Sandia National Laboratories

LABORATORY DIRECTED RESEARCH & DEVELOPMENT

Using Machine Learning for Predictive Modeling of Weather Impacts on Utility-scale Photovoltaic Systems

Hector Mendoza^{1*} and Nicole D. Jackson¹

¹Sandia National Laboratories, *hmendo@sandia.gov

Motivation

- Solar energy is projected to be a critical source of energy for the United States in the future
- Climate change is expected to increase the frequency and severity of extreme weather events
- As more energy generation is expected from photovoltaic (PV) sites, it is important for operators and planners to **forecast** impacts of [extreme] weather events on PV energy production
- Accurate predictive models are important to enable efficient grid operation

Current Approaches & Limitations

- SNL developed predictive PV energy model shows high error compared to measured data
- The persistence method as well as statical, machine learning, and hybrid approaches have been used for forecasting PV
- Support vector machines used to predict solar intensity

> Limited locations:

Few sites or a single region in a country are used

> Limited times series of data: Common to have 0.5, 1, or only 2 years of site-level data

> Simplified weather events:

Study Objectives

Study Focus:

Develop a targeted predictive energy model for a single type of extreme weather event for utility-scale PV sites across multiple states in the US

Study Sites

Figure 1. Distribution of production hours from PVROM. Table I. Summary of PVROM sites used in this study.

Descriptor	Value
Number of sites	118
Total site capacity in GWDC (GWAC)	1.4 (1.1)
Record ranges	02/2018 - 03/2019
Number of hours	476,567
Percent of hours above 77F (25C)	23.8
Percent of hours above 90F (32.2C)	8.3
Percent of hours above 100F (37.8C)	1.4

Figure 2. Overview of datasets, data processing, and modeling approach used in this study

Models in Development

в

1 25

21.00

0.75

0.50

0.25

0.00

0.0

1.0

Figure 4. ML models in development using a) linear regression, and b)

Table 3. Comparison of preliminary model performance.

MAE (kWh)

1318

520

123

IFC

Preliminary Study Findings Baseline Model Re-Analysis

Α

1.25

8 1.00

0.75

0.50

0.25

b0.00

0.0

IEC

Linea

0.2 0.4 0.6 0.8 Normalized Measured Energy

random forests for a subset of PVROM data.

Variables: irradiance, DC:AC ratio, ambient temperature, array type, hours, month, site age, PV climate zone

Figure 3. Comparison between prior models. Table 2. Baseline model selection criteria

	Mean Absolute Error (kWh)		Model
Descriptor	Original	Target	IEC
Overall	2595	1946	Linear
T > 90F	2707	2030	RF

Ongoing and Future Work

- · Understand larger variance in ML models for lower values of energy generated by PV systems
- Pending automated hyperparameter optimization for existing models to reduce predictive model variance
- ML models improve upon baseline standards (e.g., IEC), but there is still room for improvement
- · Use deep learning to capture non-linear dependencies of PV energy production on weather, site parameters

0.6 0.8 sured Energ

MAE (normalized)

0.1114

0.0439

0.0104

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sanda, LLC, a wholly owned subsidiary of Honeywell International Inc., for the US. Department of Benergy's National Nuclear Society Administration under contract DE-NM003535. SNOT Not. <u>SUBJ NUT National</u> **ENERGY** NISA