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Solar Resource in Alaska ) i,
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Features of High Latitudes for PV @&

« Large range in length of day (short in Winter, but long in Summer) A Up

» Large range in Solar Azimuth (Sun rises and sets in NNE and . 4
NNW in Summer) /

» Smaller range in Solar Elevation B

* Cold temperature (PV performs better at colder temperatures: f

0.5%/deg-C) \\\\ » North
« Snow (highly reflective and can cover PV modules and block light) L-/e;\
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Challenges in High latitudes ) .

= Low Solar Elevation and large range in Solar Azimuth means
the Sun spends a lot of time at high incidence angles to a fixed

plane.

W N W N
= Cold = higher PV efficiency

= Cold + Precip = Snow ; :

E

= Snow has much higher reflectivity (albedo) which enhances
ground-reflected irradiance.
= Effect increases with tilt angle

=  Snow can block light from reaching solar panels




Bifacial PV Modules

= New high-efficiency PV cell /
technologies are made ©//
bifacial (e.g., PERC, HIT) '

= Power can be collected from
the front and rear

= Rear efficiency is 60-95% of
front (bifaciality factor).

= Produces more energy than
monofacial modules: 5-20+%

= P\ Magazine: “Overall,
bifacial panels now add only
about 3% to the total cost of
a tracker system”

Sandia
rl1 National

Laboratories



https://www.pv-magazine.com/2018/02/17/the-weekend-read-tracker-market-is-adapting-to-bifacial-module-technology/
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Very Simple Model of Bifacial PV Performancdl) .

= Model Assumptions @

= Weather from typical meteorological year (TMY) stations
= GHI, DNI, DHI, Temperature, Wind Speed, Snow
= Plane-of-array irradiance:

= Beam + Sky Diffuse + Ground-reflected

— Beam reduced at high angles of incidence due to reflection losses
using Sandia’s F2 Model

* No snow periods: Albedo = 0.25

= Snow on ground: Albedo = 0.7

o
o

= Bifacial POA = front + back irradiance*bifaciality factor
— Bifaciality factor = 90% for this simulation.
= Albedo for bifacial reduced by 25% to account for shadow
effects (based on empirical data).
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= Sky diffuse calculated with Perez transposition model
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= Module temperature: T,, = T,+E(e?**"Ws) e ki o
= Cell temperature: T, = T, +E/E*AT

= Module power: P, = P, E/Eg*(1+y[T-25])

= Module parameters from spec sheet (Power rating, temp

coefficient (y)) GHI = Global Horizontal Irradiance
DNI = Direct Normal Irradiance
* Model implemented in Matlab using PVLIB DHI = Diffuse Horizontal Irradiance g




Model Validation )

Validation was done by comparing model to

measurements made at Sandia

» Five orientations (each with monofacial and
bifacial), Two albedos

* Module-level DC current and voltage
measurements (module on microinverters).

Inputs:
* Measured DNI, GHI, DHI, Air Temp, Wind = . . Seacing, 20-eg Tt Monoracial

speed, Albedo, Module spec sheet /\ If\\ / M

parameters (Pyp0, Y) . | |

2

Results: "L
* Model slightly overestimates the measured | e

system output.

» Soiling is not included in model.
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Model Validation Results ) i,

6 Month Comparison (Jan-June 2017)

Back Side Irradiance « Mean bias errors are all below 5%
ssona L 15w « Back side irradiance model is very
good for W90, W15, and S15.
* Minor systematic errors for S30,
and S90

« S90 has known shading
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Predictive Alaska Model Scenarios ([ &x.

= Compare two design options:
= South —Facing, Latitude-tilt standard monofacial PV (1 kW)
= East-West-Facing, Vertical bifacial PV (1 kW)

= Weather Inputs

= 17 weather stations in Alaska
" Included Phoenix, AZ for comparison

= Typical Meteorological Years (TMY2)
= Months are selected from long record

N
= Assembled into synthetic year
— 8760 hours of data

= Meant to be representative
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Model Examples: Fairbanks (Clear Sky)

FAIRBANKS, AK: Summer Solstice FAIRBANKS, AK: Fall Equinox
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FAIRBANKS, AK: Winter Solstice FAIRBANKS, AK: Spring Equinox
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« E-W Vertical bifacial has potential to produce power earlier and later in day.
« Great for combining with latitude tilt PV systems 0




Model Examples: Fairbanks (TMY2) @JE.

FAIRBANKS, AK: TMY2

FAIRBANKS, AK: TMY2
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« This patterns repeats for most Alaska sites:
« Early in year Lat-tilt system is better, but total energy is small

* From Spring to early Autumn Vertical bifacial system significantly

outperforms Lat-tilt monofacial.
« In Phoenix, vertical bifacial performs about the same as Lat-tilt monofacial.

* We have confirmed this in Albuquerque, NM with measurements. 1




Results )

« E-facing Vertical Bifacial 2
outperforms S-facing Latitude-
Tilt systems in Alaska.

« Bifacial advantages
increase with latitude and
duration of snow on g
ground.

» Power profile starts earlier
and ends later, which may
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« Vertical bifacial takes
advantage of large range in
solar azimuths

« \Vertical bifacial collects light
from highly reflective snow
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Results

Effect of Latitude
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Effect of Albedo (Snow)
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Mean Albedo

Annual mean albedo

Both Latitude and Snow duration are positively correlated and both are
positively correlated with E-facing, vertical bifacial gains.




Case for Rethinking PV Design in the Far North? rh) i

= Bifacial PV modules are becoming available

= Costs will come down as production increases.

= E-W Vertical bifacial may have advantages

= Capable of 5-20% more energy than traditional designs.
= Power profile is wider and may better match loads.
= Vertical modules may shed snow better & collect less dirt.

= E-W Vertical bifacial challenges (opportunities?)

= Commercial racking solutions for vertical bifacial is not developed.
= Field layout to minimize shading needs to be designed.
= Testing standards for bifacial modules is still under development.

= Sandia and UAF are collaborating on collecting needed field
data in Fairbanks.
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UAF — Sandia Bifacial PV Field Site  @&s.




