

Simulation of tracking PV installations with PVsyst

9th PVPMC Workshop

5-6.12.2017 Weihai, China

André Mermoud, Bruno Wittmer Bruno.Wittmer@pvsyst.com

PVSYST SA - Route du Bois-de-Bay 107 - 1242 Satigny - Suisse www.pvsyst.com

Overview

Introduction

- Benefits of tracking
- Modeling Trackers in PVsyst

Simulation results

- Optimizing Tracking Parameters
- Single and Dual Axis Tracking
- Impact of Latitude
- Impact of Climate
- Shadings (Row Spacing)
- Backtracking
- Stroke Limits

Outlook

- Bifacial Tracking

Benefits of Trackers

Examples of tracking simulations

Tracking Gain depends on many parameters

Tracking gains from 10% - 50%, depending on tracking strategy, location, climate and shadings (Ground Covering Ratio)

Tracking Strategies in PVsyst

Most common Tracker Types

Vertical Axis

3D drawings for shadings

Other tracking strategies in PVsyst:

Plane Tilt

- Tilted Axis
- Frames
- Sun shields
- Horizontal EW-axis
- Unlimited trackers

Tracking algorithms in PVsyst minimize the Incidence Angle

Tracker modeling in PVsyst

Shadings

- **Direct** Subject to near shadings depending on sun position
- Diffuse

Subject to shading factor that is constant for a given plane orientation For trackers it changes with the plane orientation

Albedo

Subject to shading factor that is constant for a given plane orientation For trackers it changes with the plane orientation

Backtracking

Backtracking algorithm avoids beam shadings Diffuse and albedo shadings are still present! Large installations => Albedo almost invisible

Backtracking in PVsyst is available for all tracker types except vertical axis. Two-axis algorithms apply backtracking only in one of the two directions.

Vertical axis tracking

Optimization of Plane Tilt

Global PoA Irradiance as function of plane tilt

Best Plane Tilt depends on latitude, climate and shadings

Sevilla			Alamos	Kunming	Xiamen	Hotan	Quingdao	Linfen
37.4°N			15°N	24°N	24°N	36.5°N	36.5°N	36.4°N
Clear Sky	MN 7.1		MN 7.1	MN 7.1	MN 7.1	MN 7.1	MN 7.1	MN 7.1
10%	D	30%	10%	10%	10%	10%	10%	10%
55°	52°	45°	42°	42°	39°	49°	45°	47°

MN 7.1 : Meteonorm 7.1 synthetic hourly values based on average monthly data

Single and Dual Axis Tracking

Beam Irradiance

Albedo Irradiance

Diffuse Sky Irradiance

All three components together

Impact of latitude

No mutual shadings considered in these plots!

Plane tilt optimized for fixed tilt and vertical axis

Impact of climate

Dependence on diffuse ratio

Diffuse/Global ratio

Site	Alamos	Albuquerque	Weihai	Geneva	Kunming	Xiamen	Hotan	Quingdao	Linfen	Ejin Qi
Latitude	15°N	35°N	37.5°N	46°N	24°N	24°N	36.5°N	36.5°N	36.4°N	42°N
Diffuse/Global	43%	27%	53%	48%	49%	59%	40%	56%	48%	28%

Pitch and shading

Ground Covering Ratio (GCR) = PV Module surface / PV installation surface

Page 10

Optimize best fixed tilt as function of GCR

Backtracking

Backtracking does not increase the Irradiance reaching the PV modules It reduces electrical shading losses

Example: Horizontal Axis

Stroke limits

Stroke limit for different tracker types

Bifacial tracking

2-dimensional approach for long rows

Bifacial model for fixed tilt sheds available (since V6.6.0)

Unlimited trackers: first step towards horizontal bifacial tracking model (since V6.6.7)

Bifacial tracking for horizontal axis close to publishing

Bruno Wittmer

Page 13

Summary and Outlook

The benefits coming from tracking depend on many factors

- Tracking strategy (horizontal axis, vertical axis, dual axis)
- Latitude and climate
- Tracker layout (tracker distance, axis tilt, stroke limits)
- Backtracking strategy
- PVsyst allows a detailed simulation and analysis
 - Simulation of different tracking strategies with detailed loss diagram
 - Output of hourly intermediate results in CSV files for custom analysis
 - Multiple simulations and parametric scans for parameter optimization
- Some general behaviors were presented
- Modelling of trackers in PVsyst continues to evolve
 - Tracking with bifacial PV modules
 - Two-axis backtracking in all directions

