

Quantifying Mismatch Losses in Small Arrays

Sara MacAlpine Michael Brandemuehl Robert Erickson University of Colorado Boulder

Presented at the 2013 Sandia PV Performance Modeling Workshop Santa Clara, CA. May 1-2, 2013 Published by Sandia National Laboratories with the Permission of the Author

Brief Overview

- Mismatch Losses Definition and Significance
- Research Goals
- Data Collection
- Module Parameter Variation
- Mismatch Losses -- Examples

Mismatch Losses – Definition and Significance

• Electrical Mismatch Loss = $\frac{\sum P_{Mod,Max} - P_{Sys,Max}}{P_{Sys,Max}}$

- Unshaded systems with uniform module orientation
- Includes manufacturer's performance tolerances and degradation-induced mismatch between modules
- Includes spatial variation of incident radiation and module temperature

Mismatch Loss = Recoverable Power

Research Goals

Quantify typical module-to-module performance variation and associated losses in installed PV arrays

- How accurate is standard 1-2% mismatch derate?
- How do losses vary with operating conditions?
- What is the impact of system age?
- Are losses PV technology dependent?

Data Collection: System Design

Simultaneous I-V curves at the module level

Data Collection: I-V Curve Sweeps

- High (~1000 W/m²) and low (~250 W/m²) light levels
- 1 minute I-V sweep
- Plane-of-array irradiance and back-of-module temperature averaged over curve sweep
- Multiple run data taken under similar conditions

Single Diode Model Fitting

No

Yes

Arrays

- Newer (< 5 years) and older (5-11 years) systems
- Residential sized (~1-5kW)
- Crystalline silicon, thin film (CdTe, CIS/CIGS, a-si), and hybrid technologies
- Located in Arizona, Colorado, and New Mexico

Arrays

Newer Systems		Older Systems			
Array	# M odules	Array	# Modules	Array	# Modules
Mono 1A	24	Mono 1B	21	Hybrid 1B	8
Mono 2A	9	Mono 2B	21	Hybrid 2B	8
Poly 1A	30	Mono 3B	27	Thin 1B	14
Poly 2A	15	Mono 4B	20	Thin 2B	32
Poly 3A	11	Mono 5B	9	Thin 3B	27
Hybrid 1A	12	Mono 6B	18		
Hybrid 2A	15	Poly 1B	21		
Thin 1A	20	Poly 2B	21		
Thin 2A	24	Poly 3B	18		
Thin 3A	24	Poly 4B	10		
Thin 4A	24	Poly 5B	32		

Module Parameter Variation

- Examine distributions of Isc, Voc, Imp, Vmp, Pmp for each array
- Measurement uncertainty ~1% or less for voltage and current, ~2% or less for power
- Focus on:
 - \circ Isc Variations in absorbed radiation across array
 - Imp Main contributor to mismatch in series strings
 - \circ Pmp Reflects both current and voltage variations

All coefficients of variation reported as average absolute deviation (AAD) from the mean

Module Parameter Variation - Isc

- Isc mismatch generally low (2% or less)
- More mismatch at low irradiance
- Arrays with most mismatch are newer

Module Parameter Variation - Imp

- Imp mismatch not directly tied to Isc mismatch
- No direct correlation between mismatch and array age

Module Parameter Variation - Pmp

Some arrays see significantly more mismatch in power than in current due to module voltage mismatch

Array Mismatch Losses

- Losses mostly < 1%
- Highest and lowest losses in older arrays
- Slightly greater losses under low irradiance conditions

Well matched curves – very little loss

High: single current outliers cause little lossLow: wide current variation around Imp causes greater loss

High: significant shunting/fill factor mismatch lossesLow: some current and voltage mismatch, but low mismatch loss

High: single voltage outlier causes little loss Low: voltage outlier + wider Imp/Vmp distributions increase losses

Short, parallel strings + voltage mismatch = significant losses Percent loss increases (blue) if considering central inverter voltage limits

Summary

- Standard 1-2% mismatch derate is reasonable (may overestimate) for 21st century PV arrays located in Southwest U.S. climate
- Mismatch losses tend to be higher under low irradiance conditions
- Mismatch losses depend more on an individual array's modules and configuration than on age or technology

Ongoing Work

- Annual simulation of mismatch losses
- Mismatch loss analysis for thin film arrays
- Investigation of higher degrees of mismatch and associated losses
- Extrapolation of results to larger arrays

Credits

This work was made possible by generous support from the following entities:

- The National Renewable Energy Laboratory (NREL)
- Sandia National Laboratories
- The National Snow and Ice Data Center (NSIDC)
- The University of Arizona Solar Energy Research group

References

S. MacAlpine, C. Deline, M. Brandemuehl, and R. Erickson, "Measured Module Performance Variation and the Opportunity for Distributed Power Electronics: Analysis of 27 PV Arrays in the Southwestern U.S," 39th IEEE PVSC, Tampa, FL, 2013

D.C. Jordan, J.H. Wohlgemuth, and S.R. Kurtz, "Technology and Climate Trends in PV Module Degradation," 27th EU PVSEC, Frankfurt, Germany, 2012.

E. Kopp, V. Lonij, A. Brooks, P. Hidlago-Gonzalez, and A. Cronin, "I–V curves and visual inspection of 250 PV modules deployed over 2 years in Tucson," 38th IEEE PVSC, Austin, TX, 2012.

P. Bakas, A. Marinopoulos, and B. Stridh, "Impact of PV Module Mismatch on the PV Array Energy Yield and Comparison of Module, String, and Central MPPT," 38th IEEE PVSC, Austin, TX, 2012.

S. MacAlpine, C. Deline, M. Brandemuehl and R. Erickson, "Module Mismatch Loss and Recoverable Power in Unshaded PV Installations," 38th IEEE PVSC, Austin, TX, 2012.

W. Damm, D. Heinimann and D. Pukrop, "Power losses in PV arrays due to variations in the I-V characteristics of PV modules," in *ISES Solar World Congress*, 1995.

