

Solargis weather database for China Status of development

Marcel Suri, Tomas Cebecauer, Jose A. Ruiz-Arias, and Artur Skoczek Solargis, Slovakia

solargis.com

9th PV Performance Modeling and Monitoring Workshop. Weihai, China, 5-6 December 2017

About Solargis

Solar resource, weather and photovoltaic simulation data, software and expert services

- Prospection
- Project development
- Monitoring
- Forecasting

600+ customers in 90+ countries 17 year experience in solar energy

Distributors in China:

Content

- Data needed for PV simulations
- Old and modern data approaches
- Solar and weather data acquisition
 - Meteorological measurements
 - Satellite-based solar models
 - Meteorological models
- Validation of solar radiation data
- Validation of meteorological data
- PV power forecasting
- Integrated data flow for continuous PV simulations

Content

- Data needed for PV simulations
- Old and modern data approaches
- Solar and weather data acquisition
 - Meteorological measurements
 - Satellite-based solar models
 - Meteorological models
- Validation of solar radiation data
- Validation of meteorological data
- PV power forecasting
- Integrated data flow for continuous PV simulations

PV production depends on environment

PV simulation chain

example Weihai, China

PV performance in Standard Test Conditions: 1659 kWh/kWp

PV annual output: 1347 kWh/kWp, losses 11.2% (PR=81.2%), uncertainty: 7.6%

Assumptions:

- Inputs: global irradiance at inclined plane and air temperature
- PV technology setup: cSi modules, fixed mounting at optimum angle, high eff. inverter, 100% availability

Content

- Data needed for PV simulations
- Old and modern data acquisition approaches
- Solar and weather data acquisition
 - Meteorological measurements
 - Satellite-based solar models
 - Meteorological models
- Validation of solar radiation data
- Validation of meteorological data
- PV power forecasting
- Integrated data flow for continuous PV simulations

Data available for China

Data sources

- China Meteorological Agency
- NASA SSE
- Meteonorm
- Solargis
- •

Source: NASA/SWERA, Meteonorm , Solargis

Solar resource

Comparing historical and modern approaches

Historical approaches

- Simplified "old" models and inputs
- Static (no regular updates)
- Little validation
- Low resolution
- Heterogeneous quality
- No support

New approaches

- Systematic development and operation
- Modern semi-physical models and inputs
- Updated in real time
- Systematic validation
- High temporal and spatial resolution
- Global and harmonized
- Technical and commercial support

Requirements for solar resource data

Global

Long historical record High accuracy (validated) Detailed (temporal, spatial)

Continuity

- Historical data
- Real-time data for monitoring, nowcasting and forecasting

This is possible with a combination of several approaches

11

- Satellite-based models
- Meteorological models
- High-quality ground measurements

Content

- Data needed for PV simulations
- Old and modern data approaches
- Solar and weather data acquisition
 - Meteorological measurements
 - Satellite-based solar models
 - Meteorological models
- Validation of solar radiation data
- Validation of meteorological data
- PV power forecasting
- Integrated data flow for continuous PV simulations

Acquiring solar and weather data

Ground measurements

Source: CSP Services

Satellite models

Meteorological models

Source: JMA

			Meteorological models		
	Ground measurements	Satellite models	Reanalysis models	Numerical weather prediction models	
Solar data	Calibration and validation od models	Historical solar data and nowcast	-	Forecast	
Meteorological data	Detailed local analysis	-	Historical meteo data	Forecast	

9th PV Performance Modeling and Monitoring Workshop. Weihai, China, 5-6 December 2017

Acquiring solar and weather data

Ground measurements

Satellite models

Meteorological models

Source: NOAA

			Meteorological models		
	Ground measurements	Satellite models	Reanalysis models	Numerical weather prediction models	
Solar data	Calibration and validation of models	Historical solar data and nowcast	-	Forecast	
Meteorological data	Detailed local analysis	-	Historical meteo data	Torecast	

Ground measurements

- Objective: Acquiring detailed and accurate data for calibration and validation of models:
 - Solar parameters: direct, diffuse, global
 - Meteorological parameters: temperature, wind, humidity, rainfall, etc.
- **High-accuracy instruments** should be used:
 - Secondary-standard pyranometers
 - First class pyrheliometers
 - Rotating shadowband (for remote locations)
- Regular cleaning, maintenance and calibration
- More than one solar sensor to be installed (redundancy)
- Station to be managed by trained personnel

Rigorous quality assessment needed

9th PV Performance Modeling and Monitoring Workshop. Weihai, China, 5-6 December 2017

Acquiring solar and weather data

17

Solargis: satellite-based solar data

Solargis: satellite-based solar model

Modelling cloud attenuation – geostationary satellites over China:

- Historical coverage
 - 1999 to the present (Meteosat IODC)
 - 2007 to the present (Himawari)
- Time resolution 10 and 30 minutes
- Grid spatial resolution approx. 4 to 7 km

Modelling clear-sky (cloudless) atmospheric conditions:

- Aerosols and water vapour from global models: MERRA-2, CFSR, CFSv2, GFS
- Digital Elevation Model SRTM-3

OES-WEST GOES-EAST Meteos

Meteosat IODC MTSAT Pacific

Solar radiation: How satellite and measured data compare

Solar radiation	Ground measurements (high-accuracy instruments)	Satellite models
Advantages	More accurate	Available for any site Historical and recent No gaps
Limitations	Operation and maintenance Quality control Price	Imperfections of models and input data

Acquiring solar and weather data

Ground measurements

Source: CSP Services

Satellite models

Source: JMA

Meteorological models

			Meteorological models		
	Ground measurements	Satellite models	Reanalysis models	Numerical weather prediction models	
Solar data	Calibration and validation of models	Historical solar data and nowcast	-	Forecast	
Meteorological data	Detailed local analysis	-	Historical meteo data	rorecast	

Deriving weather data from global meteorological models

- Rarely good measurements from nearby meteorological station are available
- Data from global meteorological models have to be used
 - Reanalysis: Historical meteorological data: CFSR, CFSv2, MERRA-2
 - Forecasts: IFS, GFS, GEOS5

Source: NOAA

9th PV Performance Modeling and Monitoring Workshop. Weihai, China, 5-6 December 2017

Source: NOAA

Deriving weather data from global meteorological models

Parameters that can be derived from meteorological models for any location

- Air temperature
- Wind
- Humidity
- Precipitable water

50.0

• Etc ...

- Models represent regional weather conditions rather than local microclimate
- Therefore the data has to be postprocessed

Content

- Data needed for PV simulations
- Old and modern data approaches
- Solar and weather data acquisition
 - Meteorological measurements
 - Satellite-based solar models
 - Meteorological models
- Validation of solar radiation data
- Validation of meteorological data
- PV power forecasting
- Integrated data flow for continuous PV simulations

Difference model - measurements

Factors that determine the difference between the model and measurements

Models

- Mathematical and algorithmic formulation of models
- Input data sets (satellite, weather models, etc.)

Solar monitoring instruments*

- Accuracy of sensors
- Maintenance and calibration of the instruments
- Quality control of the measured data

Solargis uncertainty of yearly estimates

* 68.27% occurrence: standard deviation (STDEV) assuming simplified assumption of normal distribution ** 80% occurrence: calculated as 1.28155 STDEV – can be used for an estimate of P90 values

9th PV Performance Modeling and Monitoring Workshop. Weihai, China, 5-6 December 2017

Uncertainty of satellite data and measurements

- Values are indicative, based on the analysis of 250+ sites
- Uncertainty for ground sensors considers that they are well maintained, calibrated and data are quality controlled

Uncertainty of satellite data and measurements

Plataforma Solar Almeria, Spain

Satellite data is comparable to ground measurements for monthly and yearly aggregated values

Content

- Data needed for PV simulations
- Old and modern data approaches
- Solar and weather data acquisition
 - Meteorological measurements
 - Satellite-based solar models
 - Meteorological models
- Validation of solar radiation data
- Validation of meteorological data
- PV power forecasting
- Integrated data flow for continuous PV simulations

Validation of air temperature

High resolution air temperature derived from global meteorological model and validated by meteorological measurements

Bias

		average	std dev.	P80	P90	P95	P99
	24h	-0.1	1.0	0.9	1.3	1.7	3.1
BIAS [°C]	day-time	0.1	1.0	0.9	1.3	1.7	3.2
	night-time	-0.6	1.4	1.7	2.3	3.0	4.9
RMSE [°C]	hourly	2.4	-	2.9	3.4	3.9	5.8
	daily	1.7	-	2.1	2.6	3.1	5.0
	monthly	0.8	-	1.1	1.5	2.0	3.6

Validation of wind speed

		average	std dev.	P80	P90	P95	P99
	24h	0.1	1.1	1.3	1.7	2.2	3.4
BIAS [m/s]	day-time	-0.1	1.1	1.3	1.8	2.2	3.4
	night-time	0.3	1.2	1.4	1.9	2.5	3.9
RMSE [m/s]	hourly	2.0	-	2.3	2.8	3.3	4.6
	daily	1.4	-	1.8	2.3	2.8	4.1
	monthly	0.9	-	1.3	1.8	2.3	3.5

Validation of relative humidity

		average	std dev.	P80	P90	P95	P99
	24h	0	7	8	11	14	20
BIAS [%]	day-time	0	7	9	12	15	22
[, •]	night-time	1	7	9	12	14	21
RMSE [%]	hourly	15	-	18	20	22	28
	daily	12	-	15	17	19	25
	monthly	8	-	11	13	15	21

Content

- Data needed for PV simulations
- Old and modern data approaches
- Solar and weather data acquisition
 - Meteorological measurements
 - Satellite-based solar models
 - Meteorological models
- Validation of solar radiation data
- Validation of meteorological data
- PV power forecasting
- Integrated data flow for continuous PV simulations

Value of forecasting

Maximizing the value of solar power Reducing the costs of power generation

Operator

- Reduction of curtailment, maximized utilization of solar electricity
- Trading
- Better management of solar hybrid solutions

Utility

- Maximizing the share of renewables
- Better integration with other power generation sources
- Minimising the operating reserve capacities

Forecasting approaches

Forecasting PV power forecast

Solar forecast: combination of models

Satellite-based nowcasting

- Cloud motion vectors derived from satellite images
- Forecast time horizon: 0 to 5 hours

Solar radiation computed

Nowcasting output

1/19

NWP forecasts: Day ahead

- Forecast based on postprocessing of outputs from Numerical Weather Prediction (NWP) models
- Forecast output from several NWP is often used
- Forecast time horizon: 0 to 10 days

NWP forecasts: Day ahead

Content

- Data needed for PV simulations
- Old and modern data approaches
- Solar and weather data acquisition
 - Meteorological measurements
 - Satellite-based solar models
 - Meteorological models
- Validation of solar radiation data
- Validation of meteorological data
- PV power forecasting
- Integrated data flow for continuous PV simulations

Conclusions

Seamless integration of Solargis data flow for <u>PV power simulations</u>:

- Updated data is available at any time:
 - **Historical**: for project development and due diligence
 - **Recent**: for PV monitoring and performance evaluation
 - **Forecast**: for trading and grid management
- Solar radiation, meteorological parameters, PV power output
- For any location, globally

