-2, 18-21, 57-60 (for 30-60 mins) 0.862%

67-72, TS-2, 18-21, 57-60 (for 0-25 mins) -
_ (for 25-30 mins) 3.060%
67-72, TS-2, 18-21, 57-60 (for 30-35 mins) 1.783%

16

67-72, TS-2, 21-23, 57-60 (for 35-45 mins) 1.745%
67-72, TS-2, 18-21, 57-60 (for 45-50 mins) 4.084%
67-72, TS-2, 21-23, 57-60 (for 50-60 mins) 2.053%

67-72, TS-2, 21-23, 57-60 (for 0~10 mins) -
. 67-72, TS-2, 18-21, 57-60 (for 10~15 mins) 2.420%
67-72, TS-2, 21-23, 57-60 (for 15-25 mins) 7.240%
67572 TS"2J 182157560 (for 25-60 mins) 3.520%

18, 19, 20, 67-72, T5-2, 18-21, 57-60 -

21,22,23

67-72, TS-2, 18-21, 57-60 (for first 15 mins) 0.354%
2 TS BIEEEIETEG (for 2t 45 mins) 0.501%
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Numerical Results (2): Results comparison

 The total energy losses in a day for these three scenarios are 60.49 kWh
(with load forecasting), 71.81 kWh (without load forecasting), and
164.23 kWh (no network reconfiguration), respectively.

* |In addition, compared to the traditional network reconfiguration
approach, the proposed approach reduces system energy loss by
approximately 15% and network reconfiguration operations by 50%.

30 r ;
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- 20 B No Network Reconfiguration
=
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Hour

H. Jiang, F. Ding, Y. Zhang, “Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration”, 2017 IEEE Power & Energy Society General Meeting (PESGM), pp.
1-5, 2017.
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Applications

e State Forecasting-Based ¢ Consumer Behavior-
Voltage Regulation 1.2 Aided Dispatch 13-
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State Forecasting-Based Voltage Regulation

* Goals
o Accurately forecasting system states in the near future
o Prioritizing the control needs

* Approach
[~ - - - — 7 = L —— ]
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Dynamically Weighted OPE
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Results — State Forecasting Error
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Accurate state forecast with machine learning methods
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Results — Voltage Regulation

Voltage Violation
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Voltage violations reduced significantly with state forecasting-
based optimal scheduling
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Consumer Behavior-Aided Dispatch

* Goals
o Actively engaging electricity consumers

o Achieving system-level control objectives without
sacrificing consumers’ needs

* Integrated Optimization Approach
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Model-Based Load Forecasting
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Results — Distribution System. Level

Total Load
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Results — Home Level

* Example — One House
Load Consumption
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System performance improved without significant load deviation
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* Predictive Analytics for Coordinated Optimization
o Data analytics methods to facilitate the decision-making
o Optimal coordination of various resources

* Ongoing Work
o Data-driven, model-based, and hybrid methods for
resource and load forecasts [°]

o Integrated framework for system state estimation and
forecasting !]

o Incentives to drive desirable behaviors of consumers &
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