

Solar ground measurements processing by automatic and manual tools

Solargis approach to quality control

Jozef Dudzak, Marketa Hulik Jansova, Tomas Cebecauer and Branislav Schnierer

Agenda

- Why ground measurements
- Solargis quality assessment procedure

Why ground measurements

Solar radiation	Gro
Accuracy	V
Temporal resolution	
Data availability	
Period	Тур
Initial costs	
Operational costs	
Gaps in data	
Data quality control	
Data consistency	
Forecasts	

ound measurements Satellite models /ery high to very low* High seconds - 1 min 10/15 min Instant access (any site worldwide) Need to wait pically up to 1-2 years Up to 27 years High Low High Very low or none Often No gaps Required Not required Very high Low Not available Up to 10 days ahead

* In case of poor maintenance

Why ground measurements

- High quality measurements can be used for improvement of the accuracy of models by site adaptation
- Reduced uncertainty of site adapted satellite data provides better conditions for project financing

Usage of ground measurements:

- Improvement of satellite-based model
- Improvement of forecast accuracy
- PV performance evaluation
- Identification of PV operation issues

About ground measurements

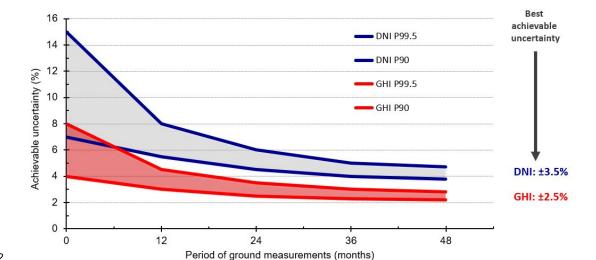
• Current status (our experience)

- Missing knowledge of proper operation
- Suboptimal practices
- Solar and meteo measurements are often degraded

• Best practices

PVPMC Salt Lake City 2022

- More than one instruments to be installed on a site (if feasible)
- Choice of instruments (optimal)
 - Class A pyranometers (GHI1, GHI2, DIF) + ventilation unit
 - Class A pyrheliometers (DNI)
 - Class A albedometer (RHI, GHI)
- Fine temporal resolution of data (1min, 5 min)
- Regular cleaning, maintenance and calibration of instruments by trained personnel
- Data quality control by a knowledgeable expert



About ground measurements

Length of measurement campaign for model site adaptation

- Less than 12 months Preliminary model data verification only
- 12+ months Validation and site-adaptation of satellite-based model
- 24+ months More robust validation + site-adaptation with lower uncertainty

SOLARGI

What to do to have high quality ground measurements

- Good station operation
 - Obey best practices
 - Professional installation
 - Accurate characteristics of data (coordinates, calibrated and described instruments, cleaning and maintenance logs)
 - Professional operation and maintenance
- Precise QC
 - Time reference harmonization
 - Physical outliers
 - Detection of instrument & location specific issues (logger issue, tracking issue, dew/frost, shading, ...)

Photo: GeoSUN Africa

Is quality control important?

Definitely YES!

Our internal analysis has shown that, on average, **13% of GHI and DIF** measurements are affected by errors during the station operation.

15% of GTI measurements and23% of DNI measurements were also affected by errors.

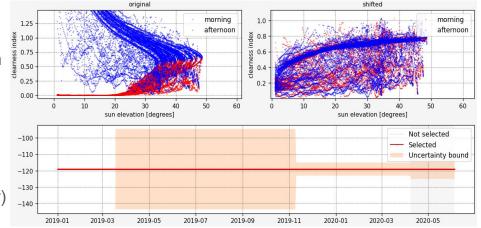
Analysis was performed on projects from last 4 years.

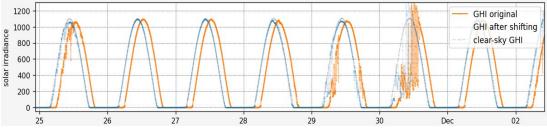
Solargis quality assessment procedure

- Step 1: Time reference control
- Step 2: Basic numerical check of physical limits
- Step 3: Extended numerical identification of systematic data errors
- Step 4: Manual quality control

All quality control steps and tools for data handling are fully integrated into the Solargis Analyst.

Time reference control


- Issue description
 - Time in UTC -> determines the solar position calculation
 - Basic prerequisite for data quality tests
 - Typical issues
 - Shift with respect to UTC
 - Daylight saving time
 - Random shifts and drifts
 - Timestamp definition (left, right, center)


Automatic detection based on

- Symmetry of profile between morning and afternoon
- Alignment with the reference

Limitations

- Wrong coordinates
- Mix with other issues
- Shifts during day

SOLARGIS

Instrument misalignment and GTI configuration

Issue description

- Pyranometer for measuring GHI not placed horizontally
- Fixed tilted pyranometer azimuth and tilt not given or given properly
- Automatic detection based on
 - Similarity of misaligned profiles
- Limitations
 - For now we can only estimate fixed mounting GTI parameters

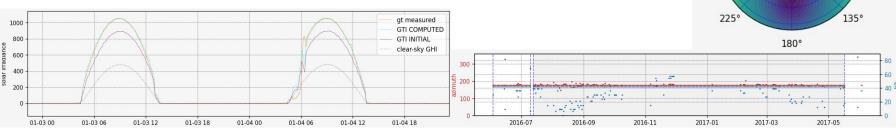
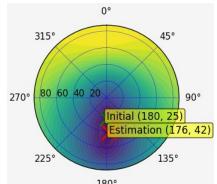
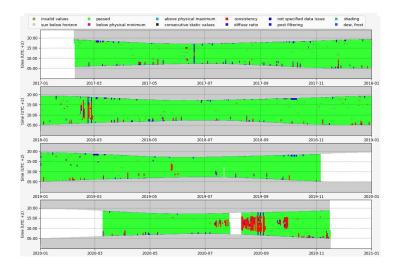
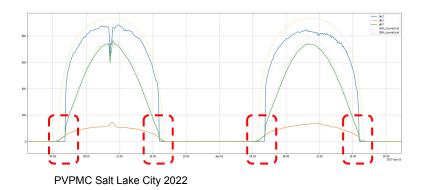



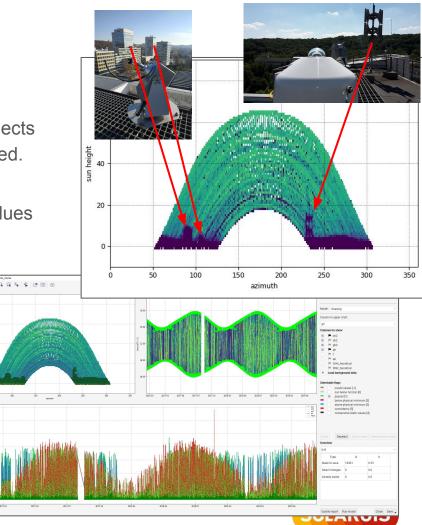
Photo: Iberdrola https://www.kintech-engineering.com/wp-content/upl oads/2018/07/Case_Study_09.pdf



PVPMC Salt Lake City 2022

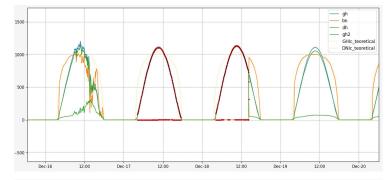
Physical limits and large outliers

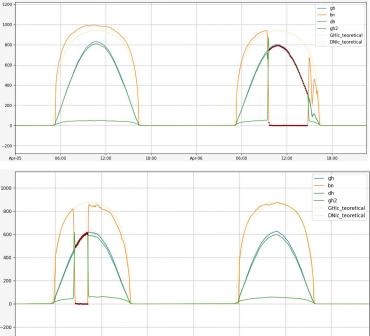

- Issue description
 - Data Logger problems and other issues can drive the measurements to unphysical values
 - There are consistency rules between 2 or 3 radiation components
- Automatic detection based on
 - Methods defined in BSRN procedures and methods implemented in-house by Solargis
- Limitations
 - In case of inconsistency we are not able to say which component is affected
 - Many issues are still in the range of physical values



Shading detection

- Issue description
 - Shading of instruments by horizon or nearby objects
 - Global, direct and reflected irradiation are affected.
- Automatic detection based on
 - Systematic decrease of measured irradiation values
- Limitations
 - Disappearing/appearing shading
 - Half-transparent objects





Tracker malfunction

Issue description

- Pyrheliometer (DNI) is not tracking sun properly
- Automatic detection based on
 - Zero or low DNI values during cloudless conditions
 - Inconsistent information compared to other components of solar radiation
- Limitations
 - Partial tracking malfunction (slight misalignment of the pyrheliometer)

May-11

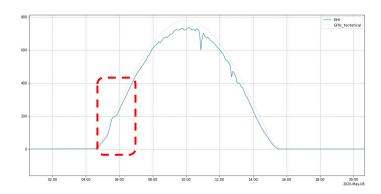
06:00

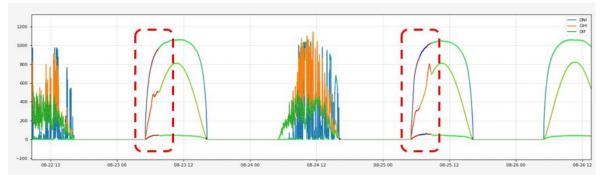
12:00

18:00

06:00

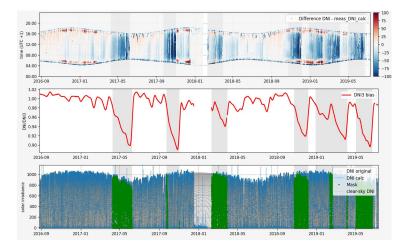
12:00

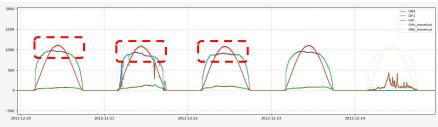

18:00


Dew/frost detection

- Issue description
 - Deterioration of the measurement due to dew or frost on the instrument
- Automatic detection based on
 - Specific "S" shape of the measurement during this event
- Limitations
 - Only available for pyranometers with glassdome

Source: DOI - 10.13140/RG.2.1.1515.6568





Signal degradation

Issue description

- Systematic degradation of signal due to soiling or calibration issues
- More accurate detection when all three solar radiation components are available
- Automatic detection based on
 - Systematic decrease of signal in time period
- Limitations
 - Soiling does not always cause systematic degradation of signal
 - We need to work with longer time periods (at least 14 days)

Manual assessment

- Description
 - Assessment and flagging by skilled operator (rare, random, convoluted or smaller issues)
 - Identification of less frequent issues (artificial noise, station grounding issue)
 - Control of residual issues after automatic tools
 - Control of site specific conditions and issues
 - Final approval of data quality for further processing

• Requirements

- Well trained operator required
- Reliable software tool for analysis of solar data
- Site and instruments specification
- Good installation and operation of measurement station
- The most time consuming part of QC

How to avoid these issues in your data?

- Consider the frequency of cleaning events regarding to climate (dust deposition) region.
- Store detailed information about each maintenance and cleaning event.
- It is recommended to perform instrument cleaning during the daytime. It allows identifying the soiling of the instrument.
- Check the installation and alignment of instruments during every maintenance (cleaning) event
- Instal ventilation and heating units on instruments
- Instal instrument on the position without shading, reflection or another artificial effects on measurements (eg. albedometer above representative ground coverage)
- Use UTC without daylight-saving time

Summary

Why we went through this procedure?

- We need high quality data to be able to further process them and rely on them
- Usage of flagged data:
 - Perform model site adaptation and reduce uncertainty
 - Perform gap filling and create consistent dataset (of multiple years)
 - Perform PV performance analysis KPI calculations
 - Improve forecasts
 - Improve satellite-based model (public sites)

Conclusion

Ground measurements are important record of local climate, but

- High quality measurements require attention
 - Station installation
 - Instruments maintenance
 - Data quality control

Data quality control is time-consuming work **but necessary to achieve the highest data quality.**

Solargis Analyst

- Helps not only with quality control but also with data management, visualisation and analysis of ground measurements
- Includes analytical tools for solar resource assessment
- Development of new features to support the industry
- More info: solargis.com/products/analyst

Solar ground measurements processing by automatic and manual tools

Solargis approach to quality control

Jozef Dudzak, Marketa Hulik Jansova, Tomas Cebecauer and Branislav Schnierer

