

Validation of Industry Snow Losses

PVPMC 2022

Halley Darling, John Corson August 24, 2022

Safety. Science. Transformation.™

UL LLC © 2022. All rights reserved.

Agenda

Overview	03
Snow Loss Model Studies	04
Operational Snow Losses from SCADA	06
Snow Modeling Sensitivities	10
Validation of Snow Losses	14
Conclusions	19
Future Work	21
Questions	23

Overview

Source: Fracsun ARES soiling station hardware from 40 locations; compared to IE estimates

- Snow losses can have significant impact on level of energy generation.
- Snow losses can have high variance year-toyear.
- Snow loss models therefore can be crucial to predicting both the loss amounts and the variability of losses for a given location.
- We compared 55 operational losses to two snow loss models; 29 sites with 1+ years concurrent.
- Leading industry snow loss models may differ several percent both annually and monthly.
- Snow models primarily studied using fixed tilt ground and rooftop settings; more single-axis tracker study (and SCADA data) for comparison may be beneficial to future analyses.

Snow Loss Model Studies

Model	BEW / Townsend	MTU / Queen's University / Andrews	NREL / Marion	Proprietary (e.g., SunPower PVsim)
Research Studies	 Powers, Newmiller Townsend, 2010 Townsend & Powers, 2011 	 Andrews et al., 2012 Andrews et al., 2013 	 Marion et al., 2013 Ryberg & Freeman, 2017 	• e.g., Gun et al. (SunPower), 2018
Characteristics	Empirical monthly	5-minutely operational timeseries	Hourly timeseries	Varies
PV systems used in derivation	Ground-mounted fixed tilt (0°, 24°, 39°)	Various rack- mounted fixed tilt (5°-60°)	Roof- and ground- mounted fixed tilt (15º-35º)	Varies
PV system locations	Truckee, CA	Ontario, Canada	WI, CO	Varies

Operational Snow Losses from SCADA

Waterfall of Losses

Resource **Availability**

As-Built Capacity and **Degradation**

Other **Externalities**

Addressable Losses

- Quantify the effect • of actual insolation vs proforma expectation on energy output
- Quantify the effect of as-built observed generation capacity vs nameplate

• Quantify the effect

of degradation over

period of analysis

- Forced Curtailment
- **Grid Outages**
- Snow

- Inverter outages
- Other AC outages
- DC outages
- Tracker outages
- Soiling abatement
- Tracker set up
- Inverter set up
- Plant control

Analysis of SCADA Data from Operational PV Plants

Determining Snow Loss

Identify and quantify loss due to snow/ice by algorithmically identifying periods where Performance Index drops uniformly and significantly across the site during a period consistent with snow accumulating and sticking (cloudy and freezing) and then similarly recovers uniformly and significantly in a manner consistent with snow melting or sliding.

Map of SCADA locations

- 55 operational solar projects with provided SCADA data in the states to the right.
- These sites do not cover all snow environments in the US, but are a sample used for comparison purposes here.
- Not all sites experienced SCADA snow losses, however most sites experienced moderate to low snow losses.

Snow Modeling Sensitivities

Year-to-Year Snow Loss Variability

- Year-to-year snow variability is significant!
- Right: one site with 7+ years of SCADA data demonstrates range of losses for each calendar month.
- TMY based snow losses may not have P50 snow loss conditions present and may be biased.
- For this study, losses were modeled using timeseries data starting in Jan 1998 and ending in Dec 2020, where available.

Data Quality and Availability

- For some models, measured snow fall or snow depth may be required.
- NOAA stations used here with the following attributes:
 - Significant number of years of usable data recovery (>10, most over 15).
 - Nearby to the site (<40km).
 - Minimal elevation differences where possible (<50m).
- Models may be improved by on-site measurements to tune longterm datasets to hyperlocal conditions, however:
 - Model testing with small variations to temperature and other variables did not reveal significant sensitivity.
 - Therefore, further testing for this hypothesis was not tested further at this time.

PV System: Fixed Tilt vs. Single Axis Trackers

- The majority of snow models were studied and derived from fixed tilt systems.
- For hourly (or finer temporal resolution) modeling, one can substitute in timestamp-specific panel angle.
- For daily (or greater) temporal modeling:
 - Flat tilt (0°) is likely to over-predict loss, as snow sliding will not be modeled.
 - Absolute maximum panel angle was used in this analysis to simulate snow shedding angle.
 - Maximum achieved angle (for backtracking systems) may be an alternative depending on planned tracker operational strategy.

Validation of Snow Losses

Variability in Annual Modeled Snow Loss at 55 Sites

- Two snow loss models used for comparison purposes.
- Long-term timeseries (typically 15+ years) losses calculated.
- Annual modeled snow loss averages for each year at each site plotted to the right.
- Note the significant differences in annual values at each site as well as variation at different sites!

Annualized Concurrent Losses for 29 Sites

- 29 sites with 1+ years concurrent modeled and SCADA losses.
- For each site, the average loss for the concurrent period and calendar month of the year was computed, then POA-weighted with average monthly POA per site for annualized values.
- These models show a clear linear relationship with slopes close to 1; when models were averaged monthly and compared, R² improved significantly due to a diversity of models reducing statistical noise.
- Average annual modeled losses around 1% greater than SCADA, +/- 1.2% STD

Calendar Month Concurrent Losses for 29 Sites

Monthly Concurrent, Individual Month Averages

- 29 sites with 1+ years concurrent modeled and SCADA losses.
- For each site, the average loss for the concurrent period and calendar month of the year was computed and compared.
- Both models have a fair amount of scatter monthly, and differing regressions; average of both models still improves but less drastically than annually.

17

Total Monthly Comparison by Month of the Year

Model A

Solutions

Model B

18

Conclusions

Results and Conclusions

- Models performed best on annualized POA-weighted, which is the closest analog to applied loss in an energy estimate.
- Models had fair scatter for annualized months and specific months, however this is a less essential metric than annualized as heavy snow months are typically lowest in POA/energy production.
- Models appear to perform best in moderate to high snow conditions; low snow months benefit from long-term averaging.
- Statistical noise from an individual model can be mitigated by averaging monthly with another model of similar quality.
- Additional data points for single-axis trackers would benefit our understanding of modeling for these systems.

Future Work

Future Work and Ideas

Model Tuning

- Model Validation suggests strong correlation between models and SCADA, but an overall offset persistent in more than one model.
- Additional study may be used to determine if constants applied in each model can be refined or are variable for certain conditions.

Long-Term Correlation

- Long-term modeled losses at a site with SCADA losses may be able to be correlated during concurrent periods, resulting in a long-term, sitespecific, loss adjustment.
- Benefit to operational analysis and determining future losses.

Single-Axis Trackers

- More SCADA data for diverse system setups could be obtained and used for analysis.
- Backtracking and truetracking may have different conditions for snow shedding vs fixed tilt.
- Snow stow benefits (and conditions for such benefits) may also be added to modeling.

Questions?

Halley.Darling@ul.com

Thank you

UL.com/Solutions

Safety. Science. Transformation.™

UL LLC © 2022. All rights reserved.

References

- Powers, L.; Newmiller, J.; Townsend, T. (2010). "Measuring and Modeling the Effect of Snow on Photovoltaic System Performance." Conference Record of the IEEE Photovoltaic Specialists Conference. 000973-000978. 10.1109/PVSC.2010.5614572.
- Townsend, Tim & Powers, Loren. (2011). "Photovoltaics and snow: An update from two winters of measurements in the SIERRA." Conference Record of the IEEE Photovoltaic Specialists Conference. 003231-003236. 10.1109/PVSC.2011.6186627.
- Andrews, R.; Pollard, A.; Pearce, J.M. (2012). "Improved parametric empirical determination of module short circuit current for modelling and optimization of solar photovoltaic systems." Solar Energy.
- Andrews, R.W.; Pollard, A.; Pearce, J.M. (2013). "The effects of snowfall on solar photovoltaic performance," Solar Energy, 92, pp.8497.
- Marion, B.; Schaefer, R.; Caine, H.; Sanchez, G. (2013). "Measured and modeled photovoltaic system energy losses from snow for Colorado and Wisconsin locations." Solar Energy 97; pp. 112-121.
- Ryberg, D.; Freeman, J. (2017). "Integration, validation and application of a PV snow coverage model in SAM," National Renewable Energy Laboratory; pp. 33. TP-6A20-68705.
- Gun, D.; Anderson, M.; Kimball, G.; Bourne, B. (2017). "Dynamic Snow Loss Model in PVSim: Modeling Impact of Snow on PV Production." SunPower Corporation.

Monthly Correlation Across 55 Sites

Modeled vs SCADA Snow Losses Per Project

Total Monthly Comparison by Type of System

