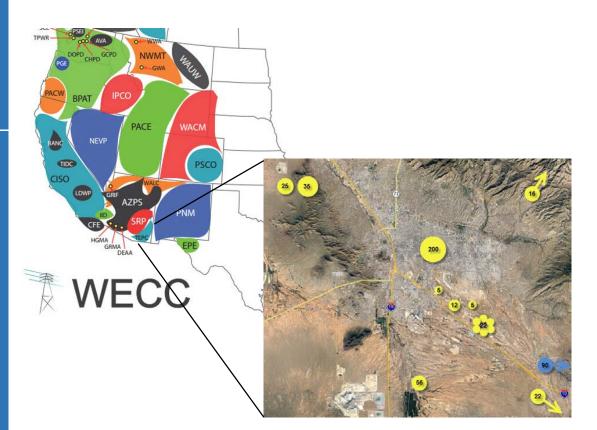
Tucson Electric Power

JEFF KRAUSS MANAGER, RENEWABLE ENERGY RESOURCES PV SYMPOSIUM MAY 3, 2018

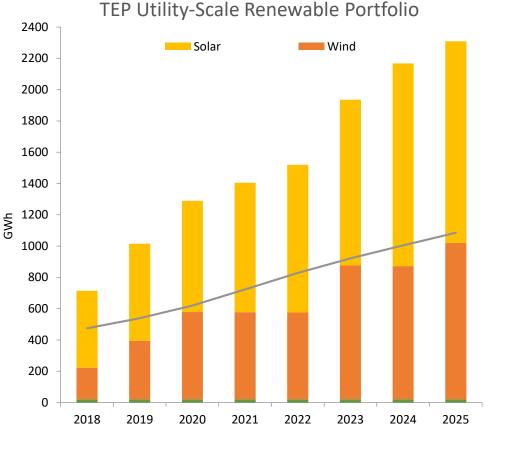


TEP

Tucson Electric Power

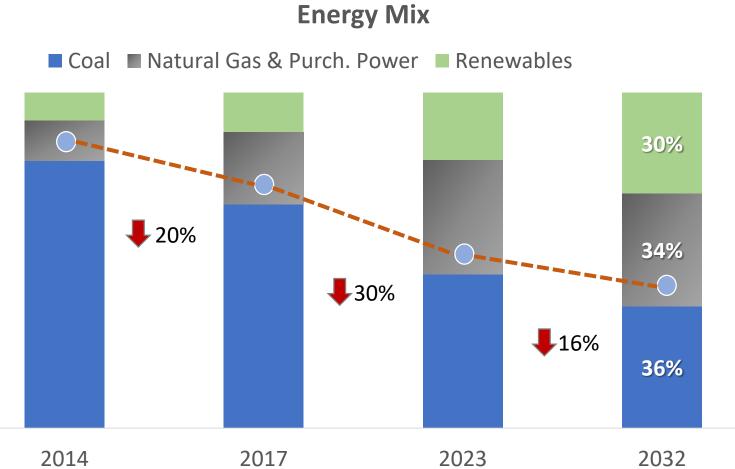
- ~420,000 customer over 1,000 square miles
- Vertically integrated w/ Balancing Authority
- 1,000 MW winter peak
- 2,500 MW summer peak

Arizona Corporation Commission



Arizona Renewable Energy Standard TEP's Goals

- Annual renewable goals increase 1% each year to 15% in 2025
 - 8% in 2018


TEP's Commitment

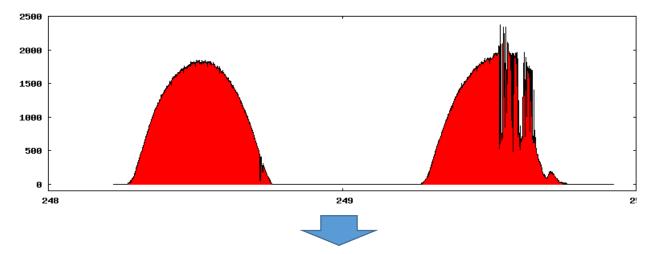
- TEP plans to reach 30% by 2030
- Planned additions of 800-1000 MW over next 10 years

Diversifying TEP's Resource Portfolio

TEP and Renewables

• ≈ 350 MW Utility-Scale

- Wind (80MW)
- Solar (270MW, mostly PPA)


- ≈ 240 MW Residential and Commercial Distributed Generation (DG)
 - Additional ~40 MW in 2017



TEP's Roller Coaster

Operator Challenges From Intermittency

Overview of Problems

- Frequency support reserves requirement
 - Increased # of spinning generators
 - Must back up renewables generation
 - New BAL-003 Standards
- TEP Increasing Renewables
 - Over generation in day
 - Ramping to meet peak
 - Renewable firming expense

Voltage during faults

- Remote generation creates "soft spots" near load results in oscillations
- Voltage falls to 0.6PU on 138kV lines for 5 cycles
- Residential DG disconnects
- Energy Delivery
 - Low voltage in summer
 - High voltage in winter
 - Single phase return power
 - Optimizing power delivery

Is an Energy Storage System the Answer?

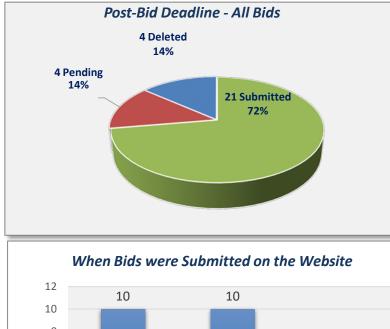
Why Homer is Wrong

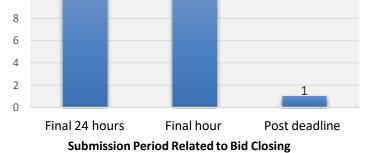
RFP Process Use Case Assumptions

- Solon selected to author Use Case:
 - 325kW BESS installed at U of A Tech Park
 - Studying frequency response

- 10 MW ESS would be large enough to have a meaningful effect and still be economically viable
- 10 MW only represents a small % of TEP peak load. Best use would be for frequency response device
- An ESS would be more effective and economic in meeting requirements for NERC BAL-003-1

10


RFP Timeline


•	ESS RFP in Implementation plan	July 2014
•	Solon Corp hired to write use case	Sept 2014
•	Use Case completed	March 2015
•	RFP released	April 2015
•	Bidders Conference	May 2015
•	Site Walk	May 2015
•	RFP Closed	June 2015
•	Winner(s) Selected	August 2015
•	ESS contract(s) Execution	February 2016
•	Ground Breaking	March 2016
•	C.O.D 1	January 27, 2017
•	C.O.D. 2	March 31, 2017

2 1/2 Years from inception to COD

RFP Results

Technology Type	Number of Submitted Bids
Battery	20
Flywheel	1
Battery Type	Number of Short Listed Bids
NMC - Lithium-ion	3
LTO - Lithium Titanate	2
LFP – Lithium Iron Phosphate	1
LIP – Lithium Polymer	1
Total	7
Pattany Manufacturar	Number of Short Listed Bids
Battery Manufacturer	Number of Short Listed Blus
LG Chem	3
BYD	1
Samsung SDI	1
Toshiba	2
Total	7

Winning Storage Projects

1. NextEra Energy Resources

- 10MW lithium nickel-manganese-cobalt battery, 15 minute duration (2.5 MWh)
- DeMoss-Petrie Substation

Next Era's Pima Energy Storage System (PESS)

2. E.On Climate & Renewables

- 10MW lithium Titanate oxide battery, 15 minute duration (2.5 MWh)
- Combined with 2.4 MWdc Solar PV
- U of A Science and Tech Park

EC&R's Iron Horse Energy Storage System

TEP / EON Iron Horse Utility Scale PV + Storage Project

Project Description

Located in Tucson, Arizona at the University of Arizona Tech Park complex

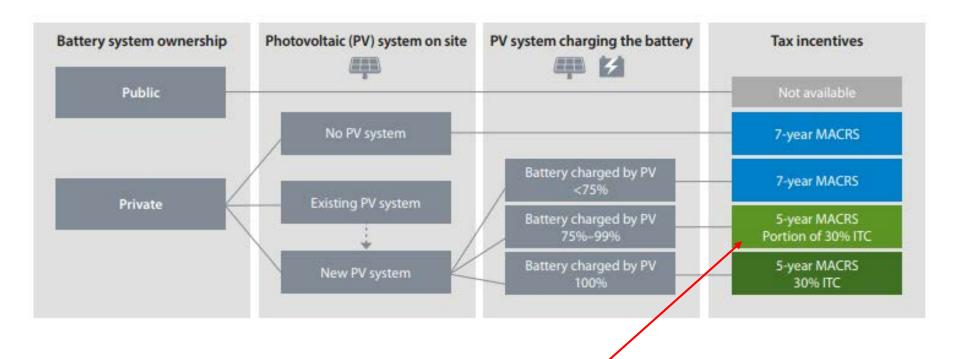
Energy Storage (10MW / 2.5 MWh) co-located to a solar PV array 2MWac-2.4MWdc

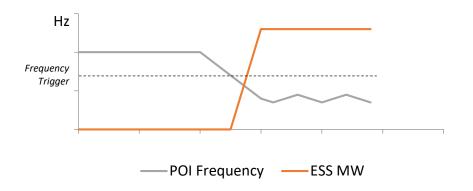
Technology Selection

Lithium Titanate Battery (LTO) manufactured by Toshiba (sold though Landys & Gyr subsidiary)

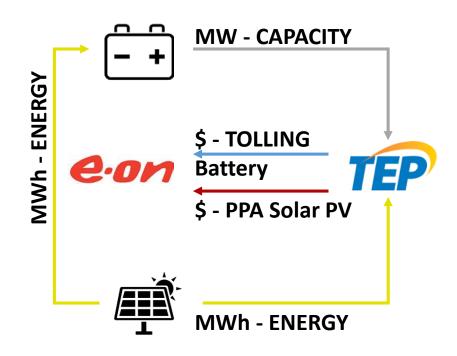
Energy Management System provided by Greensmith/Wärtsilä

Integration

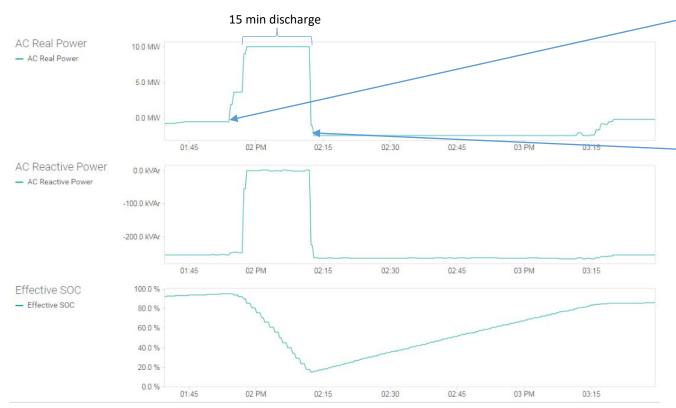

Energy storage system integral part of the solar PV array and eligible for Investment Tax Credit



Decision Tree Federal Tax Incentives for Energy Storage Systems



Operational and Contractual Structure



- The Energy Storage System will automatically deliver real power when the POI frequency falls outside the programmed deadband
- The Energy Storage System must respond within 1 second
- The response is proportional to the frequency deviation up to a maximum deviation

Data from a frequency response event – Iron Horse battery providing 15 minutes response

Upon frequency drop in TEP grid, the battery responds and starts to dispatch. Increase in response based on frequency reduction thresholds

Following the frequency event, the battery charge to recover State Of Charge and be ready for the next event

State Of Charge of the battery decreases following battery discharge and recovers when the battery starts to charge

GEMS (Greensmith Energy Management Software)

17

Future = More PV + Storage

• 100 MW Wind – COD mid-2020

- NextEra Energy Resources
- New Mexico wind
- Existing Transmission Capacity

100 MW Solar + 30 MW Energy Storage – COD end of 2020

- NextEra Energy Resources
- Peak shifting
- Sub-\$30 per MWh for solar energy
- 4-hour duration storage

Wind RFP

- 150 MW w/ associated transmission
- ~47% capacity factor
- Complements solar production

Future = More PV + Storage

Energy Storage Task Force

- Identifying use cases for future storage up to ~70 MW
- Solutions looking for problems
- Batteries can do a lot of things, but only 1 or 2 really well

Arizona Energy Modernization Plan

- 80% Clean Resources by 2050
- 3,000 MW of storage
 - Batteries, pumped, compressed air, etc.
 - 2,000 pumped-storage hydro in development Big Chino
- Biomass
 - 50,000 acres per year ~60 MW per year
- Electric Vehicles
- Revamped Energy Efficiency

Thank you!

JKRAUSS@TEP.COM

