Soiling

Laura S. Bruckman, Yu Wang

SDLE Research Center, Case Western Reserve University, Cleveland OH 44106

GREAT LAKES ENERGY INSTITUTE

http://sdle.case.edu

SDLE Research Center: Acknowledgements

CWRU Faculty

• Roger French, Laura Bruckman, Alexis Abramson, Jennifer Carter, Mehmet Koyüturk

Post-doctoral Research Associates

Jennifer Braid, Nick Wheeler, Rojiar Haddadian, Wei-Heng Huang

Graduate Students

- Mohammad Hossain, Devin Gordon, Yu Wang, Donghui Li, Addison Klinke
- Alan Curran, Justin Fada, Arash Khalilnejad, Ahmad Karimi, Xuan Ma,
- Rhener Zhang, Menghong Wang, JiQi Liu,

Undergraduates

- Andrew Loach, Lucas Fridman, Yiyang Sheng, Jonathan Ligh, Silas Ifeanyi
- Noah Tietsort, Kevin Nash, Rachel Swanson, Abhi Devahti, Jonah Larson

igh School: Sheina Cundiff, Dominique Gardner, Precious Flanders SDIF Research Center, VUV-Lab, Materials Science & Engineering Department, Roger H. French © 2016

August 6, 2017, VuGraph 2

Projects

Third Frontier

Sandia

lerral-orm

National Laboratorie QLA

ululu cisco

Johnson Controls

SUNPOWER 🗾 Fraunhofer

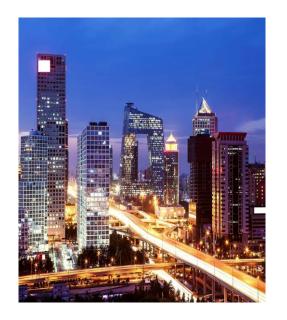
International Energy Agency

Photovoltaic Power Systems Programme

SAINT-GOBAIN

S LEXEL®

SunEdison


Outline

Data Science Approach to Lifetime and Degradation

Field Surveys of Real-World Power Plants

Spatial-Temporal Model Development

SDLE Research Center, VUV-Lab, Materials Science & Engineering Department, Roger H. French © 2016 http://sdle.case.edu August 6, 2017, VuGraph 3

Degradation Science: Data Science & Analytics Lifetime Performance Long-lived, Real-world Systems Focus on Degradation Rates, not only Failures DI SOCIALISTICS For Lifetime Performance Failure Qualification Standards LIFETIME dation Mechanisms Cross-correlate Mechanism & Rates & DEGRADATION Develop Mechanistic Network Models SCIENCE Cross-correlate Engineering Epidemiology Real-World Exposed and Accelerated Exposures **Domain Guided Statistical Analytics** Prognostic Optimized Technology Innovation Accelerated **Data Science Approach** Poitional Reliability Exposures Distributed Computing: Hadoop/Hbase/Spark High Performance Computing • Energy-CRADLE Energy CRADLE Open and Reproducible tools NETWORK OF SUB-MODELS Pathway Physical Models Statistica Models Libraries Stressor Provenance Mesoscopie Data Mechanism Linked Data Meta-Data Evolution Discovery/ Response Ensembles Models Cohort Network Domain VPUT) Selection Meta-Data de Novo Open Access Temporal Studio Real-World Data Publications Analytics Experiments Best Practices Data Linked Data Sets Tools/Knowledge Lab-based Curation/ Semantic Experiments Distributed Computing Annotatior Ontologies Data Analytics Data tistics & Applied Math Shared Terminology Assembly Ż hon HE CLOUD GREAT LAKES ENERGY INSTITUTE ESERVE

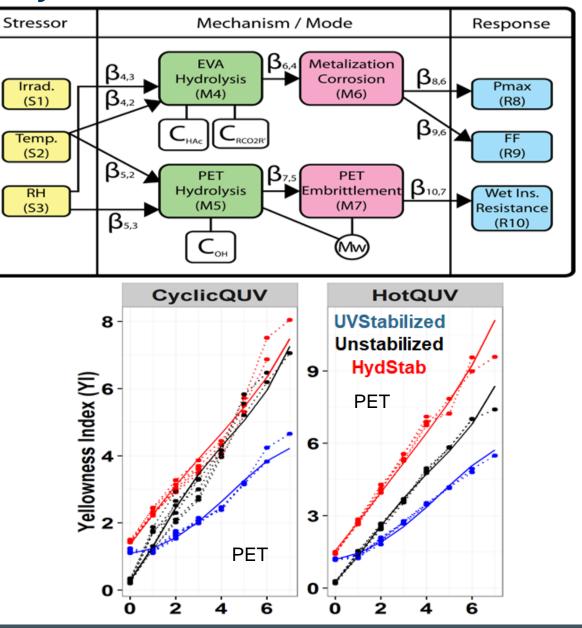
Multi-gen

Real-World

Studies

Degradation Science: Data Science & Analytics

Develop Population-based Studies


- Engineering Epidemiology of
 - Real-world Power Plants
 - Accelerated Laboratory Exposures

Data Science Approach Using

- Data-driven, Unbiased Analysis
- With Mechanistic Chemistry & Physics
- Inferential Statistics
- Statistical & Machine Learning

Develop Domain Science Guided, Network Models

- Integrated Real-world and Lab-based studies
- netSEM: Integrated Physical & Statistical sub-models
- Across Populations and Through Time

Degradation Science "Data Block" For Statistical Analytics

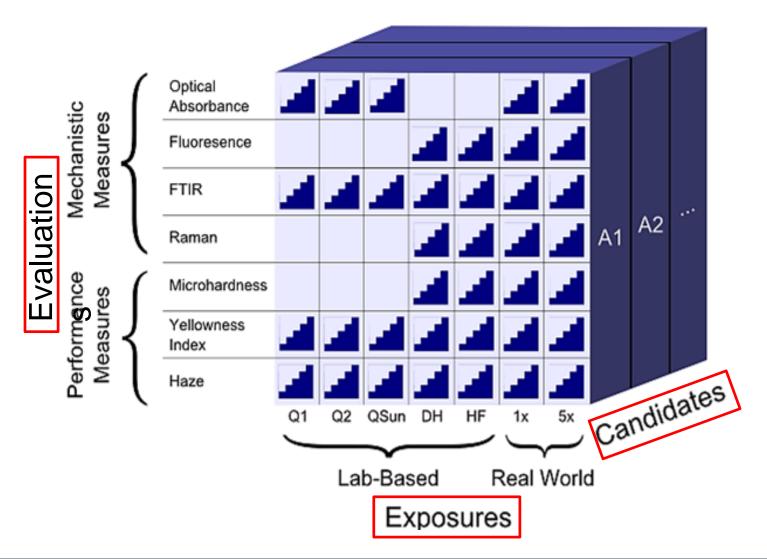
Using a < Stress | Mechanism | Response > Framework

Multiple Datatypes

- "Point" values
- Spectra
- Images
- Hyper-spectral Images

Basis in Physics and Chemistry

- Stressors: Heat, Moisture, Irradiance, etc.
- Responses: Yellowness Index, Gloss, Haze, etc.


Statistically Informed Study

- Large Volume of Samples
- Diverse <u>Exposures</u>
 - Real-world & Lab Base
 - Accelerated & Real-time
- Many <u>Evaluations</u>

GREAT LAKES ENERGY INSTITUTE

ESERVE

• Mechanistic & Performance

SDLE Research Center, VUV-Lab, Materials Science & Engineering Department, Roger H. French © 2016 http://sdlu.case.edu August 6, 2017, VuGraph 6

Backsheet Degradation Field Surveys

GREAT LAKES ENERGY INSTITUTE

Introduction of Field Survey

Field Survey:

- Study the Degradation of PV Panel Backsheet in Real-World
- Degradation changes over time
- Degradation changes over space
 - \circ $\,$ install location in the rack
 - ground cover
- Degradation changes over space
 - Different backsheet materials
 - Different climate zones

Influence the rear-side irradiance and temperature near backsheet

Field Survey Procedure

Site Metadata (Stress)

- o climatic zone, module brand/model (backsheet type), mounting configuration
- Ground cover, weather data

Visual Inspection of Modules

- according to IEA PVPS Task 13 guidelines
- o crack of front glass, snail trail and so on

Backsheet Survey (Response)

- Color (yellowness index)
- \circ Gloss
- FTIR
- Multiple Locations on backsheet
- Sample size calculations
- Future field surveys (albedo and temperature)

Field Module Metadata

Rack: a cluster of PV modules in the field

Row: modules with same heights in the same rack

Column: module location in the rack (from left to right, on the back side)

Tile angle: angle of the rack to the ground

GREAT LAKES

PV Module Field Survey

Site Location	Climatic Zone	Backsheet Material	Ground Cover	Install Configuration	Rack Length	Rack Height	Note
North America 1	Dfb	PVDF; PA	Grass	Landscape	80; 82	4; 5	
North America 2	Cfa	PET	Grass	Portrait	24, 36, 78	2	
North America 3	Dfb	PET	Roof	Portrait	3 - 28	1	Low angle, backsheet is covered
North America 4	Dfa	PEN	Rock	Landscape	48	4,5	
China	Cwb	PVDF, PVF, PET	Concrete and grass	Landscape			

SDL

Ε

Observed Failure Modes in Fields

Discoloration

• Yellowing of inner layer of backsheet

China

Delamination

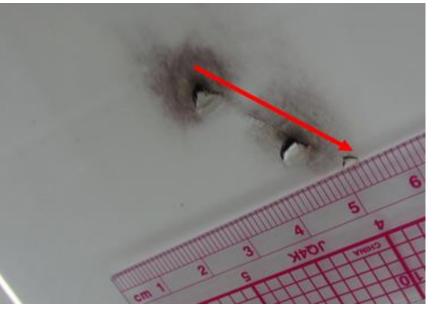
North America 4

China

Roger H French @ 2017 http://sdle.case.edu Oct. 20. 2017 VuGraph 13

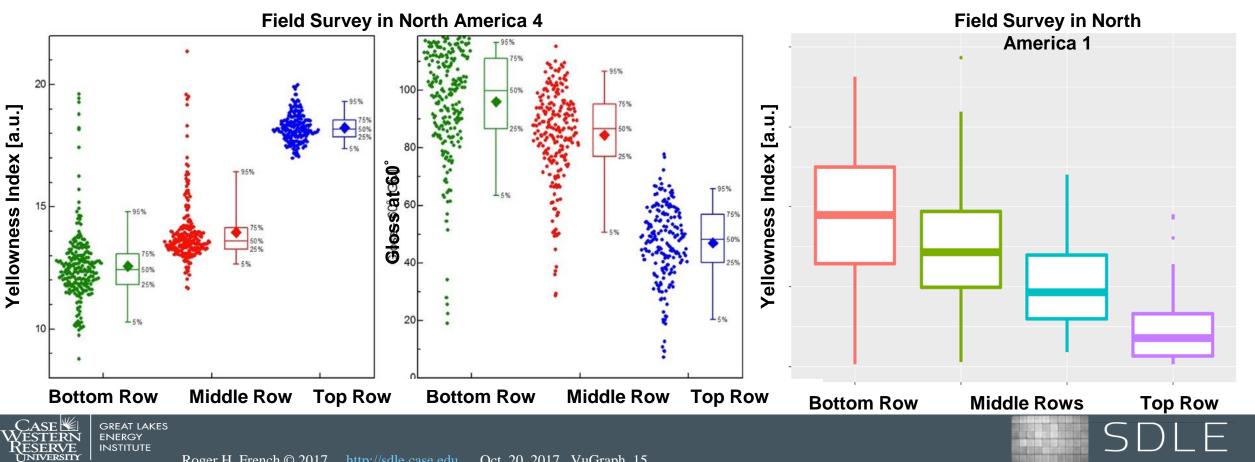
Observed Failure Modes in Fields

Hot Spot and Burn Marks

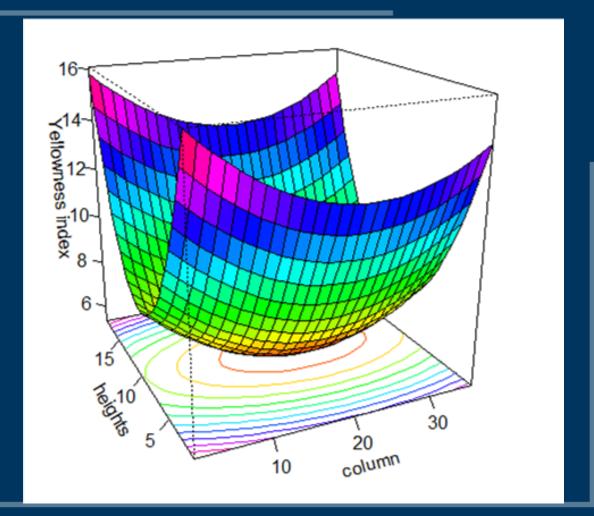


China

North America 4



Roger H French @ 2017 http://sdle.case.edu Oct. 20. 2017. VuGraph


Scatter Plot of Measured Data Observations

Height Effect (module height):

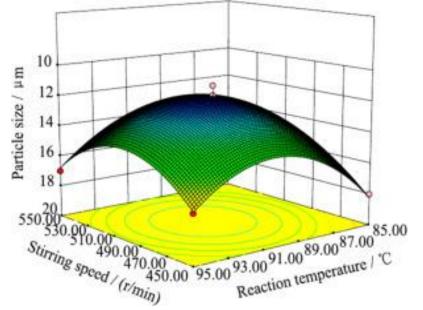
- Greatest effect on backsheet degradation
- Influences the rear-side irradiance distribution
 - Differences of albedo
 - Range of yellowing of PVDF backsheet in North America 1

Temporal-Spatial Model Development

- Study the effect of where the module is installed on the degradation of backsheet
- Model how this degradation space changes over time.
- Data-driven model with real-world degradation data
 - Represent the effect of weathering factors, ground cover, soiling, and backsheet material
- Difference of degradation behavior of modules exposed to same location
 - More obvious of long time exposure
 - Compromise the lifetime of backsheet
- The rear-side irradiance also influences the efficiency of bifacial PV module
- Soling adds uncertainty into models of time

Temporal Spatial Model Development

- Response Surface Method
 - Mathematical and statistical techniques based on the fit of a polynomial equation to the experimental data
 - Examine the "surface" or the relationship between the response and the factors affecting the response
 - Over a certain region of interest
 - Determine the setting for these factors that result in the optimum value of the response
 - Identify factors that affect the response
 - Intend to be used in experiment designation
 - Used to find the suitable approximation to the true relationship between module installation factors with degradation
 - with a sequence of experiment data
- Model pattern
 - First order
 - Steep Ascent Model


 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$

Screening Response Model

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \varepsilon$

- Second order
 - improve the optimization process
 - include the quadratic and interaction terms

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \varepsilon$$

E.g.: Response surface methodology (RSM) application to optimize the preparation of the Zn-Sm antibacterial white carbon black.^[1]

GREAT LAKES [1] Cuiping MAO, Bin ZHANG, Xiaoning TANG, Huan LI, Suqiong HE, Optimized preparation of zinc-inorganic antibacterial material containing samarium using response surface methodology, In Journal of Rare Earths, Volume 32, Issue 9, 2014, Pages 900-906, ISSN ENERgy 1002-0721, https://www.anincedimedicantegi

SDLE Research Center, VUV-Lab, Materials Science & Engineering Department, Roger H. French © 2016

August 6, 2017, VuGraph 18

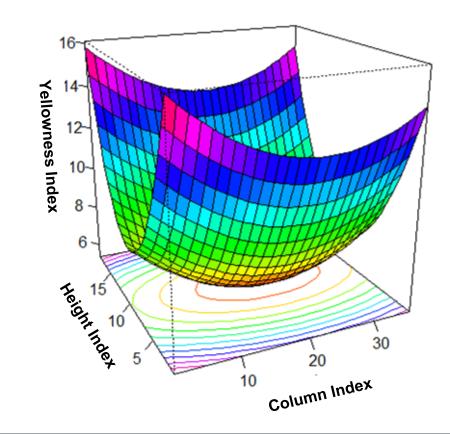
Temporal Spatial Models Evaluation on Published Data

DuPont Field Survey presentation^[1]

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \varepsilon$

- Roof mounted: 6 modules
 - \circ 15 years
- PET outer layer

ENERGY INSTITUTE


ESERVE

~150 mm from corrugation

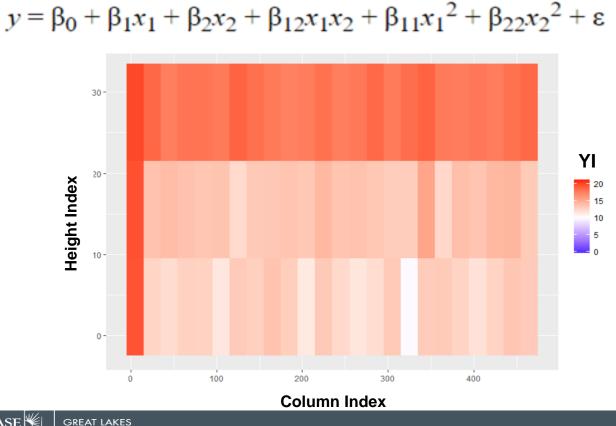
15 delta Height Index 10 S 0 20 30 10 0 Column Index

Evaluation

- Use second order surface response model
- Adjusted $R^2 = 0.6962$
- Significant p-value of each predictors
- Second order response surface model

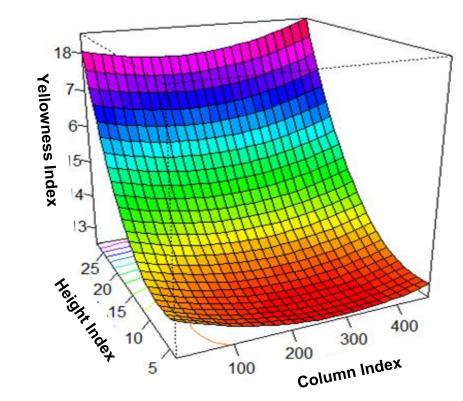
GREAT LAKES 11W. Gambogi, J. Kopchick, T. Felder, S. Module Reliability Workshop 2015

SDLE Research Center, VUV-Lab, Materials Science & Engineering Department, Roger H. French © 2016 August 6, 2017, VuGraph 19


Temporal Spatial Model – North America 4 (PEN)

Yellowness Index Data

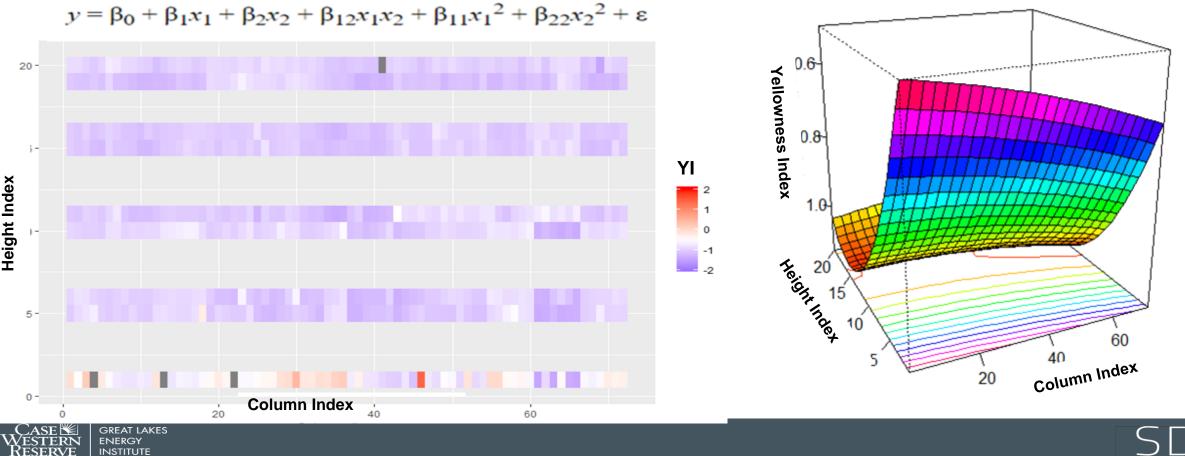
• Strong edge effect


ENERGY

- Significant effect of height
- Edge effect decrease with increase of height
- Did not measure the edge on one side
- Ground cover is white rock

Second Order Response Surface Model

- Adjusted R² = 0.6819
- Capture the feature of data:
 - Height effect
 - Edge effect
 - Greater curvature surface of lower height
 - strong edge effect


Temporal Spatial Models – North America 2 (PET)

Yellowness Index Data: (the right end of data represent the center of the row in the field)

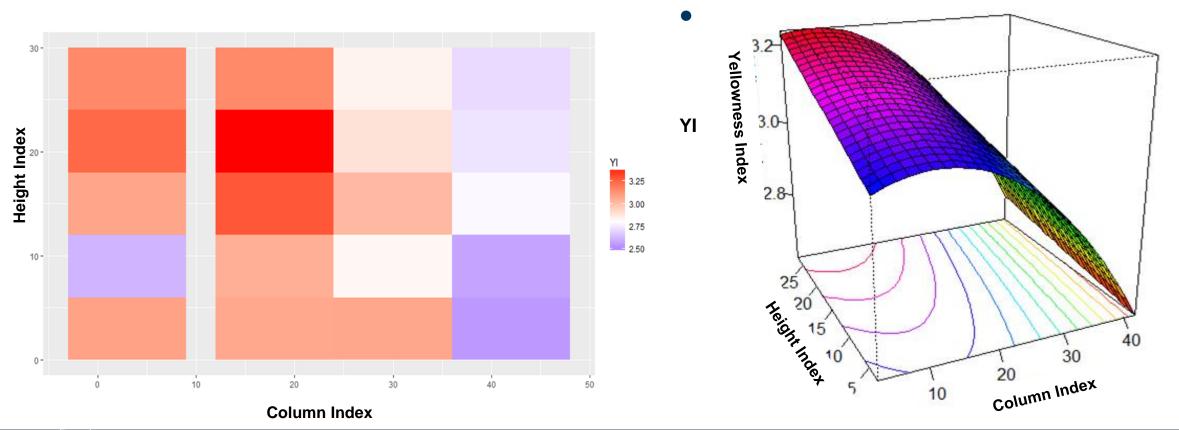
- Weak height effect
 - Similar YI of backsheet with different height
 - \circ $\;$ Short exposure time & small albedo of grass $\;$
- Highest YI of backsheet at lowest height

• Low adjusted R² = 0.0582

- Small variance with column and height
 - Short exposure years
 - Low albedo of ground cover (grass)
 - Minimal backsheet degradation (PET)

Temporal Spatial Model – North America 1 (Polyamide)

Yellowness Index Data: (the right end of data represent the center of the row in the field)


• edge effect observed

GREAT LAKES ENERGY INSTITUTE

• low albedo of grass ground cover

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \varepsilon$

- Adjusted R² = 0.6014
- Capture the feature of data:
 - edge effect, lower yellowness index at lower backsheet

SDLE

Develop models to predict the backsheet degradation of modules over space

Module location in a rack relates to the rear side irradiance distribution

• Edge effect

Module height and elevation height affect the rear side irradiance

• Non-uniform rear-side irradiance

Albedo of ground cover impacts degradation

UV-resistance of backsheet material is important in slowing of degradation

Excellent UV-resistance of fluoropolymers

Incorporate multiple different responses beyond color

Soiling impacts the development of these models

Soiling will change over time

Thank you!

Laura Bruckman laurabruckman@case.edu Case Western Reserve University

GREAT LAKES ENERGY INSTITUTE

