

2020

2021

2022



## PVAnalytics: A Python Package for Automated Processing of Solar Time Series Data

Kirsten Perry (NREL), William Vining (Sandia), Kevin Anderson (NREL), Matthew Muller (NREL), Cliff Hansen (Sandia)

PV Performance Modeling and Monitoring Workshop Salt Lake City, Aug 24, 2022

pvanalytics v0.1.2 **PVPerformance** MODELING COLLABORATIVE

pvanalytics v0.1.1

pvanalytics v0.1.0

https://github.com/pvlib/pvanalytics

## Contents

| 1 | PVAnalytics Background        |
|---|-------------------------------|
| 2 | Package Features              |
| 3 | Algorithm Validation          |
| 4 | Documentation Updates         |
| 5 | Automated testing             |
| 6 | Community growth              |
| 7 | PVAnalytics v0.1.3 and Beyond |

## **PVAnalytics Background**

- Solar time series data can vary significantly in quality or lack critical metadata
- Several solar metrics dependent on data cleaning/filtering [1]
  - Performance loss rate (PLR)
  - Power production forecasting
  - Soiling loss
- PVAnalytics Python library: automated processing of solar time series data, including QA/QC
  - Data quality control and filtering
  - Identifying system characteristics, such as mounting configuration, tilt, and azimuth
  - Feature identification: clipping, day-night masking, clearsky detection
  - <u>https://pvanalytics.readthedocs.io/en/stable/</u>

[1] Lindig et. al. International collaboration framework for the calculation of performance loss rates: Data quality, benchmarks, and trends (towards a uniform methodology). Progress in Photovoltaics, 2021.

## PVAnalytics Background (Continued)

- Design Principles behind PVAnalytics:
  - Open-source: tested, documented, and reusable
  - Independent of analysis workflow
  - Collection point for code which implements published algorithms
  - Collaboration between Sandia and NREL
    - Started as DuraMAT project: DOE-led consortium for PV module reliability and durability
    - Functions adapted from Solar Forecast Arbiter [1] and NREL PV Fleets Initiative [2]

[1] https://solarforecastarbiter-core.readthedocs.io/en/latest/

[2] D. Jordan et. al. *Photovoltaic fleet degradation insights*. Progress in Photovoltaics, 2022.





PLR distribution from the PV Fleets Initiative [2]

### Package Features: Basic Time Series Filtering

#### **Outlier detection and filtering:** Hampel, Zscore, and Tukey filters

#### Stale data detection and filtering: Looks for consecutive repeating data

## Interpolated data detection and filtering





## Package Features: Advanced Time Series Filtering

### Detecting missing data periods: Assign daily data a "completeness" score



[1] K. Perry, M. Muller. Automated Shift Detection in Sensor-Based PV Power and Irradiance Time Series. 2022 PVSC.

#### Data shift detection and filtering:

Uses changepoint detection to find massive, abrupt capacity changes. Described further in [1]



NREL | 6

## Package Features: Feature Detection

- Day-night masking
  - Logic-based routine for masking day periods from night periods
- Clipping detection and filtering
  - Adapted from logic-based filter described in [1]
- Shading detection
  - Uses morphological image processing methods to identify shadows in GHI data [2]

[1] K. Perry, et. al. *Performance comparison of clipping detection techniques in AC power time series*. 2021 PVSC.

[2] Martin, C. E., Hansen, C. W., An Image Processing Algorithm to Identify Near-Field Shading in Irradiance Measurements, preprint 2016

Day-night masking on an AC power time series



## Package Features: Irradiance Checks

#### Compare GHI sensor-based Irradiance quality checks: **Clearsky period** data to clearsky data. Filter consistency and physical filtering: Reno clearsky where GHI is within daily limits of GHI, DNI, and DHI method (1) insolation limit using QCrad criteria RMIS GHI RMIS GHI RMIS DHI 1000 Clearsky GHI ا اrradiance [W/m2] ج 000 00 RMIS DNI Within Daily Insolation Limit QCRAD Consistent 00 800 Irradiance (W/m^2) 00 600 00 Ital 400 00 Horizon 500 00 200 Global 100 00 0 04 02 03 05 06 02 Feb 2019 03 04 05 Feb 2019 15:00 18:00 21:00 06:00 09:00 12:00 00:00 03:00 20-Jan Date Date

[1] Reno, M.J. and C.W. Hansen, "Identification of periods of clear sky irradiance in time series of GHI measurements" Renewable Energy, v90, p. 520-531, 2016.

NREL | 8

**Clearsky day filtering:** 

## Package Features: System Characteristics

- Mounting configuration
  - Fixed-tilt or single-axis tracking
  - Uses daily power profile to classify time series stream

#### • Azimuth and tilt

- Estimate using AC power time series
- Work in progress: multiple methods in package are currently being validated





## Algorithm Validation

- Continued validation of each algorithm
  - How well does each algorithm perform on labeled data sets?
    - Quantifiable metrics: accuracy and F1-score
    - Labeled data sets to encourage further development
- Technical documentation/publications benchmarking each algorithm's performance

https://datahub.duramat.org/project/example-data

| Project                                                                              | Example and Eva                                                                                                                                                                                                                                                                                                                                                         | luation Data - Datasets                                                                                                               |                 |  |  |  |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|
| rview                                                                                |                                                                                                                                                                                                                                                                                                                                                                         | lation Data - Datasets                                                                                                                |                 |  |  |  |
| ets                                                                                  | Project ID                                                                                                                                                                                                                                                                                                                                                              | e46c953f-0d84-41c8-9526-2a219                                                                                                         | 50e6c92         |  |  |  |
| s                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                       |                 |  |  |  |
| (3)                                                                                  | Search datasets                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                       |                 |  |  |  |
| shift (2)                                                                            |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                       |                 |  |  |  |
| raining (2)                                                                          |                                                                                                                                                                                                                                                                                                                                                                         | Order by:                                                                                                                             | Relevance       |  |  |  |
| L (2)                                                                                | Labeled Clearsky Period Data Set                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                       |                 |  |  |  |
| ng (2)                                                                               | Resource                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                 |  |  |  |
| -9 (/                                                                                | 1 Resource                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                 |  |  |  |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         | I minute-interval data for the NREL Sanyo 1 system. The C                                                                             | SV contains the |  |  |  |
| series (2)                                                                           | This dataset contains labeled clearsky periods for 1                                                                                                                                                                                                                                                                                                                    |                                                                                                                                       | SV contains the |  |  |  |
| series (2)<br>ing data (2)<br>imated (1)                                             | This dataset contains labeled clearsky periods for 1 following columns: measured_on (the timestamp                                                                                                                                                                                                                                                                      |                                                                                                                                       | SV contains the |  |  |  |
| series (2)<br>ing data (2)                                                           | This dataset contains labeled clearaty periods for<br>following columns: measured_on (the timestamp<br>inverter Clipping ML Training Set - Real<br>64 Resources<br>Real PV Field data for evaluating, validating, or train                                                                                                                                              |                                                                                                                                       |                 |  |  |  |
| series (2)<br>ing data (2)<br>mated (1)                                              | This dataset contains labeled clearsky periods for 1<br>following columns: measured_on (the timestamp                                                                                                                                                                                                                                                                   | l Data                                                                                                                                |                 |  |  |  |
| series (2)<br>ing data (2)<br>imated (1)<br>ning (1)                                 | This dataset contains labeled clearaty periods for<br>following columns: measured_on (the timestamp<br>inverter Clipping ML Training Set - Real<br>64 Resources<br>Real PV Field data for evaluating, validating, or train                                                                                                                                              | l Data                                                                                                                                |                 |  |  |  |
| series (2)<br>ing data (2)<br>imated (1)<br>ining (1)<br>issky (1)                   | This dataset contains labeled clearaty periods for 1<br>following columns: measured_on (the timestamp                                                                                                                                                                                                                                                                   | I Data                                                                                                                                | ents.           |  |  |  |
| series (2)<br>ing data (2)<br>mated (1)<br>ning (1)<br>sky (1)<br><b>V More Tags</b> | This dataset contains labeled clearaty periods for 1<br>following columns: measured_on (the timestamp                                                                                                                                                                                                                                                                   | I Data<br>ling machine learning algorithms to recognize clipping eve<br>ss that are labeled for abrupt data shifts. The data, which i | ents.           |  |  |  |
| eries (2)<br>g data (2)<br>anated (1)<br>ing (1)<br>ky (1)<br>More Taps<br>titution  | This dataset contains labeled clearaty periods for 1 following columns: measured_on (the timestamp                                                                                                                                                                                                                                                                      | I Data<br>ing machine learning algorithms to recognize clipping eve<br>is that are labeled for abrupt data shifts. The data, which i  | ents.           |  |  |  |
| eries (2)<br>g data (2)<br>sated (1)<br>ng (1)<br>More Tags<br>More Tags<br>(10)     | This dataset contains labeled clearsky periods for 1<br>following columns: measured_on (the timestamp<br>Inverter Clipping ML Training Set - Real<br>64 Resources<br>Real FV Field data for evaluating, validating, or train<br>https://doi.org/10.21948/1874779<br>Labeled Time Series Data Shifts<br>1 Resource<br>This data set includes 101 daily summed time serie | I Data<br>ing machine learning algorithms to recognize clipping eve<br>is that are labeled for abrupt data shifts. The data, which i  | ents.           |  |  |  |

Publicly available, labeled data sets on the DuraMAT DataHub

## Documentation: Example Gallery

- Example gallery for majority of the package functions (v0.1.2)
  - Example data for running each algorithm
  - Plots illustrating algorithm results

| API Reference                                                                                                                                                                                                                           | Example G                           | allerv                                 |                                         | Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Example Gallery <ul> <li>Z-Score Outlier Detection</li> <li>Tukey Outlier Detection</li> </ul>                                                                                                                                          | This gallery shows examp            | e e                                    | onality. Community contributions a      | Click here to download the full example code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Hampel Outlier Detection     Clear-Sky Detection     Interpolated Data Periods     Clearsky Limits for Daily     Insolation     Data Shift Detection &     Filtering     Clearsky Limits for     Irradiance Data     Stale Data Periods | welcome!                            | Tukey Outlier<br>Detection             | Hampel Outlier<br>Detection             | Clearsky Limits for Daily<br>Insolation<br>Checking the clearsky limits for daily insolation data.<br>Identifying and filtering out invalid irradiance data is a useful way to reduce noise du<br>ing analysis. In this example, we use<br>pvanalytics.quality.irradiance.dsily_insolation_limits() to determine when th<br>daily insolation lies between a minimum and a maximum value. Irradiance measure-<br>ments and clear-sky irradiance on each day are integrated with the trapezoid rule to o<br>culate daily insolation. For this example we will use data from the RMIS weather syst<br>located on the NREL campus in Colorado, USA. |
| Clipping Detection     Qcrad Limits for     Irradiance Data     Missing Data Periods     Qcrad Consistency for     Irradiance Data     Day-Night Masking     Release Notes     Quick search                                             | Clear-Sky Detection                 | Interpolated Data<br>Periods           | Clearsky Limits for<br>Daily Insolation | <pre>import puanalytics<br/>from puanalytics.quality.irradiance import daily_insolation_limits<br/>import public<br/>import pathlib.<br/>First, read in data from the RMIS NREL system. This data set contains 5-minute right<br/>aligned data. It includes POA, GHL, DNL, DHL, and GNL measurements.<br/>puanalytics_dir = pathlib.Path(puanalyticsfile).parent<br/>rmis file = puanalytics dir / 'dradiance RMIS NREL.csv'</pre>                                                                                                                                                                                                              |
| Go                                                                                                                                                                                                                                      |                                     |                                        |                                         | <pre>data = dg.read_csx(rmis_file, index_col=0, parse_dates=True) # Noke the datetime index tz-aware. data.index = data.index.tz_localize("Etc/GMT+7") Now model clear-sky irradiance for the location and times of the measured data:</pre>                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                         | Data Shift Detection<br>& Filtering | Clearsky Limits for<br>Irradiance Data | Stale Data Periods                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

https://pvanalytics.readthedocs.io/en/stable/generated/gallery/index.html

## Apply PVAnalytics to Your Own Data

#### How can you easily implement PVAnalytics functions to your own data?

CSV containing data streams (power, irradiance, temperature) is labeled as False. The data is sampled at 15-minute intervals.



Import CSV into our example documentation, and change any metadata parameters (lat-long coordinates, data frequency, etc)



https://pvanalytics.readthedocs.io/en/stable/generated/gallery/index.html

NREL | 12

## Documentation: Function Descriptions

- Page for each model function containing:
  - Brief description
  - Input parameters: data type, description
  - Outputs: data type, description
  - Published reference for the function, if applicable
  - Additional notes as needed
  - Examples in the gallery using the function

| nalytics.quali                      | <pre>ty.gaps.stale_values_diff(x, window=6, rtol=1e-05,<br/>'toi!')</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Identify stale val                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                     | length N, the last value (index N-1) is considered stale if all values<br>e close to the first value (index 0).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Parameters rtol                     | and <i>atol</i> have the same meaning as in <b>numpy.allclose()</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Parameters:                         | <ul> <li>x (Series) - data to be processed</li> <li>window (int, default 0) - number of consecutive values which, if unchanged, indicates state data</li> <li>rtol (float, default 1e-5) - relative tolerance for detecting a change in data values</li> <li>atol (float, default 1e-5) - absolute tolerance for detecting a change in data values</li> <li>mark (gtr, default 1e-1) - absolute tolerance for detecting a change is data values</li> <li>imark (gtr, default 1e-1) - absolute tolerance for detecting a change is idetected. Can one be of 'tail', end', or 'all'.</li> <li>if 'tail' (the default) then every point in the window except the first point is marked True.</li> <li>if 'all' then every point all subsequence sequence are marked True.</li> <li>if 'all' then every point in the window including the first point is marked True.</li> </ul> |
| Returns:<br>Return type:<br>Raises: | True for each value that is part of a stale sequence of data<br>Series<br>ValueError – If window < 2 or mark is not one of 'tail', 'end', or<br>'all'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Notes                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LICENSES/SOL<br>distribution and    | m/pvlib/pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| xamples u<br>/analytic              | sing<br>s.quality.gaps.stale_values_diff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Function description for

pvanalytics.quality.stale\_values\_diff

https://pvanalytics.readthedocs.io/en/stable/api.html

## Automated Testing

- Comprehensive unit-testing for all package functions
  - ~100% test coverage
  - Uses Pytest and Coveralls
- Since package is in its infancy, no speed benchmarks have been taken (yet!)

# 30 checks passed Image: Constraint of the state s

Package checks required to pass before merging PR

Int and test passing coverage 100% DOI 10.5281/zenodo.6110569

Current test coverage

## Community growth

- Github
  - 88 completed pull requests
  - Code contributions from 6 people (see lower right)
- Lots of opportunity to increase community growth as PVAnalytics is still in its infancy
- You can contribute!
  - Generate issues for features you'd like to see, add code via our PR process, etc.



#### Github stars over time



Special thanks to all our contributors!

## PVAnalytics v0.1.3 and Beyond

- No expected ETA for next release but we're actively working on new functions/documentation
- Future version features:
  - Daylight savings time (DST) and time-drift detection algorithms for time series
  - Adding plotting module to easily validate time-series data visually

## Thank you!

#### www.nrel.gov

#### kirsten.perry@nrel.gov

This work was authored in part by Alliance for Sustainable Energy, LLC, the manager and operator of the National Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office (SETO) Agreement Number 38258. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

