PV Performance Modeling with PVfit Workflows that balance cost, complexity, and accuracy.

Mark Campanelli¹

mark.campanelli@gmail.com Intelligent Measurement Systems LLC Bozeman, MT, USA [45°40'N 111°01'W]

2022 PV Performance Modeling Workshop Salt Lake City, UT, USA August 23, 2022

¹https://www.linkedin.com/in/markcampanelli□ → < //>
</

PVfit's Approach to Photovoltaic Modeling

2021 Blind PV Modeling Comparison

PV-Based Sensing and Other Opportunities

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

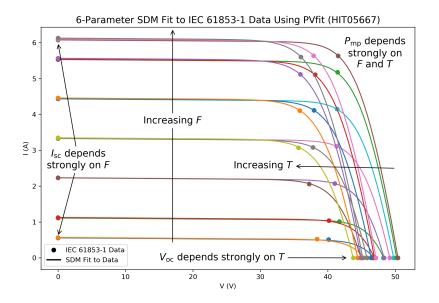
PVfit's Single-Diode Model (SDM)

6-parameter SDM for photovoltaic (PV) direct current $(DC)^2$ —

$$0 = I_{\rm ph} - I_{\rm rs} \left(e^{\frac{q(V+IR_{\rm s})}{N_{\rm s}nk_{\rm B}T}} - 1 \right) - G_{\rm p} \left(V + IR_{\rm s} \right) - I_{\rm s}$$

with auxiliary equations-

$$I_{\rm ph} = I_{\rm rs} \left(e^{\frac{q I_{\rm sc} R_{\rm s}}{N_{\rm s} n k_{\rm B} T}} - 1 \right) + G_{\rm p} I_{\rm sc} R_{\rm s} + I_{\rm sc}$$


$$\label{eq:Irs} \textit{I}_{rs} = \textit{I}_{rs0} \left(\frac{\textit{T}}{\textit{T}_0} \right)^3 e^{\nu \frac{q\textit{E}_{g_0}}{nk_B} \left(\frac{1}{\textit{T}_0} - \frac{1}{\textit{T}} \right)},$$

$$n = n_0, \quad R_s = R_{s0}, \quad G_p = G_{p_0}, \quad I_{sc} = F I_{sc0}.$$

"Irradiance" $F = \frac{I_{sc}}{I_{sc0}}$ and PV cell temperature T (junction).

²Current conservation under *homogeneity assumptions*. $(\bigcirc \land \land) \land (\bigcirc \land \land) \land (\bigcirc \land \land)$

Performance w.r.t. Irradiance and Temperature

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Parameter Inference (aka. Model Calibration)

Given sufficient measurements of observables-

V, I, T, and F,

then infer six model parameters at reference condition (RC)-

$$I_{sc0}, I_{rs0}, n_0, R_{s0}, G_{p0}, \text{ and } E_{g0},$$

using a minimization-based solver with rescalings and careful choice of initial conditions—scipy's least_squares (dogbox) or odr.

PVfit's formulation accommodates various measurement types. However—

- ▶ How do we work with *F* instead of traditional irradiance?
- Is "the" temperature given for PV cell(s), or back of module, or ambient, or ...?

Observing Irradiance and Temperature

 Calibration labs measure dense I-V curves using a PV reference device, where for each *point*—

$$F = rac{I_{
m sc}}{I_{
m sc0}} = M rac{I_{
m sc,ref}}{I_{
m sc,ref0}},$$

and the spectral correction M depends on the temperature-dependent spectral responsivity of *both* devices.

 IEC 61853-1 matrix provides several 3-point I-V curves (one at RC³), where for each *curve* with short-circuit current I_{sc}—

$$F = rac{I_{sc}}{I_{sc0}}.$$

T is too loosely defined in IEC 61853-1 (my opinion). Module and cell temperatures may, or may not, be close, e.g., continuous vs. flashed irradiance.

³Here, RC is the standard test condition (STC). $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Performance Simulation (a.k.a. Model Prediction)

Given values of operating-condition (OC) observables-

F and T,

then predict maximum power-

 $P_{\rm mp} = I_{\rm mp} \cdot V_{\rm mp}.$

- ロ ト - 4 回 ト - 4 □

However-

- F is traditionally observed using a reference device, with (mis)match depending on several conditions.
- ► *T* of the PV cell is rarely the observed temperature.

Using Meteorological (MET)-Station Data

Sandia Array Performance Model (SAPM) defines an effecitve irradiance, $E_{\rm e}$ —

$$E_{\mathsf{e}} = \frac{I_{\mathsf{sc}}}{I_{\mathsf{sc}0}\left(1 + \alpha_{\mathsf{sc}}(T - T_0)\right)},$$

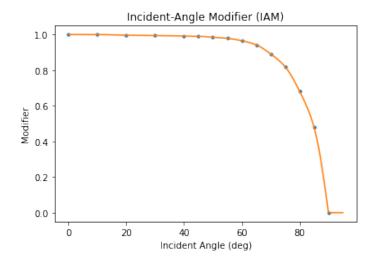
so that—

$$F = \frac{I_{sc}}{I_{sc0}} = E_{e} \left(1 + \alpha_{sc} (T - T_{0})\right).$$

 $E_{\rm e}$ (unitless) is readily calculated from MET-station data.⁴

⁴Technically, α_{sc} depends on spectrum of OC.

Calculation of Effective Irradiance


 $E_{\rm e}$ is computed from plane-of-array (POA) irradiance, $E_{\rm POA}$ —

$$E_{\rm e} = f_{\rm AM_a} \frac{E_{\rm POA}}{E_0} = f_{\rm AM_a} \left(\frac{f_{\rm IAM} E_{\rm b} + f_{\rm d} E_{\rm d}}{E_0} \right).$$

- E_0 : irradiance at RC (1000 W/m² at STC)
- ▶ *E*_b: beam irradiance
- Incident angle modifier: f_{IAM} = f_{IAM}(AOI) PCHIP⁵ of IEC 61853-2 data or physical model, with AOI from pvlib
- E_d: diffuse irradiance sum of sky and ground components (e.g., isotropic and monthly albedo, respectively)
- Simple diffuse fraction model: $f_d = 1$ (non-concentrating)
- E_b and E_d from given GHI, DNI, and DHI using pvlib
- ▶ No absolute air-mass correction: $f_{AM_a} = 1$ (insufficient info)

Incident Angle Modifier

PCHIP is smooth, while respecting data's extrema.⁶

⁶Zero "tail" is separate.

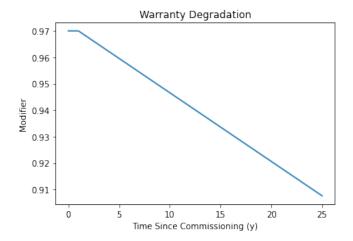
・ロト・西ト・田・・田・ ひゃぐ

Temperature from MET Data

Faiman model for module temperature, T_m , using POA irradiance, E_{POA} , ambient temperature, T_a , and wind speed, WS—

$$T_{\rm m} = T_{\rm a} \frac{E_{\rm POA}}{U_0 + U_1 \cdot WS}$$

 $T_{\rm m}$ can be further transformed into cell temperature, T, using, e.g., SAPM—


$$T = T_{\rm m} + \frac{E_{\rm POA}}{E_0} \Delta T.$$

 U_0 , U_1 , and ΔT are installation- and module-dependent.⁷

⁷Because $F \approx \frac{E_{POA}}{E_0}$, one could recast models in terms of F. (=) (=) $\sim \infty \propto \infty$

Degradation and Other Losses

Warranty degradation using time since commissioning (worst case).

Soiling, mismatch, wiring, etc. not included (best case).

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

PVfit's Approach to Photovoltaic Modeling

2021 Blind PV Modeling Comparison

PV-Based Sensing and Other Opportunities

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Considered three of six scenarios, omitting tracked and bifacial.

Albuquerque, NM, USA-

1: Panasonic 325W monofacial HIT, $N_s = 72$, 12 panels

2: Canadian Solar 275W monofacial mono-Si, $N_{\rm s}=60,\,12$ panels Roskilde, Denmark—

5: Trina Solar 305W monofacial mono-Si, $N_s = 60$, 88 panels

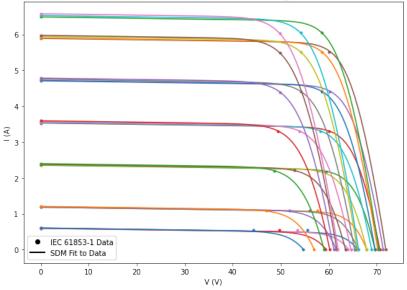
Scenarios (2 of 2)

For Panasonic & Canadian Solar in Albuquerque-

- ▶ IEC 61853-1 provided I-V matrix (assume $T = T_m$) and α_{sc}
- ▶ IEC 61853-2 measurements for U_0 , U_1 , and IAM

For Trina Solar in Roskilde-

- Datasheet had I_{sc}, I_{mp}, V_{mp}, & V_{oc} at STC & NOCT⁸ and a_{sc}
- \triangleright U_0 and U_1 estimated, physical model for IAM


For all scenarios—

• Only Faiman temperature model ($\Delta T = 0$, not provided)

$$T = T_{\rm m} + \frac{E_{\rm PQA}}{E_0} \Delta T$$

Panasonic 325W monofacial HIT (Albuquerque)

6-Parameter SDM Fit to IEC 61853-1 Data Using PVfit (Panasonic)

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

Panasonic 325W Monofacial HIT (Albuquerque)

Fit parameters (seconds to solve)—

I _{sc0}	I _{rs0}	<i>n</i> 0	R _{s0}	G _{p0}	E _{g0}
5.903 A	1.314e-12 A	1.304	0.7820 Ω	0.001893 S	1.575 eV

Pmp errors for model calibration $\left(\frac{P_{mp,fit}-P_{mp,meas}}{P_{mp,meas}}, \text{ in } \%\right)$

			EP	o _A (W	$/m^2)$		
<i>T</i> (°C)	100	200	400	600	800	1000	1100
15	-10.0	-2.8	0.22	0.57	0.57	0.68	_
25	-9.1	-2.8	0.084	0.40	0.36	0.26	0.112
50	-8.1	-2.5	-0.21	0.28	0.188	-0.100	-0.30
75	-5.7	-0.86	0.61	0.41	0.24	-0.064	-0.183

Yearly PV-array energy from hourly powers: 134.841 kWh

(ロ)、(型)、(E)、(E)、(E)、(O)への

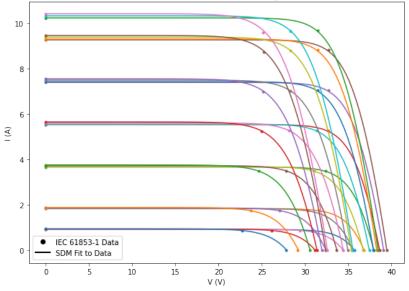
Calculation of $F = I_{sc}/I_{sc0}$ (1 of 2)

Isc (A) from IEC 61853-1 matrix—

			Epo	_{DA} (W/r	n²)		
T (°C)	100	200	400	600	800	1000	1100
15	0.595	1.183	2.354	3.532	4.706	5.891	-
25	0.599	1.183	2.365	3.542	4.718	5.903	6.488
50	0.602	1.199	2.379	3.567	4.754	5.944	6.528
75	0.606	1.207	2.399	3.593	4.784	5.976	6.578

 $Isc_0 = 5.903$ A is in red — divisor for $F = \frac{I_{sc}}{I_{sc0}}$.

Calculation of $F = I_{sc}/I_{sc0}$ (2 of 2)


$$F = \frac{I_{sc}}{I_{sc0}}$$
 from IEC 61853-1 matrix—

			Epo	_{DA} (W/r	n²)		
<i>T</i> (°C)	100	200	400	600	800	1000	1100
15	0.1008	0.200	0.399	0.598	0.797	0.998	-
25	0.1015	0.200	0.401	0.600	0.799	1	1.099
50	0.1020	0.203	0.403	0.604	0.805	1.007	1.106
75	0.1026	0.204	0.406	0.609	0.810	1.0124	1.114

Shows that $F \neq \frac{E_{POA}}{E_0}$, merely $F \approx \frac{E_{POA}}{E_0}$.

Canadian Solar 275W Monofacial Mono-Si (Albuquerque)

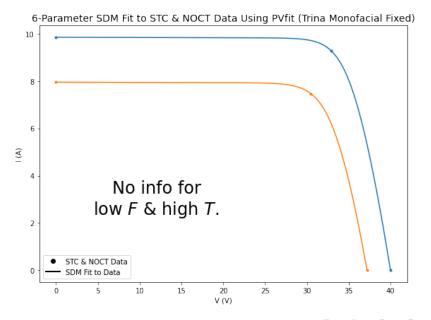
6-Parameter SDM Fit to IEC 61853-1 Data Using PVfit (Canadian Solar)

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Canadian Solar 275W Monofacial Mono-Si (Albuquerque)

Fit parameters (minutes to solve)—

I _{sc0}	I _{rs0}	<i>n</i> 0	R _{s0}	G _{p0}	E _{g0}
9.299 A	1.133e-09 A	1.088	0.2303 Ω	0.0 S	1.138 eV


Pmp errors for model calibration $\left(\frac{P_{mp,fit}-P_{mp,meas}}{P_{mp,meas}}, \text{ in } \%\right)$

			E _F	POA (W/r	n ²)		
<i>T</i> (°C)	100	200	400	600	800	1000	1100
15	-0.70	-0.83	-0.97	-0.80	-0.69	-0.66	-
25	-0.166	-1.14	-0.88	-0.56	-0.42	-0.49	-0.50
50	0.110	-0.55	-0.30	-0.118	-0.0069	0.154	0.143
75	-0.34	-0.38	-0.118	0.37	0.51	0.72	0.85

Yearly PV-array energy from hourly powers: 114.361 kWh

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Trina Solar 305W Monofacial Mono-Si (Roskilde)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Trina Solar 305W Monofacial Mono-Si (Roskilde)

Fit parameters (seconds to solve)-

I _{sc0}	I _{rs0}	<i>n</i> 0	R _{s0}	G _{p0}	E_{g_0}
9.85 A	3.488e-15 A	0.7299	0.3520 Ω	0.007732 S	1.272 eV

Pmp errors for model calibration $\left(\frac{P_{mp,fit}-P_{mp,meas}}{P_{mp,meas}}, \text{ in }\%\right)$

	E _{POA} ((W/m^2)
<i>T</i> (°C)	800	1000
25	-	0.077
44	0.039	-

CAUTION: Good fit does not guarantee good model!⁹

Yearly PV-array energy from hourly powers: 478.868 kWh

 $^{^9{\}rm This}\ {\tt scenario's}\ {\tt fit\ changed\ considerably\ when\ {\tt scipy.od}{\tt p}\ {\tt used}\ {\tt instead}.$

Are We There Yet?

"All models are wrong, but some are useful."

-George E. P. Box

Key IEC 61853-1 measurement questions—

Module vs. cell temperature?

- Matched reference device (spectral & angular response)?
- Representative module sample? Variability estimates?

Is complexity of PVsyst, double-diode model, ... worth it?

- ▶ Photo-conductive shunt in SDM, e.g., $G_p = F \cdot G_{p_0}$?
- ► The FutureTM is bifacial, or perovskite, or ...?

▶ When do other factors swamp measurement & fitting errors?

- $\Delta T = 0$ led to overestimated energy? (unblind hourly data)
- 2-4% energy increase switching isotropic to haydavies!
- Degradation, soiling, shading, mismatch, line losses, ...
- Weather uncertainty, variability, availability, …

Inter-comparisons needed to tease all this out...thank you PVPMC!

PVfit's Approach to Photovoltaic Modeling

2021 Blind PV Modeling Comparison

PV-Based Sensing and Other Opportunities

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Recasting the Inference Problem

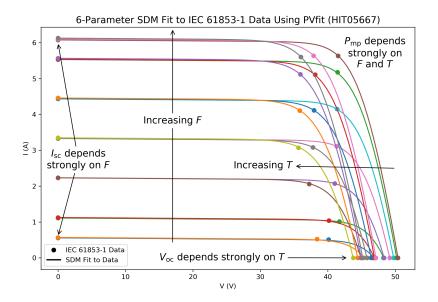
Why not think/work directly in terms of F and T?

Given a well-calibrated PV device with known parameters-

 $I_{sc0}, I_{rs0}, n_0, R_{s0}, G_{p_0}, \text{ and } E_{g_0},$

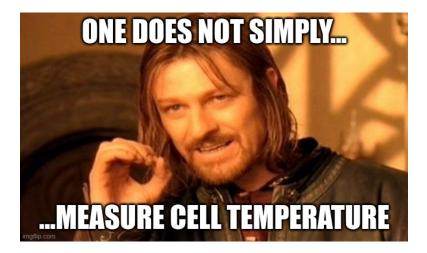
and sufficient measurements of observables at one OC-

V and I,


then infer the two model parameters-

F and T.

A minimally observed I-V curve could be simply I_{sc} and V_{oc} .¹⁰


¹⁰Note absence of temperature-coefficients.

PV-Based Sensing of Irradiance and Cell Temperature

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Rethinking Irradiance and Temperature (1 of 2)

Combine F and T with T_m measurements to infer ΔT !

Rethinking Irradiance and Temperature (2 of 2)

Soiling-measurement systems have matched reference devices-

- ▶ Simply (?) add V_{oc} measurement with I_{sc} to infer T
- Combine with T_m measurement (and F) to infer ΔT

$$T = T_{\rm m} + \frac{E_{\rm POA}}{E_0} \Delta T \approx T_{\rm m} + F \cdot \Delta T$$

-Photo credit: NRGSystems

PVfit: Because Measurements Cost Money

Model calibration at https://pvfit.app or via REST API

FIT								
SDM Calibration	n over a Ra	ange of Irra	adiance and	l Tempera	ture			
Input: I-V Curve D	ata							
LOAD EXAMP	LE DATA	60-ce	ell mono x-Si mo	dule 🔿 3	2-cell poly x-Si	module ()	216-cell CdTe	e module
					= 1-	V-F-T Curves	TEC 61	853-1 Ma
Input IEC 61853-1	matrix data	a, then click (OMPUTE FIT	(standard t		V-F-T Curves		
Input IEC 61853-1 with grey cells opt		a, then click (COMPUTE FIT	(standard 1				
with grey cells opt		a, then click (ns (STC) are		
with grey cells opt	ional)	a, then click (Aodule Tem	est conditio	ns (STC) are		and 25°C
with grey cells opt Irradiance (W/m ²) @ AM 1.5	ional)		N	Aodule Tem	est conditio	ns (STC) are	1000 W/m² a	and 25°C
with grey cells opt	ional)	15	N 25	Nodule Tem	est conditio perature (°C 5	ns (STC) are) 0	1000 W/m² a 7	and 25°C

Open-source simulation code at https://github.com/markcampanelli/pvfit

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

References

- 1. PV Performance Modeling Collaborative, https://pvpmc.sandia.gov
- 2. pvlib-python, https://github.com/pvlib/pvlib-python
- Effective Irradiance Ratios to Improve I-V Curve Measurements and Diode Modeling Over a Range of Temperature and Spectral and Total Irradiance, Campanelli and Osterwald, JPV, 2016.
- Calibration of a Single-Diode Performance Model without a Short-Circuit Temperature Coefficient, Campanelli and Hamadani, Energy Science and Engineering, 2018.
- Look Mom, No MET Station! Campanelli, 12th PV Performance Modeling and Monitoring Workshop, 2019. https://pvpmc.sandia.gov/download/7302