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Data Analytics of Complex Systems

" time zero 100hr

Materials are parts of a Complex Systems:

 Coatings on Complex Substrates
* Used in Complex Environmental Exposures and Climate Zones

Materials Degradation Predictive & Mechanistic Models

* Predictive Modeling of Materials Degradation
* Mechanistic Network Models To Guide New Materials Development
 Cross-correlation of Real-world and Accelerated Studies for Service Life

Image Processing

 Develop Pipeline Methodology, Apply to Historical Datasets
* Cluster Output and Compare Cell-level Heterogeneity with 1-V

Machine Learning

+ Classifying Stages of Degradation: Identifying Feature Change Over Time
* Cluster Cell Behavior to Model of Ensemble Performance
» Determine Features Variation with Indoor Testing, Compare / Contrast

Time Series Analysis

* High Performance Computation / Data Pipelining for Rd Analysis
» Subset Datasets by Climate, Module Brand, Inverter Brand

Sample Sets of Systems such as PV power plants
« Sample Set Segmentation, Identify Performance Changes and Variations
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CRADLE v2.1 Architecture: Petabyte and Petaflop Computing

National Strategic Computing Initiative 2015
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CRADLE v2.2 Architecture: Petabyte and Petaflop Computing
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NoSQL DB Abstraction of Hadoop/Hbase

Columnkey ‘ ‘ ’ ‘
(string) ‘ . . . 1 2
Val
(str?nlgjeor ( )_: —> O ‘ ‘ —> O 3 4
binary file) . ‘ ‘ ‘
2 516

HBase ‘Triple’

Combines Lab data (Spectra, Images etc.) With Time-series Data (PV Power Plant Data)

High Performance PV Data Analytics: Petabyte Data Warehouse In A Petaflop HPC Environment

*In-place Analytics: Distributed R-analytics in Hadoop/HDFS
*In-memory Data Extraction: To Separate HPC Compute Nodes

A non-relational data warehouse for the analysis of
field and laboratory data from multiple
heterogeneous photovoltaic test sites

IEEE JPV

Yang Hu, Member, IEEE, Venkat Yashwanth Gunapati, Pei Zhao, Devin Gordon, Nicholas R. Wheeler,
Mohammad A. Hossain, Member, IEEE, Timothy J. Peshek, Member, IEEE, LLaura S. Bruckman,
Guo-Qiang Zhang, Member, IEEFE, and Roger H. French, Member, IEEE
GREAT LAKES Hu, Y., V. Y. Gunapati, P. Zhao, D. Gordon, N. R. Wheeler, M. A. Hossain, T. J. Peshek, L. S. Bruckman, G. Q. Zhang, R. H. French. “A Nonrelational Data Warehouse for the AnalyngiD |_ E

and Laboratory Data From Multiple Heterogeneous Photovoltaic Test Sites.” IEEE Journal of Photovoltaics 7, no. 1 (January 2017): 230-36. doi: .
SDLE Research Center, Materials Science & Engineering Department, Roger H. French © 2017 December 11, 2017, VuGraph 8
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Real-world Data Source: CWRU SDLE Global SunFarm Network

SDLE PV Data Covers ~3.4 GW

Encompasses 1.92% of Global PV Power Production

« 787 PV Project Sites

*5638 PV Systems (Inv. & Modules)

* 60 PV Module Brands/Models

« 38 PV Inverter Brands/Models

* Across 13 Koppen-Geiger Climatic Zones
* Single Modules to 265 MW plants

» Going Back Up To 15 years

United 'States

Latitude

Epidemiological PV Populations
« Of Time-series data streams
 Real-world power production
» Real World Exposure Conditions
* Operating Over Real Time-scales

Latitude

11 Different Companies Have Sighed On

* To our Data Use Agreement
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ETL and Data Ingestion to Hbase Data Sources Data Acquisition System |
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« Standard process for data acquisition

 Typically into an RDBMS system
Relational Database Management System
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Time-series Analysis of Real World PV Systems
To Determine Rate Of Change (ROC)

Alan Curran, JiQi Liu, Yang Hu

SDLE Research Center
Case Western Reserve University
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Other ROC Methods: Responsivity Method

The Responsivity is a standard method .
For determining a system degradation rate :

 Has started to fall out of favor recently

Data is subset and reduced to performance ratios _
And data filters are applied
« Convert data to a given irradiance and temperature
usually STC

* Most notably a deviation filter removes data points
that lie outside a given standard deviation

* Assumes a linear trend

responsivity

Results can be influenced
by selection of data filtering thresholds

Our MbM method aims to reduce Tiriosbai

the amount of human interference in the data

» Automated process
* Removes far less data

An example of a Responsivity method fit

The data shows high variance,
leading to a less robust regression

GREAT LAKES
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Other ROC Methods: Year-on-year Degradation

D 6 d ,A.\

PVLife Model developed by SunPower? /

Tracks the slope between data exactly one year apart |
* Large distribution of slopes / \
* Median of distribution gives good estimate of the system ROC |
« Highly robust to missing points or outliers 041 |

Which can influence traditional regression o \,

variable

/ ‘ | Regression

Can be used with the MbM method to track differences
between each month by year

* More robust ROC determination J \

If data is messy or contains outlier months 02 | \
 Especially useful in areas with harsh winters / " A £ \

Lots of snow and cloud cover [ | \
* YbY analysis gives a much narrower and reasonable ROC I

Shown for 100 inverters in example to right ‘ \

Density

[ | vy

0.04 - e

0
ROC (%lyear)

ro

GREAT LAKES  Ernest Hasselbrink et al., “Validation of the PVLife Model Using 3 Million Module-Years of Live Site Data,” in IEEE 39th

IEI\'}'SET'T%"T . Photovoltaic Specialists Conference (PVSC), 2013, pp. 0007-0012.
SDLE Research Center, Materials Science & Engineering Department, Roger H. French © 2017 December 11, 2017, VuGraph 16
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Type = Humidity/Wetness
Subtype = Temperature/Temperature Range

Koppen-Geiger Climatic Zones

World map of Képpen-Geiger climate classification f Rainforest Pmin = 60mm
A-Tropical m Monsoon Al el
Tmin2 +18°C 5 mm z
Savanna Pmin <60 mm in
i winter
w Desert Pann <5 Pth
B-Arid s Steppe Pann > 5 Pth
Pann < 10 Pth Hot Tonn 2 +18 °C
Cold Tann < +18 °C
S Dry Summer
& Psmax > 10 Pwmin,
= Dry Wintex Pwmin < Psmin
f Wiitheutdoy Not Cs or Cw
C-Temperate season
-3°C < Tmn < +18°C Hot Summer T > 22°C
Warm Summer Tmax < +22 °C, 4 Trmon 2
+10 °C
Cold Summer Tmax < 422 °C, 4 Tmon <
+10 °C, Tmin > -38 °C
s Drv Summer Psmln < Pwmlm Pwmax >3
Psmin Psmin < 40 mm
Peel, M. C. and Finlayson, B. L. - Af - BWh I ICsa l |Cwa [ ]Cfa - Dsa | |Dwa I | Dfa I | ET w Dry Winter Ps':: >‘ ioppw-mln,
Wniversityof metbourney | I Am [ Bwic [T csb (I cwb [ cfb [N ost (I owb [0 ors [ e Without dry
[ aw [Tesh [ cwe [ crc (NN osc [N owc [N ot ! season HatDsory
‘ectorization by : Ali Zifan D- o
Yectoriarionby 1 AL2 :I Bk - Dsd - Dwd - bfd Cold(Continental) Hot Summer Tt 2422 °C
N H Tmin £-3 °C
Generated based on precipitation and temperature ' Warm Summer | Tmex< 122 °C, 8 Toen
* Begun in 1884, further classified 1954 Tame ©427.°C, A Traan =
. . ] . Cold Summer +10 °C. Toin > 38 °C
 Consistent and comprehensive climatic zones =
. . . Very cold Winter| ™ e ner
29 total K-G Climatic Zones defined KGC R package +10 °C, Ty S -38°C
A . T Tundra Tmax 2 0 °C
« Understand environmental stressors Published on CRAN E-Polar =
Tmax < +10 °C Frost(lce cap)

GREAT LAKES Peel, M. C.; Finlayson, B. L.; McMahon, T. A. (2007).
ENERGY o

.Hydrol. Earth Syst. Sci. 11: 1633—%4.[) |_ E
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Filter Powerplant 7
MOnth-by-MO nth ROC MethOd from Meta Table - Month-by-Month (MbM)]
L . pipeline
Rate of Change: ROC Run fleets of
SLURM jobs
Underlying assumption: Fetch po'vverplant .
. . i timeseries rc.ce
* Train an un-biased regression model I
» System performance change is a long-term phenomena Get weather data } csifs
No obvious degradation within 30 days : — |
. Merge weather &
Data analytic procedure Power dataset R
. . . T v vy — ¥
* Use all qlata, not excessive filtering - pmcse e — ﬁpower — ﬁweathe
 Categorize data by age :
cleaning
Every 30 days considered a pseudo-month M
Monthly subset HBase
Psuedo-Month Predictive model|( B model )
» Use monthly regression models Sooet MbM [ model ]ligb
ootstrap .
* A snapshot of the system status Calculate predicted
. power & std. error rc:cp
* Predict system performance each Month
To same climate condition Weighted
MbM € model regression fitting rcceb
) model
Longitudinal Regression Model|(§ model ) Degradation rate
« Don’t assume linear degradation rate —
Enable Piece-wise Regression Models of Change Rate e
» Use bootstrap approach to estimate the uncertainty uncertainity Packages & Functions: _
rc::cf - rcradletools::cradle_filter()
rc.:cg - rcradletools::cradle_get()
rc::cp — rcradletools::cradle_put()
el rc::cgb - rcradletools::cradle_get_binary()

Running parallel slurm jobs cs::fs — cradlesgis::fetch_solar()
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Power Plant m4img2n: 15 years, BSk Arid-Steppe-Cold

Horizontal Irradiance 850 w/m? Ambient Temperature 25 C Windspeed 1m/s

Each data point is predicted output in that month
Normalized to a standard environmental condition,
Error bars shows predictive error. &

ROC = 0.67%/year
(statistically significant)

* Predicted MbM value exhibits seasonality

« Seasonality get stronger ©
after 50 months

Predicted AC power (KWV)
10

T T T T
0 50 100 150

Aae of the system (months)

Change Point: 53rd month

-4 years and 5 months T

- “Segmented” change-point R package £ = | I
% o | 52.994

0] 50 100 150

Age of the system (months)
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Seasonality

Strong seasonality can be seen in the trends
Time-series classical decomposition can remove this

at GHI 557.3 wim*2, ambient temp 24.4 C, wind speed 1.85 m/s palyun at GHI 557.3 (W/m~2), ambient temp 24.4 (C), wind speed 1.85
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Snow Detection

Snow coverage can cause anomalies

* By preventing power output but not affecting irradiance detection

* Logs are sometimes available that identify snow days, these are stored as metadata

Snow is tracked by looking at the slope between power and irradiance for every day
* The slope distribution is not normal,

* As snow strongly negatively affects the slope

K means clustering with 2 clusters can be used to separate most of the snow days
* Red points are identified as snow days

800~
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400-
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200~

0 500
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Clear Sky Identification

Clear sky correction reduces noise in data

» And is robust against sensor drifting

» SolarGIS weather data does not drift over time
as a ground sensor might

1000-
Clear sky points are detected using PVIib-Python?
* Clear sky points shown with red dots on the plot 750-
* Clear sky points show less noise <
* Sensor GHI can be replaced with SolarGIS GHI = ‘Tﬁi
to prevent the influence of sensor drifting 8 50p- — .
._g = SolarGlS_GHI
©
SolarGIS data is automatically queried and stored =
* In the Hbase weather table 250-
* For a given latitude, longitude, and time interval
* Allows for easy integration into MbM pipeline
U-
Jun24.00:00 Jun2406:00 Jun2412:00 Jun24 18:00 Jun 25 00:00

Time

GREAT LAKES 1. W. F. Holmgren, R. W. Andrews, A. T. Lorenzo, and J. S. Stein, “PVLib-Python 2015,” in 2015 IEEE 42nd PVSC, 2015, pp. 1-5.
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Interpreting ROC Results

Pipelining allows the automatic analysis

* Of massive numbers of PV systems 0-
* Basis for statistically significant findings
Instead of observational reports

Rate of Change distributions can be used 1- : {

Cell Type

* To identify performance variations as function the predictors
» Such as module brand, climate zone, or cell type

System Change Rate Histogram

Mono Pély
25- ROC (%/year)
Boxplot of Fower Change Slope Distribution of each Manufacturer
5.0- *
1 -
20- 1 s -
= mod_name
@ 25- T B3 A
15- = 1 =[]
= = 1 B3c
= @
3 > Ea0o
10- | L £ oo- BSc
| o E3F
- T S el
: ::
5- -2.5- B
=N
o qblod b blhes o ! . |
| | | | . -5.0-
-10 5 0 5 10 A B c D E F G H ' J
Change Rate (%/year) Module Brand
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Analysis of Variance Across 9 Climate Zones

10- . Mean of ROC in each Climate Zone
3 % show large variance
. ) - - Dfb mean is over +5%/year
i | g - Csa mean is about -2%/year

5 -
tl.'l ‘3%
=
S i L :
E ?:\ o ;'Teh op . .
5 - | T S Y S E — There may be confounding variables
2 T . ? ° That influence the change rate
g | |
_E [=}
Q o

_5-

: Develop statistical models
00 To help solve the problem.
-10-
Am BSh BSk BWh Cfa Csa Csb Dfa Dfb
ClimateZ
Tropical Arid Temperate Cold
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Energy & Materials Data Science: Encompassing Broader Opportunities

Where we started: Lifetime and Degradation Science

* Focusing on PV Modules Degradation Over 25 year
Now Shifting Focus to 50 years
And To High Efficiency c-Si PERC Modules

Expanding Across All Data Types
* Time Series Analysis of Power/Energy Data: Power Plants, Building Energy Efficiency
* Spectral Analysis: Materials Degradation and Mechanistic Identification
* Image Processing: Electroluminescent, Thermographic, Optical, Video Images

Expanding Beyond Time-series Analysis and Network Modeling

* Machine Learning

* Ensemble Modeling

* Deep Learning

* From NoSQL Databases, to NoSQL Document Databases

Expanding Beyond Long Term Degradation, Into Data-driven Analysis & Modeling

« Solar Irradiance Forecasting
* Research and Data Text Mining
* Information Security and CyberSecurity (VerisDB)

GREAT LAKES
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Abstract

As solar power becomes a larger source of electricity and power for locations, it
becomes increasingly important to fully understand and predict the power output of solar
modules over their entire lifetime. Traditional solar module degradation tests are done
under accelerated exposure environments, where the conditions are more aggressive than
an outdoor environment, with the intent of testing the lifetime performance of a module
within a more reasonable time scale. While these tests are certainly important, they can be
either over or inadequately aggressive; therefore it is also critical to monitor real-world,
outdoor power plants degrading under actual real-world exposure conditions. A
combination of the two methods provides the best rate of change (ROC) or lifetime
performance prediction of PV power plants, with indoor exposures degrading modules in a
shorter time span, and outdoor modeling giving insight into the actual degradation patterns
of systems and providing a comparison, by cross-correlation, of accelerated and real-world
degradation.

With this in mind, the SDLE Research Center is developing data-driven modeling of
ROC for PV systems based on a massive collection of time series data from numerous PV
systems, both research and commercially fielded, including a variety of ages, brands,
module types, and climate zones. To analyze and manage data from diverse PV plants, we
have developed Energy- CRADLE, an automated data acquisition, management and
analytics pipeline. The Energy- CRADLE is built in a high performance computing (HPC)
environment which leverages distributed computing features of HBase/Hadoop and Spark
cluster for distributed storage and parallel computing. We have also developed R and
Python packages for integrating with HBase tables. For cross-sectional study of running on
100s of PV systems, we use fleets of parallel jobs via the SLURM workload manager.

While commercially fielded PV power plant data sources may be of a lower quality than
research focused PV sites, being able to use data from commercial plants greatly increases
the length of time series datasets available for analysis, making it a unique, at-scale
resource for cross-sectional studies of thousands of PV systems. This large scale data
collection is used to determine what the degradation patterns of real world systems are as a
function of location, climatic zone, PV module and inverter brands and what factors might
affect the behavior of PV modules over time. The current scope of the data available
includes thousands of PV system inverters located across hundreds of sites with power
capacities from single modules to hundreds of megawatt plants, located across many
different climate zones.

GREAT LAKES
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Given the large scale, heterogeneity and diversity of the data between the PV systems, a method
had to be developed to determine the rate of change, or the rate at which the power output changes
over time, for each PV system consisting of PV modules and their inverter. As this data comes from
many sources, there are inconsistencies between datasets, such as different available variables, data
quality, or the data capture interval, that the method had to be able to accommodate. The Month-by-
Month (MbM) method was developed at the SDLE Research Center with these problems in mind,
being able to handle various intervals of data, as well as different variables, the most common of
which being different irradiance measurements. The MbM method consists of three models, the g
Pseudo-month Predictive Model divides the data into 30 day long “pseudo-months” where it is
assumed that negligible degradation occurs over the 30 day time period. A multiple linear regression
model is built for each pseudo month based on the given environmental variables, such as irradiance,
temperature, and wind speed. Once a model has been built for each month, representative weather
conditions are determined for the given PV system which are the average temperature, the average
wind speed, and the minimum value of all the peak irradiances for each pseudo-month. The
representative weather conditions are applied to each g model and predicted power outputs for each
month are determined. Once the predicted power for each month has been determined, the §
Piecewise Regression Model uses a weighted regression to calculate the rate of change of the system
(%/year) from the slope and y-intercept of the predicted power over time. The § model is weighted to
the standard errors for each g model, improving the robustness of the method by reducing the
influence or noisy or less precise pseudo-months. Once the rate of change for each system is
determined, a y Cross-Sectional model of the rate of change as a function of the metadata for the PV
systems, such as module brand or climate zone, providing insights into the factors causing more or
less severe power loss in these outdoor PV systems.

Seasonal decomposition is used to reduce the impact of seasonality on the calculated rate of
change. Fluctuations in power can be seen as a yearly cycle with the seasons, potentially influencing
the calculated rate of change. Performing time series seasonal decomposition to isolate the seasonal
and trend components of the power time series so as to reduce the influence of seasonality on the
ROC results. Clear sky identification is the latest addition to the MbM analysis pipeline. Modeled
weather data, derived from satellite imagery combined with an empirical atmospheric model, is pulled
from SolarGIS for each PV system as supplemental weather data. By comparing the modeled weather
conditions from SolarGIS and the measured weather conditions from the system, the clear sky, or
points at which there was no cloud cover, can be identified. This identification is done using the
PVLib-Python open source library. Clear sky identification has many benefits. Isolating clear sky
points can reduce the noise of the data and ensure that the conditions are similar between two given
points. Most importantly, however, is it can be used to track sensor drifting which can be highly
problematic in long term time series. The SolarGIS data can also be used as a supplement if sensor
drifting is observed, as the SolarGIS data will not drift over time.
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