

Scale of Energy Storage – Applications and Value of Hybrid Energy Storage on Grid Operations

Dr. Adarsh Nagarajan

Group Research Manager Power System Design and Planning Power Systems Engineering Center

May 16th, 2019 : PV Systems symposium

Technology - Drivers – Research Interdynamics

Scale of energy storage

Mobility

kWh scale Lithium ion based

Residential

kWh scale Lithium-ion Lead-acid

Utility-scale

MWh scale Lithium-ion Flow technology Thermal storage

Bulk-grid

Multi MWh scale Concentrated solar Flow technology Hydrogen storage Thermal storage Pumped hydro

Types of stationary storage across timescales

Bulk grid storage Pumped hydro

Pumped hydro research

- New methodology using co-optimization of price-taker model and production cost model to value hydropower pumped storage from an owner's perspective
- Working with two industry partners, both creating different turbine technologies
- Multiple areas in USA analyzed

Front of the meter Utility-scale storage

Distribution feeder choice and battery chemistry

2MW/4 hour Redox Flow Battery system

3MVA inverter capacity

6MW peak load and 3MW PV generation

Characterize battery chemistry

Value streams from distribution feeder support

Value stream analysis

OpenDSS Runs	Input	Optimization Model	Output		
 Load growth scenarios to determine transformer and capacitor upgrades (w/ and w/o VRF) Evaluation of capacity firming on LTC banks Evaluation of reactive power requirements for voltage support Forecasted PV deployment (as needed) 	Basecase load profile Valuation of transformer deferral Valuation of capacitor deferral Electricity price signal Feeder constraints VRF performance parameters	 Minimizes cost to operate the feeder Determines VRF dispatch across value streams Feeder upgrade modeled as binary to allow full VRF utilization Observes any feeder constraints put into the model 	VRF charge/discharge set point by time step Electricity Consumption Cost Year of transformer upgrade Year of capacitor upgrade Total Annual Cost	Economic Parameters and Costs Analysis period Discount rate General inflation Electricity escalation rate Annual load growth Line upgrade cost Transformer upgrade cost New capacitor bank cost	Assumption 25 years 6% 0.1% 1.5% 3% \$670,000 \$1,497,000 \$56,054

Jenkins, John D. 2014. "Capital Workpapers to Prepared Direct Testimony of John D. Jenkins on Behalf of San Diego Gas & Electric Company." November 2014. <u>https://www.sdge.com/sites/default/files/SDGE-09-CWP_EDIST.pdf</u>.

Value Stream	Monetization Mechanism	Year 1 Savings	Life-Cycle Savings
Peak shaving	Transformer upgrade deferral	-	\$121,135
Capacity firming	Operation and maintenance savings from reduced LTC operations	-	-
Voltage support	New capacitor bank deferral	-	\$7,463
Energy arbitrage	Time-shifting energy purchases on the LMP market	\$56,069	\$837,115
Total			\$965,713

Jenkins, John D. 2014. "Capital Workpapers to Prepared Direct Testimony of John D. Jenkins on Behalf of San Diego Gas & Electric Company." November 2014. <u>https://www.sdge.com/sites/default/files/SDGE-09-CWP_EDIST.pdf</u>.

Value streams from local distribution grid support

Behind-the meter Residential storage

Residential: Rate structures on battery use

- Develop battery models with consciousness of battery life, customer end-use and grid support
- Support utility customers to encourage customers understand value from BTM battery
- Analyze consumer behavior and grid operation analytics

Commercial customer battery storage reserach

Hybrid Battery Storage System Design

For applications in:

- EV Charging
- PV Storage
- Resiliency and Energy Efficiency

Design-for-purpose process:

- 1. Identify chemistry
- 2. Perform device design
- 3. Develop controls
- 4. Test integration of devices in ESIF

Can a hybrid system offer lower LCOE vs traditional Li-ion systems?

Adarsh Nagarajan

adarsh.nagarajan@nrel.gov

Thank you

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Storage Application in power grid

В	Bulk Energy Services				
market <	Electric Energy Time-Shift (Arbitrage)				
	Electric Supply Capacity				
A	ncillary Services				
Г	Regulation				
market -	Spinning, Non-Spinning and				
Ĺ	Supplemental Reserves				
	Voltage Support				
	Black Start				
	Other Related Uses				
Transmission Infrastructure Services					
	Transmission Upgrade Deferral				
	Transmission Congestion Relief				
Γ	Distribution Infrastructure Services				
	Distribution Upgrade Deferral				
	Voltage Support				
C	Customer Energy Management Services				
	Power Quality				
	Power Reliability				
	Retail Electric Energy Time-Shift				
	Demand Charge Management				

	Distribution feeder support	Energy markets	Stacking services
Device upgrade deferral	Peak shaving	Energy arbitrage	Peak shaving/volt-var
LTC/voltage regulator O&M deferral	Capacity firming	NGR*/PDR*/RDRR*	Day-ahead/Capacity firming
Voltage support device deferral	Reactive power support	Day-ahead/real-time market	Volt-var/NGR*

NGR: Non-Generator Resource PDR: Proxy Demand Resource RDRR: Reliability Demand Response Resource

Dynamic Battery Model – Composite Model

Built Composite Loss Model into OpenDSS

Capacitor operation avoidance and deferral

Energy storage performing volt-var can defer capacitor upgrade until 2031

Why to we need energy storage in power grid?

B. Parsons et al.(2006) Grid Impacts of wind power variability: recent assessments from a variety of utilities in the United States. National Renewable Energy Laboratory (NREL), Golden https://www.nrel.gov/docs/fy06osti/39955.pdf

Needed for balancing load and generation on the electricity grid match at a variety of timescales

- milliseconds to seconds
- seconds to minutes
- minutes to hours
- days

Storage provides ways to shift energy – helps to move variable generation to meet demand