

The influence of system-level design elements on convective cooling in PV solar farms

B. J. Stanislawski^{1,3}, T. Harman¹, R. B. Cal², and M. Calaf¹ PV Performance Modeling and Monitoring Workshop August 2022

As PV module temperatures rise, efficiency drops and degradation accelerates

Dupré, O. (2016). Physics of the thermal behavior of photovoltaic devices (edited for clarity)

Enhancing convective heat transfer can cool solar modules

Dupre, Vaillon, Thermal Behavior of Photovoltaic Devices, 2017

Increasing convective heat transfer can increase power output

Convective heat transfer depends on several factors

Research Question: Can the arrangement of a solar farm naturally enhance convective heat transfer (*h*)?

Three solar farm arrangements developed

Assembled module length: 3.3 m -- Tilt angle: 30 degrees -- Number of rows: 36

Uintah:MPMICE platform used for numerical simulations

Flow solver: MPMICE (Material Point Method, Implicit, Continuous fluid, Eulerian) method: cell-centered, finite-volume, multi-material (*Kashiwa* & *Rauenzahn, LANL 1994, Sulsky et al. 1994* & *1995, Guilkey et al. 2007*)

$$h = \frac{q_m}{T_m - T_\infty}$$

7

Barrier walls yield the greatest improvements

Thermal and flow behavior of each arrangement

Pressure fields that induce flow behaviors

Contributions of this work

Spatial variations within a solar farm

Related work

Wind loading of heliostats in concentrated solar power plants

Flow past a heliostat. (Video by Eliot Quon and Shashank Yellapantula / NREL 2022)

Check out these posters to learn more about this project

- 6) Prilliman, Matthew. "Technoeconomic Analysis of changing PV System Layout and Convection Heat Transfer"
- 7) Davis, Jace. "Convective Cooling of Solar Photovoltaic Modules in Unperturbed Atmospheric Conditions"
- 8) Glick, Andrew. "Effects of module configuration on convective cooling for utility-scale solar PV plants"

Thank you

Brooke Stanislawski brooke.stanislawski@nrel.gov₁₃ **Back-Up Slides**

Contributions of this work

Low-cost cooling solution for PV plants

Manipulation of flow to induce cooling

Spatial variations within a solar farm

Thank you

Check out these posters to learn more about this project

- 6) Prilliman, Matthew. "Technoeconomic Analysis of changing PV System Layout and Convection Heat Transfer"
- 7) Davis, Jace. "Convective Cooling of Solar Photovoltaic Modules in Unperturbed Atmospheric Conditions"
- 8) Glick, Andrew. "Effects of module configuration on convective cooling for utility-scale solar PV plants"

Brooke Stanislawski brooke.stanislawski@nrel.gov

Barrier walls boost advective heat flux

LES results are analyzed to compute the convective heat transfer coefficient *h*

Newton's Law of Cooling

 $h = \frac{[q_m]}{T_m - T_m}$ $[W/m^2K]$ To solve for q_m , we start with the enthalpy equation A_5 $\rho C_p \frac{\partial \overline{T}}{\partial t} + \rho C_p \frac{\partial (\overline{u}_j \overline{T})}{\partial x_i} = -\rho C_p \frac{\partial (\overline{u}_j' \overline{T}')}{\partial x_i} + \overline{s} \qquad [W m^{-3}]$ Integrating over the control volume $\underbrace{\rho C_p \int_{cv} \frac{\partial \overline{T}}{\partial t} dV}_{Q_{st}} + \underbrace{\rho C_p \int_{cv} \frac{\partial (\overline{u_j} \overline{T})}{\partial x_j} dV}_{Q_{adv}} + \underbrace{\rho C_p \int_{cv} \frac{\partial (u'_j T')}{\partial x_j} dV}_{Q_{turb}} = \underbrace{\int_{cv} \overline{s} \, dV}_{Q_s [W]}, \quad [W]$ $\rightarrow Q_s = Q_{cv} = Q_m$ Neglecting storage and converting volume integrals to surface integrals $\boldsymbol{q_m} = \rho C_p \left| \sum_{k=1}^{6} \int_{A_k} \left[\overline{\mathbf{u}}_{\perp} (\overline{T} - T_{ref}) \right] dA_k + \sum_{k=1}^{6} \int_{A_k} (\overline{\mathbf{u}'_{\perp} T'}) dA_k \right|. \quad [W m^{-2}]$ q_{adv} *q*_{turb} where $T_{ref} = \langle T_{air} \rangle_{cv}$

Morrison et al. 2020 ¹⁹

MPMICE Equations

Conservation of mass

$$\frac{1}{V}\frac{\mathbf{D}_r M_r}{\mathbf{D}t} = \sum_{s=1}^N \Gamma_{rs}$$

Conservation of energy $\frac{1}{V} \frac{\mathbf{D}_r(M_r e_r)}{\mathbf{D}t} = -\rho_r p \frac{\mathbf{D}_r v_r}{\mathbf{D}t} + \theta_r \boldsymbol{\tau}_r : \boldsymbol{\nabla} \mathbf{u}_r - \boldsymbol{\nabla} \cdot \mathbf{j}_r$ $+ \sum_{s=1}^N q_{rs} + \sum_{s=1}^N h_{rs}^+ \boldsymbol{\Gamma}_{rs}$

model for heat energy exchange among materials

$$q_{12} = H_{12}\theta_1\theta_2(T_2 - T_1)$$

 $\begin{array}{ll} H_{12} & \text{ is analagous to a convective heat} \\ \text{transfer coefficient} \end{array}$

closure relation for material stress

$$\boldsymbol{\sigma}_r = -p\mathbf{I} + \boldsymbol{\tau}_r$$

 $\frac{\text{Conservation of mean mixture}}{\substack{\text{acceleration due to} \\ \text{mean mixture} \\ \text{stress}}} \xrightarrow{\text{acceleration due to} \\ \text{deviation of} \\ \text{material stress} \\ \text{from mean mixture} \\ \text{stress}} \xrightarrow{\text{gravitational} \\ \text{body force}} \\ \frac{1}{V} \frac{D_r(M_r \mathbf{u}_r)}{Dt} = \theta_r \nabla \cdot \boldsymbol{\sigma} + \nabla \cdot \frac{\theta_r(\boldsymbol{\sigma}_r - \boldsymbol{\sigma}) + \rho_r \mathbf{g}}{N}$

$$+\sum_{s=1}^{N}\mathbf{f}_{rs}+\sum_{s=1}^{N}\mathbf{u}_{rs}^{+}\Gamma_{rs}$$
 +turbulence

model for momentum exchange among materials

rate of mass conversion among materials