Updating the Sandia islanding guidelines document

Michael Ropp, Ph.D., P.E. Northern Plains Power Technologies

Topics in this presentation

- Discussion of the "Type System" as a new screening basis
- Learning from recent Sandia-sponsored work on risk posed by cases not covered by IEEE 1547.1 testing
- Learning from recent EPRI-sponsored study on the sensitivity of ROTs to various factors

Necessary condition for sustained islanding

- Real and reactive sources and sinks are such that one can obtain a balance within the prospective island.
- In general, if there is a P imbalance:
 - For GLR < 1, V falls.
 - For GLR > 1, V rises.
- In general, if there is a Q imbalance:
 - For a net-inductive island, f rises.
 - For a net-capacitive island, f falls.

Situations NOT tested by UL-1741 or IEEE 1547.1

- Multiple inverters
- Mixtures of dissimilar inverters
- Mixtures of inverters and rotating machines
- Other than const-Z loads
- Why not?
 - Where does the test matrix stop?
 - Logistical difficulties.

Why islanding is reemerging as a concern

- Much higher DG deployment levels means more of the problem cases.
- Have seen some power quality issues caused by anti-islanding. (Also stability issues in weak grids.)
- Grid support function impacts have raised concerns.
 - RTs
 - V/V, f/W, etc.
- MANY new market entrants, with a wide array of different techniques; some are proven, some are not.

Origins of the real power screen

$$Z_{load} = \frac{V_{nom}^2}{P_{load}} \rightarrow V_{nom}^2 = P_{load} Z_{load}$$
$$V_{isl}^2 = P_{DER} Z_{load}$$
$$\frac{V_{isl}}{V_{nom}} = \sqrt{\frac{P_{DER}}{P_{load}}} \le 0.88$$
$$\downarrow$$
$$\frac{P_{DER}}{P_{load}} \le (0.88)^2 = 0.77$$
From here for margin

From here, 0.67 (2/3) was chosen for margin and simplicity.

Real power screen details

- Assumptions:
 - The inverter acts as a constant-power current source (acceptable assumption after the first few cycles of an island).
 - The 2-s undervoltage trip is at 0.88 pu. (No longer true in the new version of 1547.)

$$\frac{V_{isl}}{V_{nom}} = \sqrt{\frac{P_{DER}}{P_{load}}} \le 0.5$$
$$\frac{P_{DER}}{P_{load}} \le (0.5)^2 = 0.25$$

You can all imagine how popular THIS would be.

Origins of the var screen

• It is possible to derive the following relationship between the island frequency, the EPS frequency, and the var balance in the island*:

$$f_{isl} = f_{EPS} \sqrt{\frac{(Q_L + Q_{LG})}{(Q_C + Q_{CG})}} \rightarrow \frac{Q_{L,isl}}{Q_{C,isl}} = \left(\frac{f_{isl}}{f_{EPS}}\right)^2$$

• For the 60.5 Hz OF trip, the squared quantity = 1.0167. From there, the 1% var match criterion was selected for simplicity and margin.

Var screen details

- Assumptions:
 - The load Q doesn't change appreciably when the island forms.
 - The inverter vars do not change appreciably during islanding.
 - The closest frequency trip is at 60.5 Hz.

$$\frac{Q_{L,isl}}{Q_{C.isl}} = \left(\frac{f_{isl}}{f_{EPS}}\right)^2 = \left(\frac{62}{60}\right)^2 = 1.068$$

So we would now have a ~7% (or more) var matching criterion. This would catch nearly all PV installations.

Working toward the new Sandia screens

- Now completing a new set of Sandia-sponsored work intended to move toward a new version of the Sandia screens. Features:
 - Dispense with the P and Q screens altogether; focus instead on the cases NOT covered by 1547.1 type testing.
 - Simplify data gathering by establishing inverter AI types and quantifying relationships between these.
- Some progress, but some challenges...

New Sandia screens: islanding detection types (W.I.P.)

- AI Type 1: fundamental-freq pos-seq perturbation that grows continuously in magnitude as frequency error increases, with no dead zone. ("Pure" SFS and quasi-SFS.)
- AI Type 2A: Type 1 but not continuous to the trip limits, except *not* a dead zone.
- AI Type 2B: Type 2A, with a dead zone.
- AI Type 3: pos-seq perturbation without feedback (Z detection).
- AI Type 4: harmonic injection specifically for AI.
- AI Type 5: passive AI only.
- AI Type 6: negative sequence manipulation.

Challenges

- No more than ten types, but still comprehensive coverage
- Type definitions must be EXTREMELY clear and unambiguous
 - Manufacturers must be able to tell easily which type they are
 - No inverter should fall into more than one type

Vs	Amount of Class 1 DG							Vs	Amount of Class 3 DG						
	0%	10%	25%	50%	75%	90%	100%	VS	0%	10%	25%	50%	75%	90%	100%
2 A	0	0	0	0	0	0	0	1	0	0	0	0	0	0.35	2.47
2 B	1.18	0.12	0	0	0	0	0	2 A	0	0	0	0	0	0.35	2.47
3	2.47	0.35	0	0	0	0	0	2 B	1.18	0.47	1.65	0.82	2.35	3.06	2.47
5	2.35	0.35	0	0	0	0	0	5	2.35	2.71	2.71	3.06	2.82	2.94	2.47
6	0	0	0	0	0	0	0	6	0	0	3	18	25	25	21
Vs	Amount of Class 2A DG							Vs	Amount of Class 5 DG						
V S	0%	10%	25%	50%	75%	90%	100%	V S	0%	10%	25%	50%	75%	90%	100%
1	0	0	0	0	0	0	0	1	0	0	0	0	0	0.35	2.35
2 B	1.18	0	0	0	0	0	0	2A	0	0	0	0	0	0.35	2.35
3	2.47	0.35	0	0	0	0	0	2 B	1.18	0.82	1.41	1.76	1.76	1.76	2.35
5	2.35	0.35	0	0	0	0	0	3	2.47	2.94	2.82	3.06	2.71	2.71	2.35
6	0	0	0	0	0	0	0	6	0	0	3	24	20	24	20
Vs	Amount of Class 2B DG							Vs	Amount of Class 6 DG						
V 3	0%	10%	25%	50%	75%	90%	100%	• 3	0%	10%	25%	50%	75%	90%	100%
1	0	0	0	0	0	0.1	1.18	1	0	0	0	0	0	0	0
2 A	0	0	0	0	0	0	1.18	2A	0	0	0	0	0	0	0
3	2.47	3.06	2.35	0.82	1.53	0.5	1.18	2 B	1.18	0.71	1.18	2.35	0	0	0
5	2.35	1.76	1.76	1.76	1.29	0.8	1.18	3	2.47	2.94	2.71	2	0	0	0
6	0	0	0	2.47	1.18	0.7	1.18	5	2.35	2.71	2.35	2.59	0	0	0

Figure 11. Number of loading scenarios in which ROTs exceeded 2 s for each inverter example tested, as a function of the fraction of synchronous generation within the island, with RTs.

Learning so far

- Some representatives of some classes perform significantly better than others in a general sense (SFS and quasi-SFS).
- We definitely DO see degradation when RTs are applied.
- The evidence regarding grid support functions like V/V, f/W etc. is mixed, but so far seems to be a negligible impact on AI overall.
- As a general rule, mixtures of methods do not perform as well as individual methods, but there are exceptions.
- AI becomes more difficult when sync gens are added, in most cases (but not all).

Sensitivity study

Factors being considered

- Irradiance/inverter output power
- Distribution of the load along the circuit
- Distribution of DERs along the circuit
- Phase-phase load imbalance
- Circuit impedance between DERs or loads
- ZP-load Z and P fraction
- Motor load fraction
- Nonlinear load (harmonic current injection level)

AI methods included

- Type 1 (SFS—did best in earlier work)
- Type 3 (Z detection only—did worse in earlier work)
- RoCoF "on"
- Using manufacturer-specific models

Work completed so far (all with RoCoF)

✓ Irradiance/inverter output power

✓ Distribution of the load along the circuit

✓ Distribution of DERs along the circuit

- Phase-phase load imbalance
- ✓ Circuit impedance between DERs or loads
- ZP-load Z and P fraction
- ✓ Motor load fraction
- Nonlinear load (harmonic current injection level)

Results so far

- The main result so far is that RoCoF has retained a very high degree of effectiveness, even when Cat II compliant.
- We hope to redo the simulations so far without RoCoF to get a better idea of the sensitivities.
- The main factor that has made a difference so far is the presence of motor load.

ower Technol