

PV Monitoring and Modeling

a machine learning perspective

C. Birk Jones, Ph.D (cbjones@sandia.gov)

Exceptional service in the

national interest

Overview

Introduction

What is Machine Learning?
Why use Machine Learning?
How can Machine Learning Provide Value?

Data Monitoring Quality

Rule-based versus Outlier Detection

Performance Validation

- ... Based on Extensive Data Sets
- ... Based on Limited Data Sets

Fault Detection & Diagnostics (FDD)

Novelty Detection Multi-Class Classification

What is Machine Learning?

What?

Machine Learning is the science of programming a computer so that it can learn from data

Two main types:

- Supervised learning: Inputs w/ desired outputs
- Unsupervised learning: Inputs w/out desired outputs

Supervised Learning Example

Classification using Support Vector Machine

Why use Machine Learning?

Why?

- 1. Regression
- 2. Classification
- 3. Density estimation
- 4. Others

Approaches:

- 1. Artificial Neural Networks
- 2. Deep Learning
- 3. Support Vector Machines
- 4. Clustering
- 5. Many others

Regression (Gaussian Process)

Classification (Support Vector Machine)

How can Machine Learning Provide Value?

Machine Learning Applications?

Data Monitoring Quality:

Rule-based

if True then
Report
else
No Report
end if

Outlier Detection

Validate Performance:

Extensive Data

Inputs =
$$\{E,T_{module}\}$$

Outputs = $\{Power\}$

Limited Data

$$InputsA = \{P_{nearby} \}$$

$$InputsB = \{E_{\textit{forecast}}\}$$

$$Outputs = {Power}$$

Fault Analysis:

Fault Detection

Fault Diagnostics

Data Monitoring: Rule-Based versus Outlier Detection

Problem Statement

Machine learning can use polluted data that contains incorrect or corrupt data records to identify outliers by assuming a distribution.

Process

Results

Rule-Based Rules were not violated

```
if Power > P<sub>mpp</sub> x Number<sub>mod.</sub> x 1.2 = 7776 then Alarm else if Power < 0 then Alarm end if
```

Kernel Density Function

Outliers were detected

Validate Performance: Extensive Data

Problem Statement

Machine learning can model existing PV systems using collected weather and performance data.

Process

Train: 01/16 to 12/16 -> Test: 01/17 to 04/17

Results

Validate Performance: Limited Data

Problem Statement

Machine learning can model existing PV systems where power is the only monitored value. The algorithm can associate PV power with nearby system outputs and forecasted irradiance.

Process

Results

Inputs A:

- 1. Nearby
 Power
 (17km)
- 2. Sun
 Angle

Inputs B:

- 1. Forecast
 Irrad.
 (NOAA)
- 2. Sun
 - Angle

FDD: Novelty Detection (I-V Data)

Problem Statement

Machine learning can be used to perform binary classification of I-V curve data.

Process

Train & Test

Training: 86 normal and 21 abnormal curves Testing: 242 normal and 82 abnormal curves

Classification

Estimation

Classification

Estimate Loss

FDD: Novelty Detection (Max Power Point Data)

Problem Statement

Machine learning can be used to identify anomalies automatically by training on "clean" data and testing on new, possibly polluted, observations.

Process

Train & Test Results

Train

FDD: Classification using LAPART

What?

- 1. Unsupervised
- 2. Supervised

How?

Why?

- 1. Classification
- 2. Regression

step 1: classification

step 2: expectation

FDD: Classification using LAPART

How does it learn data?

PV Power:

FDD: Classification (Max Power Point Data)

Problem Statement

Machine learning can be used to classify fault conditions and estimate lost revenue.

Process

Results

Summary

Machine Learning

- 1. What?
 - 1.1 machines can learn
 - 1.2 two main types of learning
- 2. Why?
 - 2.1 Regression
 - 2.2 Classification
- 3. How?
 - 3.1 Monitor
 - 3.2 Validation
 - 3.3 Faults

Examples

- 1. Data Quality
 - 1.1 Kernel Density Function (python: scipy, scikit)
- 2. Performance Validation
 - 2.1 Gaussian, SVM, etc (python: scikit)
- 3. Novelty
 Detection/Classification
 - 3.1 Gaussian, SVM, etc (python: scikit)
 - 3.2 LAPART (python: coming soon)

Questions

C. Birk Jones

email: cbjones@sandia.gov

phone: 505-844-9261