Understanding PV performance based on real world data

PV Systems Symposium,
Sandia National Labs, May 2nd, 2013

Juergen Sutterlueti, PV Systems Group
TEL Solar AG, Switzerland
PV Performance
Which factors determine real world energy yield (kWh/kWp)?

Energy Yield

- Long term behavior of components (Inverter, PV Module)
- Irradiation sensor: Quality, stability
- Different spectrum (direct/diffuse Irradiation)
- Measurement uncertainty
- Low Light behaviour (LLB)
- Temperature behaviour
- Production quality (cell, process, materials)
- Dirt/soiling
- Location/Surroundings
- Seasonal behaviour (rain, snow, ...)
- Shadow
- MPP Tracking of Inverter
- O&M
- Inverter efficiency
- Design of PV Power Plants

How can we measure, analyze & predict these factors?
Agenda

<table>
<thead>
<tr>
<th></th>
<th>Data Collection efforts at TEL Solar</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Quality of data, minimum input for proper characterization</td>
</tr>
<tr>
<td>3</td>
<td>Loss Factors Model (LFM)</td>
</tr>
<tr>
<td>4</td>
<td>How to improve existing PV Performance Models (Parameters)</td>
</tr>
<tr>
<td>5</td>
<td>Summary</td>
</tr>
</tbody>
</table>
TEL Solar AG Business concept
PV Systems Group

Focus
PV Systems Group

Feedback

Outdoor Test Facilities
- Worldwide network
- Performance analysis
- New characterization models / methods (e.g. Loss Factors Model LFM)

PV Power Plants
- Test power plants
- Reference power plants
- Performance analysis
- LCoE optimization

BoS costs
- Analysis (Trends, innovations, cost drivers)
- Tracking and benchmarking
- Technology comparisons
- Optimization
TEL Solar – Global PV Test Network

Existing Test sites

TPVPP&OTF 5 EKZ, CH
TPVPP-TEL, TBB
TPVPP-Cyprus

TPVPP: Test PV Power Plant (AC&DC DAQ); OTF: Outdoor Test Facility (single module testing, DC), both including all relevant environmental parameters
TEL Solar – Global PV Test Network II

TEL Solar Outdoor Test Facilities (selected)

- Central European climate Switzerland since 2008
- Hot & dry climate Arizona since 2010

- Same system setup/DAQ at all sites
- >24 channels fixed orientation south + 2D Tracker
- IV scans each minute
- Same technology set ("twins") of PV Modules per location

- High precision measurement equipment for environmental data & e.g. component cells

- Dust storm in AZ, 2011
- Snow in Switzerland
TEL Solar – Global PV Test Network III

Test PV Power Plants

TPVPP Specs

- Standardized, grid connected Test PV Power Plant
- Different technologies (a-Si, a-Si/μc-Si)
- High quality measurement & data acquisition system w/ direct data access
- Easy installation around the world: prefabricated cabinet incl. own data acquisition concept
- Advanced Inverter concept, 3phase
- Low cost BoS (-24% cost reduction due to MMI)

Measurements

- AC / DC parameters, String level monitoring
- Weather conditions (irradiation sensors, humidity, rain, wind speed, temperature)
- Dust measurements (by TEL TWN team)

Experiments

Technology behavior under local climate conditions (temperature, spectrum & seasonal variation), dust studies

Other TPVPP in Cyprus, 2x Switzerland etc
Loss factors model (LFM) - IV curve fit

- 8 physical, normalised, orthogonal losses not just efficiency
- Works with
 - all PV technologies tested (a-Si, a-Si:uc-Si, CdTe, CIGS, c-Si, HIT ...)
 - Different sites (Switzerland, Arizona, ...)
 - All weather (Clear noon, morning, evening or cloudy)
 - Pyranometer and/or c-Si reference cell
 - Fixed plane or 2D tracker
- Can validate performance and predict energy yield

Efficiency ~ “product of 8 losses”

\[
\text{Efficiency} \sim \left[\frac{\text{MMF} \cdot \text{nIsc} \cdot \text{nRsc} \cdot \text{nImp}}{\text{Meas. Pmax}} \right] \cdot \left[\frac{\text{nVmp} \cdot \text{nRoc} \cdot \text{nVoc} \cdot \text{tCorr}}{\text{V}} \right]
\]
LFM Outdoor Temperature coefficients

- Gradient at higher irradiances vs. module temperature gives thermal coefficients
- Not just Isc α, Voc β and Pmax γ but also $d(R_{sc})/dT_{mod}$ and $d(R_{oc})/dT_{mod}$
- Also possible at TPVPP arrays w/ DC side measurements

Note: PF=PR_dc
Typical plot of LFM coefficients vs. Irradiance
Thin Film Module in Arizona

Independent losses - temperature and spectrum corrected

→ Now only depends on irradiance

Fit e.g. 200 + 800W/m²

Calculated vs. measured Performance

Note: LFM-A concept based on 5 parameters
LFM – comparing different technologies and sites
AZ=Arizona, CH=Switzerland

- c-Si best \(R_{\text{SHUNT}} \)
- CdTe worst \(R_{\text{SERIES}} \)
- Multijunctions differ diffuse vs. direct
- Lower \(R_{\text{SHUNT}} \) gives worse low light performance
- Different individual loss factors by technology but similar Performance factors
Energy yield determining effects - which can be included / improved for better PV modelling

- Rsc vs. Irradiance
- Angle of Incidence (AOI) differences between module and sensor
- Fixed plane vs. 2D tracking
- Spectral response
- Low vs. high horizon
- Current matching (multi junction devices)
- Seasonal annealing
- (Light induced) Degradation
- Soiling & cleaning impact (see Dust Detection System by TEL TWN team)
- Production quality distribution
- ...

All required for improved kWh/kWp or ct/kWh analysis!
How Rsc varies with irradiance
→ determines the low light performance

- TEL Solar measured Rsc for 3rd party thin film modules Switzerland, a similar effect in Arizona ("normalised" to Rsc*Voc/Isc)

- Rsc rises exponentially with falling irradiance

- c-Si also follows same shape but scatter is worse as Rsc much higher (not shown)
Measured “low light efficiency” is determined by the AOI dependence of the Irradiance sensor type.

- Clear day in April, Arizona
- Pyranometer vs. c-Si ISE reference
- Fixed plane (33° tilt) vs. 2D tracker
- Calibrated at AM1.5 on 2D tracker

The calculated low light efficiency of any module will appear worse when using a pyranometer rather than a c-Si reference cell due to AOI effects. Shown example: 18% at AOI=75°
Clear day spectrum
High(left) vs. Low (right) horizon

- Clear skies at equinox for a high horizon site (CH, left) and low horizon (AZ, right)
- High horizon sites lose red rich light by shading – giving more apparent kWh/kWp to blue sensitive technologies
- Same ”glitch” to blue rich spectra from high horizons and tilted modules
Matching of Multi-junction cells
Top & Bottom limited micromorph

- Multi junctions (e.g. Micromorph) are series connected blue & red cells (same current)
- Matched at one spectrum
- Current limitation based on spectrum (e.g. red junction in blue rich light and vice versa)
- Can optimize matching based on local conditions (e.g. bluer than AM1.5)

Module A
1. Decreases in current with constant FF until November → top limited
2. Minimum in FF in May, constant current → matched status.
3. Strongest current mismatch (top limited) observed in January

Module B
4. Decrease in FF, constant current until January → bottom limited
5. Minimum in FF, maximum in current at January → closest point to matching
6. Current increases in winter due to advantageous spectral conditions for the bottom cell

Data around noon, Gi>200W/m², no Temperature correction
Long term variation / seasonal annealing
Real world variation of IV parameters, per month

- The LFM model gives values of the 6 coefficients at low light (black) and high light (colored).
- Comparable performance at different sites, Dust should only affect nIsc and nPF.
- Some Thin Film modules reversibly anneal after cooler & warmer periods, being better in autumn vs. spring.
Long term variation / seasonal annealing II
Real world variation of IV parameters, per month

- The LFM model gives values of the 6 coefficients at low light (black) and high light (colored).
- Comparable performance at different sites; Dust should only affect nIsc and nPF.
- Some Thin Film modules reversibly anneal after cooler & warmer periods, being better in autumn vs. spring.
Real world PV PP data: MPP tracking -
Single Module vs. Array - 5 different inverter types

Inverter conversion efficiency:
performance vs. datasheet

Ref. PV Module

PV Array

Tracking issue (at low light)

Have you checked the actual inverter efficiency at your system?

Fig. 10: MPP tracking of Udc based on 5 different Inverter types at 3 selected days in September 2010. Unmpp tracking from the reference modules as comparison.

Date: September from 2010, OTF5;
Inverter plot: steady conditions - filtered data from the entire year 2011, OTF5; 3rd party product, conditions: max. spread: Gi: +/-0.5%, Tmodule: +/- 1K, Gi>10W/m²
LFM - Checking performance and stability over time

Variation of LFM, 16 clear days, 1/month, 2 sites, e.g. c-Si poly

Switzerland

Arizona

nIsc and nVoc should be near 1 and consistent for a well calibrated, stable PV module

Performance factor should be high and consistent for a stable PV module

- Seasonal variation and losses
- Generally good agreement between prediction & measured LFM parameters
- Prediction of Energy Yield only with uncorrected PF (PR\textsubscript{DC})
- Possible for AC arrays!

Data from 09/2012 – 04/2012
Summary

- **TEL Solar’s Global PV Test Network:**
 - generate track record under different (extreme) environmental conditions for bankability, reliability & modeling
 - Validation for BoS cost reduction initiatives (electrical, mechanical, inverters, ..)
 - With accurate data and the option of Loss Factor Model (LFM):
 - can validate and predict performance and responsible parameters for changes (incl. Dust)

- **Loss Factors Model (LFM):**
 - Monitors relative changes in efficiency and finds responsible IV parameter
 - LFM: works for different technologies and site, different weather and applications (fix vs. tracked), normalized parameters
 - Distinction between Seasonal Changes (i.e. annealing) and Degradation.
 - Allows prediction of Energy Yield from uncorrected PR_{DC} incl. dust check (TEL TWN)

- **Combination of single PV Module and Test PV Power Plants**
 enables specific electrical BoS optimization & design (e.g. Inverter)

- Modelling efficiency vs. irradiance and temperature is not reflecting real world behavior
 - Adapt models to R_{SHUNT}, spectral and seasonal variation per technology and location

Measure accurate & long term with regular O&M – and your PV model can be better validated for realistic performance predictions!
Thank you very much for your attention!

Acknowledgment: Teams at TEL Solar, TEL PVE, TEL TWN, SRCL
Additional Information/ References:

- Y. Ueda et al.; “Comparison between the I-V measurement and the system performance in various kinds of PV technologies”; 25th EU PVSEC, Valencia 2010
- J. Sutterlueti et al.; “Detailed Outdoor Performance Analysis of Thin Film and Cristalline Silicon Based Reference PV Power Plants in Switzerland”; 3rd Int. Conference of Thin-Film Photovoltaics, Munich 2011
- J. Sutterlueti et al.; “Outdoor characterisation and modeling of thin-film modules and technology benchmarking”; 24th EU PVSEC, Hamburg 2009
- Sellner et al.; "Understanding Module Performance further: validation of the novel loss factors model and its extension to ac arrays”; 27th PVSEC Frankfurt 2012
- S. Ringbeck, J. Sutterlueti; “BoS costs: Status and optimization to reach industrial grid parity”; 27th EUPVSEC Frankfurt 2012
- S. Ransome, J. Sutterlueti; “The sensitivity of LCOE to PV technology including degradation, seasonal annealing, spectral and other effects”; 27th EUPVSEC Frankfurt 2012
- S. Ransome et al.; “PV technology differences and discrepancies in modelling between simulation programs and measurements", 38th PVSC, Austin 2012

Key words: real world data, PV Systems, sensitivity, prediction, Global test PV Power Plant network, weather types, Loss Factor Model, extension to AC arrays.
Loss Factors Model (LFM)

- Based on measured outdoor and reference IV parameters
- 6 normalized and independent parameters plus corrections for spectrum and temperature.
- Performance Factor,

\[
PF = [MMF \times (nIsc \times TC.Isc) \times nRsc \times nImp] \\
\times [nVmp \times nRoc \times (nVoc \times TC.Voc)]
\]

Note: PF=PR_{dc}