System Losses and Derates Mismatch Losses

- **Draft Definitions of System Loss Factors** ۲
- Quantifying Mismatch Losses in Sara MacAlpine ۲ **Small Arrays** University of Colorado, Boulder
- Calculation of Mismatch Losses due to Shading in PVsyst, v6
- **Modeling Mismatch Losses in** • HelioScope
- **Calculating Model Shading Inputs** • from Design Data

André Mermoud **PV**syst

> Paul Gibbs Folsom Labs

Geoff Klise

Sandia

Tarn Yates **Borrego Solar**

Discussion – Standardizing Definitions of Mismatch Losses •

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Derates / Loss Factors

- Is it a derate? Is it a loss factor? Is it both, or neither?
- Sandia has been tasked by DOE to convene an "Industry working group to define PV performance modeling standards (loss definitions, reporting standards and templates, etc.)"
- What do we intend to accomplish with your participation?

Draft Definitions

- We developed a sample matrix of the photon to "AC" electron conversion process with our knowledge of PV performance models and with "loss factors" provided by First Solar
- The goal was to show how different models map into each step, *and*
- Compile responses regarding steps/calculations/definitions that were valid, or should be changed

Overview of Working Matrix

 What you'll see in the next few slides refers to the modeling steps and loss factor definitions on the left side of the matrix

1 Unshaded Irradiance Incident on POA

		Modeling Steps (Calculations)	
	f-Array	Albedo (Snow, no snow)	
	on Plane-o	POA Orientation Normal Operation	
	Unshaded Irradiance Incident on Plane-of-Array (POA)	Suboptimal POA Orientation	
AL ARK	Unshaded	Calculate Spectral Content or Air Mass	Sandia National Laboratories

2 Irradiance Obstructers

Irradiance Obstructers

POA Irradiance blocked by distant shading

POA Irradiance blocked by near shading

POA Irradiance blocked by soil on array

POA Irradiance blocked by

snow on array

3 Module Conversion Efficiency

Incident Angle Correction

Spectral/Air Mass Correction

> Calculate Cell Temperature

Module Efficiency vs. Temperature

Module Conversion Efficiency

Module Efficiency vs. Irradiance

Module Rating Correction

Light-induced Degradation

Module Degradation

Seasonal Annealing

Losses in DC System 4

n DC	Losses in Diodes, Connectors, Fuses
Losses ir Systei	Losses in DC Wiring

Array Utilization

Next 4 Speakers

Mismatch

Results in energy loss due to:

- -Module manufacturing variability
- -Temperature gradient
- -Partial shading

System Losses and Derates

Panel Discussion: System Losses and Derates

Jeff Roche, SunPower
Rob Andrews, Queens U

Paul Gibbs, Folsom Labs Alex Panchula, First Solar

• Discussion – Standardizing System Loss Factor Definitions

Performance Degradation

Modeling Module Power
Degradation

Fleet-Wide Study of System
Degradation

Standardizing Definitions: Survey Results
and Inputs to the Working Group

Thomas Roessler Yingli Green Energy Europe

> Mike Anderson SunPower

> > Geoff Klise Sandia

Overview of Working Matrix

• What you'll see in the next few slides refers to the modeling steps and loss factor definitions on the left side of the matrix

6 DC to DC & 7 DC to AC

		-
	Modeling Steps (Calculations)	
DC to DC	DC to DC Efficiency	
C	DC to AC Efficiency	
DC to AC	Inverter Efficiency Adjustment	
	Inverter Loads, Fans, Controls	

8 Transformers

10 Losses in AC System

11 Utility Interactions

12 System Output

Standardizing Definitions:

Survey Results & Inputs to the Working Group

Model Matrix

Survey Response:

- -16 respondents
- Ranged between 'big-picture' comments, changing modeling steps, definition changes, and the use of specific values for specific models
- -Models added to matrix include:
 - PV*Sol Expert,
 - PVSim v2.4 (SunPower),
 - PR-FACT, and
 - SRCL 'Tester' model

General Comments

- Consensus on **definitions of the terms** would be helpful
- Are derate and loss factors the same? Are they used to describe an input to the model, or are they a modeling result?
- Re-defining conventional language? Some nominal "**losses**" are actually **efficiency gains** (albedo, positive quality loss factor due to plus tolerance, etc.)
- ...using these current naming conventions, "loss" and "derate" factors, in a standard may lead to some confusion. I don't have any ideas to get around this besides re-defining the conventional language as something like "loss/gain" or "scale" factors...

General Comments

- Should losses be grouped according to how they are measured in the field?
- Performance models should be validated through measurement of derate factors
- Certain derate factors should be modeled stochastically given their intrinsic variability and uncertainty
- Should there be ways to translate derate/loss factors to compare one model to another?

- Regarding initial steps with POA irradiance
 - Provide more clarity on what *blocks* irradiance and factors that *reduce* irradiance
 - Move the spectral content or air mass calculation below where sunlight is converted to DC energy
 - -More granularity on what constitutes **sub**optimal POA orientation

- Regarding conversion of light to DC energy
 - -Change definition to reflect conversion step
 - -More granularity in the module efficiency vs. irradiance and temperature step
 - -The **module rating correction** step was discussed with regards to PVSyst
 - -Addition of a seasonal annealing factor

- Regarding Array Utilization
 - -Change definition
 - On module mismatch, requests for better defined and consistent modeling approach
 - –In not at array MPP, more granularity for separating MPPT error and clipping losses
 - Should some of these descriptions be moved in inverter conversion steps (DC to DC, or DC to AC)

- - Role of DC Optimizers and proper modeling techniques
 - -What is **inverter efficiency adjustment**?
 - -Should transformer losses be post-processed?

- Regarding Other AC / Losses in AC / Utility Interactions / System Output
 - Should the AC Interconnection Capacity Limitation take place at the inverter instead?
 - There should be more granularity to include factors such as ramp rate control, operating at non-ideal power factors, curtailment issues, etc.
 - Is a single degradation factor appropriate to model out to however many year, or should this change due to higher array to inverter ratios?

Working Group

- These definitions and matrix are not 'set in stone'
- Friday working group will be 'industry-driven' to help us better understand what is important and necessary if standardized definitions are eventually agreed upon
- This work will be summarized in a report along with definitions published on the PVPMC website
- We will rely on the working group to recommend next steps for continuing work in this area

