

PV Performance Modeling: A 10-Year Retrospective *PVPMC 9 – Weihai, China*

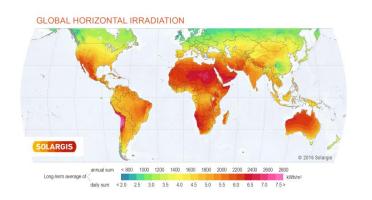
Ben Bourne | December 5, 2017

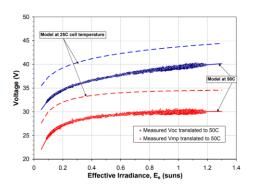
PV Performance Modeling: A 10-Year Retrospective

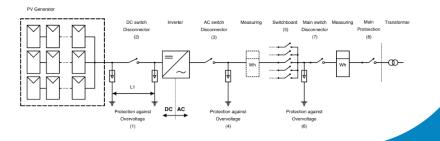
- Objectives of the PV modeling community
 - Minimize modeling bias error for valuating PV project investments
 - Minimize uncertainty to improve customer confidence and financing terms
- State of PV performance modeling in 2007
- Where we focused our efforts between 2007 & 2017
- Most impactful gains during the past 10 years
- Remaining gaps that need our attention

PV Performance Modeling: A 10-Year Retrospective

- Solar Resource Data
- Environmental Losses
- PV Module & Array Models
- Balance of System Losses
- PV Performance Characterization & Data Management
- PV Modeling & Design Tools







Inverters

Solar Resource Data

	Synthetic TMY	Ground TMY	Satellite TMY/TS	Sky Models	
2007	- Meteonorm	 National Solar Resource Database (NSRDB)/TMY2 (US) European Solar Resource Atlas (ESRA) 	PVGIS (Monthly)3TierSolar Radiation Data (SoDa)	 Radiative transfer clear sky models (Bird SMARTS, Rest2, ESRA) Direct beam models (DISC, DIRINT) Attenuation (Linke turbidity, Air Mass, AOD, water vapor) Diffuse transposition (Perez, Hay-Davies) 	
	- Emergence of satellite data for model improvement	 Increasing number of prospecting stations Growing fleet of commercial PV ground met stations 	 Improved satellite resolution & coverage More ground data for satellite model calibration 	 IR channel in satellite data used to improve albedo interpretation Improved NWP models Aerosol depth (AOD) ground measurements 	
2017	- Meteonorm (enhanced by satellite data)	- NSRDB/TMY3 Site-Adapted TMY	 - 3Tier - SolarGIS - PVGIS - SolarAnywhere - NSRDB - NEDO (Japan) - HelioClim/SoDa 	 Sufficient model accuracy (annual) Seasonal bias remains Uncertainty in data limiting continued backcast & forecast accuracy (ground data, satellite resolution & coverage, atmospheric scattering & absorption) 	

Environmental Losses

	Soiling Losses	Snow Losses	Shade Losses
2007	- Fixed-rate soiling - Dynamic model (Kimber <i>et al.</i>)	- No models available	 PVSyst – Inter-array shade tool PVWatts - Shade vs. GCR response curves (from SunPower) No diffuse shade models
	 GW of PV fleet data Soiling measurement devices Analytical diagnostic methods Robotic washing Anti-soiling coating research 	 GW of PV fleet data in winter climates Snow accumulation tests & publications 	 3D data & tools becoming publicly available for use & integration Diffuse shade understanding & model development Shade-resistant technologies (microinverters, cross-tied cSi modules, etc.)
2017	 Soiling well understood in most NA/EU locations (wet & dry) Challenges still in Middle East Still very few publicly-available dynamic soiling models Rain data critical in dry climates 	 In-house industry calculators DNV-GL snow model SunPower dynamic model (PVSim) Snow data critical for effective model accuracy 	 Many industry tools with shade capabilities Still little-to-no technology-specific shade response distinction among the most prominent tools High uncertainty from site conditions

PV Module & Array Performance Models

	PV Model	Thermal Model	Spectral Response	Reflective Response
2007	 Diode-equivalent models Sandia Array Performance Model (SAPM) 5-Parameter PVWatts constant- efficiency model 	Energy balance methods (Fuentes, PVSyst)Emperical methods (Sandia)	EQESandia Air Mass Modifierf(AMa)	 Fresnel model Sandia polynomial AOI modifier function – f(AOI) PVSyst point/interpolation model
	 Loss Factors Model (Steve Ransome / Gantner) Bifacial models under development 	- Very little focus on thermal model improvements	- Impact of atmospheric water content on cell spectral response (First Solar)	- Technologies with cell- surface texturing and/or anti-reflective glass coatings no longer follow basic Fresnel equations
2017	 Degradation element accounts for changing electrical response over time Bifacial models need to be vetted 	 Poor industry guidance for modeling product-specific thermal performance - Need a test standard for deriving thermal response coefficients High uncertainty in wind speed data and model use 	 First Solar's precipitable water model Sandia f(AMa) does not accurately characterize module spectral response in all locations 	 Models have the ability to distinguish between PV laminate designs Need to accommodate f(AOI) > 1

SUNPOWER

Balance of System Losses

	DC Wiring Losses	Inverter Model	AC Collection Losses	Grid Interaction
2007	Constant wiring lossSimple dynamic wiring loss model	- Constant efficiency - Simple η(P, V) - Simple operating limits	 Constant AC wiring loss Constant transformer loss Combined xfmr losses No nighttime & aux load losses 	 No models available Unavailability not factored into energy models
	Complex configurationsOptimized stringingCombine-as-you-go DC harnessing	 Microinverters Temperature- dependent capacity Multiple MPPTs Power Factor control 	- TL inverters - Storage integration	Grid controlGrid interconnection limitsStorage integration
2017	 Constant wiring loss Simple dynamic wiring loss model Design-specific dynamic loss model 	 Many in-house post- processors for handling complex array/grid interaction Need updated general modeling approach 	 Constant AC wiring loss Constant transformer loss Combined xfmr losses Nighttime & aux load losses considered Most tools don't provide all grid-interaction dynamics 	 Grid control schemes need to be implemented System downtime always difficult to predict – timing, duration, magnitude

PV Performance Characterization & Data Management

Characterization Methods Characterization Data Data Management STC (indoor, outdoor) Diode model coefficients Sandia/SAM DB PTC (indoor) Lab measurements - Photon Sandia outdoor performance best-fit CEC test to support SAPM SAPM coefficients CEC/PTC ratings - IEC 61853 1-4 - Methods for deriving model PV_LIB Toolbox established by coefficients from IEC matrix data Efficiency vs. irradiance Sandia – open-source, documented, peer-reviewed model code for industry Temperature coefficients Split-cell technologies change the use, collaboration and standardization AOI/IAM efficiency profile of c-Si technologies Spectral response IEC 61853 test data need an owner IEC 61853 test suite IEC 61853 matrix-to-model Still no reliable standard conversions and QC/use standards IEC 61853 standard needs to be characterization for spectral PAN file generation response & bifacial products Sandia coefficient generation supported & required by industry tools

PV Modeling & Design Tools

	Desktop Energy Tools Web-Based Energy Tools		Design Suite Tools		
2007	PVSystSAMSolarProPVGrid	- PVWatts - PVGIS		- None	
	- Slower growth & development than industry growth	Tool feature advancementWeb-based for access & scalability3D shading functionalitySimple residential calculators		Design feature plug-insShadeCAD DrawingsBOM	
\	Challenge: Feature development vs. Model Integration & Uncer			ainty Reduction	
2017	- PVSyst - SAIVI - SolarPro	 PVWatts Helioscope Aurora PVSim PlantPredict Google Project Sunroof 		HelioscopeAuroraPVCompleteSolarPro	

PV Performance Modeling: Biggest Gains & Remaining Gaps

Biggest 10-year gains

- Satellite-based solar Resource data accuracy & accessibility, but at significantly higher cost
- Web-based energy modeling & design tools
- Shading calculators
- IEC 61853 test standard
- PV_LIB Toolbox

Environmental Losses

- Need better understanding of soiling & snow losses, and dynamic model implementation in industry tools
- Tools need to account for technology-specific performance: shade-response, low-light response, thermal behavior, etc.
- Long-term Shade losses are dependent on long-term site conditions tree management, future development, etc.

Thermal model

- Need to establish use standards for wind speed in energy modeling
- Need a test and derivation standard for thermal response coefficients

Data management standard to support test standards

- PV industry needs an IEC 61853 data warehouse owner
- Tool developers need to require lab test data and to distinguish all attributes of various technologies

Thank You

Let's change the way the world is powered