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What is Machine Learning?

What?
Machine Learning is the science
of programming a computer so

that it can learn from data

Two main types:

1. Supervised learning:
Inputs w/ desired outputs

2. Unsupervised learning:
Inputs w/out desired

outputs
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Supervised Learning Example

Classification using Support Vector Machine

XOR data Classify new data
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Why use Machine Learning? -
Why? Regression (Gaussian Process)
1. Regression K .
2. Classification - S ¢ .
3. Density estimation § ¢
4. Others B :
Approaches: .
Classification (Support Vector Machine)
1. Artificial Neural Networks
2. Deep Learning Y ] .
" . . * . . . o
3. Support Vector Machines e . FEISEE T
4. Clustering o o, 4 o //*/A &
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5. Many others A A
00 A 00 A




Sandia
National
Laboratories

How can Machine Learning Provide Value?

Operate

(1) Data Monitoring?

(2) Performance Validation?
Component/Physics

i ?
Based Models (3) Identify Faults?



Machine Learning Applications?

Data Monitoring Quality:

Rule-based

if True then
Report
else
No Report
end if

Sandia

Outlier Detection

VAN

Validate Performance:

Extensive Data

Inputs = {E,Tmodule }

Outputs = {Power}

Limited Data
InputsA = {Ppearby }
InputsB = {Efyecast }

Outputs = {Power}

Fault Analysis:

Fault Detection

Anomaly/Novelty

Detection

Fault Diagnostics

Multi-Class Classification




Data Monitoring: Rule-Based versus Outlier Detect@%’ﬁ'm‘m""“

Problem Statement
Machine learning can use polluted data
that contains incorrect or corrupt data

records to identify outliers by assuming a

distribution.
Process
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Results
Rule-Based

Rules were not violated

if Power > Pmypp x Number;,qq. x 1.2 = 7776
then
Alarm
else if Power < 0 then
Alarm
end if

Kernel Density Function
Outliers were detected

Power vs Irradiance
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Validate Performance: Extensive Data

Problem Statement Results

Machine learning can model existing PV DC Power Actual vs Model

®  Gaussian (¥ = 0.99)
® SAPM (r = 0.994)

systems using collected weather and

performance data.

Process

Inputs:
Irrad. SAPM | ——  Power
Tmod
SunAngle

Machine Learning

e Gaussian (¥ = 0.7)
SAPM (1> = 0.39) *

I
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Train: 01/16 to 12/16 -> Test: 01/17 to 04/17

Actual (V)




Validate Performance: Limited Data

Problem Statement

Machine learning can model existing
PV systems where power is the only
monitored value. The algorithm can

associate PV power with nearby

system outputs and forecasted

irradiance.
Process
Machine Learning
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Results

Inputs A:

1. Nearby
Power
(17km)

2. Sun
Angle

Inputs B:

1. Forecast
Irrad.
(NOAA)

2. Sun

Angle

Model Power (kW)

Model Power (kW)

Sandia
Laboratories

Model vs Actual PV Power

2o = y = 0.895x + 0.069 (r*=0.902)

Actual Power (kW)‘

Model vs Actual PV Power

b0 T y = 0.825x + 0143 (=0.796)

) s
Actual Power (kW)




FDD: Novelty Detection (1.v pata) .

Problem Statement
Machine learning can be used to perform

binary classification of I-V curve data.

Process
Train & Test

Training: 86 normal and 21 abnormal curves
Testing: 242 normal and 82 abnormal curves

Classification

1-V Data C

N
Irrad.
Tm

Estimation

- Condition

I-V Data Estimation

- *Production A
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Classification

+ Negatives “»

Estimate Loss
Actual & Estimated I-V Curves
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Current (A)

— String 1 (Power=443.3W) ‘
“““ String 2 (Power=395.8W)
== GP Estimated (Power=432.3W)
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FDD Novelty Detection (Max Power Point Data)

Problem Statement
Machine learning can be used to
identify anomalies automatically by
training on “clean” data and testing
on new, possibly polluted,

observations.

Process

Novelty Detection

SAPM — Train

0 - Good

Actual — Test —
1 - Bad
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Train & Test Results

Train

5500 FL: Power vs Irradiance

+  SAPM
000

Power (W)
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Estimate Probabilities
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Test

3500 FL: Power vs Irradiance

+  System1
+  System2
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w0 s e um
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Evaluate Accuracy

ROC Curve

True Positive Rate

o wE T To
False Positive Rate
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FDD: Classification using LAPART -

What? Why?
1. Unsupervised 1. Classification
2. Supervised 2. Regression
How?
step 1: classification step 2: expectation

category @@@®.. category QQ@OOQ
- L _ _
feature feature Cg

_-_ - no match:
@ input @ input signalanomaly
15/10/17 G. Birk Jones, Ph.D (cbjones@sandia.gov)  Section: Fault Detection & Diagnostics (FDD) 12
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FDD: Classification using LAPART

How does it learn data?
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FDD ClaSSiﬁcation (Max Power Point Data) o

Problem Statement Results
Machine learning can be

used to classify fault
Gaussian Process Prediction

conditions and estimate lost o
revenue. o9
204
0.2]

Process .

LAPART Novelty Detection
Shading|
nverter
Model
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Summary

Machine Learning

1. What?
1.1 machines can learn
1.2 two main types of
learning
2. Why?
2.1 Regression
2.2 Classification
3. How?
3.1 Monitor
3.2 Validation
3.3 Faults
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Examples

1. Data Quality
1.1 Kernel Density Function
(python: scipy, scikit)
2. Performance Validation
2.1 Gaussian, SVM, etc
(python: scikit)
3. Novelty
Detection/Classification

3.1 Gaussian, SVM, etc
(python: scikit)

3.2 LAPART (python: coming
soon)
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Questions

C. Birk Jones
email: cbjones@sandia.gov
phone: 505-844-9261
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